211 research outputs found
Study of the Altered Anisotropy of Erythrocyte Ghost Membrane upon Interaction with Phytoreduced Negatively Charged Gold Nanoparticle from Celosia cristata and Vigna radiata
Synthesis of negatively charged gold nanoparticles (GNP) was done from seed extract and seed electrolyte of two locally available plant sources Celosia cristata and Vigna radiata without using any toxic chemicals and it is a rapid reduction way. Standard techniques of spectroscopy and advanced microscopic study was done in characterizing the particles and simultaneously the phytochemicals present in the electrolyte and extract were also spotted using established process. The effects of nanoparticles on live red blood cells were analyzed by calculating hemolysis percentage. Evaluations of GNP activity when interacted with erythrocyte ghost membrane and their impact on membrane fluidity and anisotropy were also studied as negatively charged GNP are less delineated in previous history. The results showed that negatively charged gold nanoparticles were reduced by flavonoids and phenols present in seed extract and electrolyte of plants and they are hemocompatible and can help to fluidize the membrane of erythrocyte ghost cells.The whole experiment suggested a simple, ecofriendly approach of synthesizing negatively charged nanogold which are safe to live cells that can change the fluidity parameter of membrane constituent by decreasing the anisotropy which can further help in curing health problem related with cell membrane issue
Structural Influence of the Anode Materials towards Efficient Zn Deposition/Dissolution in Aqueous Zn-Iodide Flow Batteries
Zinc-iodide flow battery (ZIFB) is one of the best potential candidates for future grid-scale energy storage, due to its eye-catching features of benign, high energy density and non-corrosive nature. However major investigations have not done yet on the negative electrode of this battery where the Zn deposition/dissolution mechanism takes place, which may have an impact on the battery performance. Herein, we have reported a comparative study of different carbon-based anodes which are conventional graphite felt, carbon paper and graphite foil. Single-cell charge/discharge performances among these three different anodes depicts that the cell with planar, hydrophilic graphite foil anode is showing the best energy efficiency and the lowest cell resistance among the carbonaceous electrodes. Zinc dissolution process during discharge process seems to be the bottleneck for having a stable cell, which was corroborated by the use of a Zn foil anode that shows excellent efficiencies along the successive cycles
Suppressing water migration in aqueous Zn-iodide flow batteries by asymmetric electrolyte formulation
Zinc-iodide flow battery (ZIFB) is under research for the last years due to its suitability as a potential candidate for future electrochemical energy storage. During cycling, one of the biggest challenges that affect the reliable performance of ZIFB is the substantial water migration through the membrane because of differential molar concentrations between anolyte and catholyte that imbalance the osmotic pressures in each compartment. Considering the mass balances, herein we propose to equalize the total ionic concentration of electrolytes by the addition of extra solute into the compartment of lower ion concentration as a way to restrict the water crossover. Experimental validation of this electrolyte concentrations balancing strategy has been carried out by assessing the post-cycled electrolytes, and half-cell charged electrolytes, which confirms the efficient suppression of water migration from catholyte to anolyte. Besides, in-depth analysis of ions and water transport mechanism through Nafion 117 membrane confirms that solvated K+ ions of lower ionic radius compared to solvated Zn2+ ions, are the dominant migrating carrier. Therefore, the addition of extra KI solute is beneficial to suppress the major transport of large hydrated Zn2+ ions along with the higher amount of water. Finally, the improved ZIFB cell behaviour with enhanced electrical conductivity, discharge capacity, and voltage efficiency in the cell assembled with the electrolytes of balanced molar concentrations concludes our present study, proving that tuning the electrolytes concentrations is an effective way to suppress water migration as an appealing method in the prospect of upscaling ZIFB application
Adaptation of Cu(In, Ga)Se2 photovoltaics for full unbiased photocharge of integrated solar vanadium redox flow batteries
The integration of photovoltaics and vanadium redox flow batteries (VRFB) is a promising alternative for the direct conversion and storage of solar energy in a single device, considering their inherent higher energy density versus other redox pairs. However, this integration is not seamless unless the photovoltaic system is customized to the voltage needs of the battery, which unlike artificial photosynthesis, continuously increase with the state-of-charge. We have developed integrated solar VRFB with adapted low-cost Cu(In, Ga)Se2 modules of 3 and 4 series-connected cells (solar efficiency of mini-solar module 8.1%), and considering the voltage requirements (1.3-1.6V), we have evaluated the influence of the photovoltaic operation region on the final efficiency of the solar VRFB. Full unbiased photocharge under 1 Sun illumination has been achieved reaching high energy (77%), solar-to-charge (7.5%) and overall round trip energy conversion efficiencies (5.0%) excelling the values reported in literature for other solar VRFB, thus demonstrating the feasibility and intrinsic potential of adapting low-cost commercial photovoltaics to such energy storage systems.Peer ReviewedPostprint (author's final draft
Model Studies on Solid Electrolyte Interphase Formation on Graphite Electrodes in Ethylene Carbonate and Dimethyl Carbonate II: Graphite Powder Electrodes
As part of a systematic study on the formation and composition of the solid electrolyte interphase (SEI) in lithium‐ion batteries (LIBs), going stepwise from highly idealized electrodes such as highly oriented pyrolytic graphite and conditions such as ultrahigh vacuum conditions to more realistic materials and reaction conditions, we investigated the decomposition of simplified electrolytes (ethylene carbonate (EC)+1 M LiPF and dimethyl carbonate (DMC)+1 M LiPF) at binder‐free graphite powder model electrodes. The results obtained from cyclic voltammetry and ex situ X‐ray photoelectron spectroscopy half‐cell measurements – in particular on the effect of cycling rate, solvent and electrode – are explained in terms of a mechanistic model where electrolyte decomposition occurs at the SEI | electrode interface and where transport of solvent and salt species through the growing SEI plays an important role for explaining the observed change from preferential salt decomposition to solvent decomposition with increasing cycling rate
Adaptation of Cu(In, Ga)Se2 photovoltaics for full unbiased photocharge of integrated solar vanadium redox flow batteries
The integration of photovoltaics and vanadium redox flow batteries (VRFBs) is a promising alternative for the direct conversion and storage of solar energy in a single device, considering their inherent higher energy density versus other redox pairs. However, this integration is not seamless unless the photovoltaic system is customized to the voltage needs of the battery, which unlike artificial photosynthesis, continuously increase with the state-of-charge. We have developed an integrated solar VRFB with adapted low-cost Cu(In, Ga)Se2 modules of 3 and 4 series-connected cells (solar efficiency of mini-solar module 8.1%), and considering the voltage requirements (1.3-1.6 V), we have evaluated the influence of the photovoltaic operation region on the final efficiency of the solar VRFB. Full unbiased photocharge under 1 Sun illumination has been achieved resulting in high energy (77%), solar-to-charge (7.5%) and overall round trip energy conversion efficiencies (5.0%) exceeding the values reported in the literature for other solar VRFBs, thus demonstrating the feasibility and intrinsic potential of adapting low-cost commercial photovoltaics to such energy storage systems
Burden of disease scenarios for 204 countries and territories, 2022–2050: a forecasting analysis for the Global Burden of Disease Study 2021
Background: Future trends in disease burden and drivers of health are of great interest to policy makers and the public at large. This information can be used for policy and long-term health investment, planning, and prioritisation. We have expanded and improved upon previous forecasts produced as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) and provide a reference forecast (the most likely future), and alternative scenarios assessing disease burden trajectories if selected sets of risk factors were eliminated from current levels by 2050. Methods: Using forecasts of major drivers of health such as the Socio-demographic Index (SDI; a composite measure of lag-distributed income per capita, mean years of education, and total fertility under 25 years of age) and the full set of risk factor exposures captured by GBD, we provide cause-specific forecasts of mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) by age and sex from 2022 to 2050 for 204 countries and territories, 21 GBD regions, seven super-regions, and the world. All analyses were done at the cause-specific level so that only risk factors deemed causal by the GBD comparative risk assessment influenced future trajectories of mortality for each disease. Cause-specific mortality was modelled using mixed-effects models with SDI and time as the main covariates, and the combined impact of causal risk factors as an offset in the model. At the all-cause mortality level, we captured unexplained variation by modelling residuals with an autoregressive integrated moving average model with drift attenuation. These all-cause forecasts constrained the cause-specific forecasts at successively deeper levels of the GBD cause hierarchy using cascading mortality models, thus ensuring a robust estimate of cause-specific mortality. For non-fatal measures (eg, low back pain), incidence and prevalence were forecasted from mixed-effects models with SDI as the main covariate, and YLDs were computed from the resulting prevalence forecasts and average disability weights from GBD. Alternative future scenarios were constructed by replacing appropriate reference trajectories for risk factors with hypothetical trajectories of gradual elimination of risk factor exposure from current levels to 2050. The scenarios were constructed from various sets of risk factors: environmental risks (Safer Environment scenario), risks associated with communicable, maternal, neonatal, and nutritional diseases (CMNNs; Improved Childhood Nutrition and Vaccination scenario), risks associated with major non-communicable diseases (NCDs; Improved Behavioural and Metabolic Risks scenario), and the combined effects of these three scenarios. Using the Shared Socioeconomic Pathways climate scenarios SSP2-4.5 as reference and SSP1-1.9 as an optimistic alternative in the Safer Environment scenario, we accounted for climate change impact on health by using the most recent Intergovernmental Panel on Climate Change temperature forecasts and published trajectories of ambient air pollution for the same two scenarios. Life expectancy and healthy life expectancy were computed using standard methods. The forecasting framework includes computing the age-sex-specific future population for each location and separately for each scenario. 95% uncertainty intervals (UIs) for each individual future estimate were derived from the 2·5th and 97·5th percentiles of distributions generated from propagating 500 draws through the multistage computational pipeline. Findings: In the reference scenario forecast, global and super-regional life expectancy increased from 2022 to 2050, but improvement was at a slower pace than in the three decades preceding the COVID-19 pandemic (beginning in 2020). Gains in future life expectancy were forecasted to be greatest in super-regions with comparatively low life expectancies (such as sub-Saharan Africa) compared with super-regions with higher life expectancies (such as the high-income super-region), leading to a trend towards convergence in life expectancy across locations between now and 2050. At the super-region level, forecasted healthy life expectancy patterns were similar to those of life expectancies. Forecasts for the reference scenario found that health will improve in the coming decades, with all-cause age-standardised DALY rates decreasing in every GBD super-region. The total DALY burden measured in counts, however, will increase in every super-region, largely a function of population ageing and growth. We also forecasted that both DALY counts and age-standardised DALY rates will continue to shift from CMNNs to NCDs, with the most pronounced shifts occurring in sub-Saharan Africa (60·1% [95% UI 56·8–63·1] of DALYs were from CMNNs in 2022 compared with 35·8% [31·0–45·0] in 2050) and south Asia (31·7% [29·2–34·1] to 15·5% [13·7–17·5]). This shift is reflected in the leading global causes of DALYs, with the top four causes in 2050 being ischaemic heart disease, stroke, diabetes, and chronic obstructive pulmonary disease, compared with 2022, with ischaemic heart disease, neonatal disorders, stroke, and lower respiratory infections at the top. The global proportion of DALYs due to YLDs likewise increased from 33·8% (27·4–40·3) to 41·1% (33·9–48·1) from 2022 to 2050, demonstrating an important shift in overall disease burden towards morbidity and away from premature death. The largest shift of this kind was forecasted for sub-Saharan Africa, from 20·1% (15·6–25·3) of DALYs due to YLDs in 2022 to 35·6% (26·5–43·0) in 2050. In the assessment of alternative future scenarios, the combined effects of the scenarios (Safer Environment, Improved Childhood Nutrition and Vaccination, and Improved Behavioural and Metabolic Risks scenarios) demonstrated an important decrease in the global burden of DALYs in 2050 of 15·4% (13·5–17·5) compared with the reference scenario, with decreases across super-regions ranging from 10·4% (9·7–11·3) in the high-income super-region to 23·9% (20·7–27·3) in north Africa and the Middle East. The Safer Environment scenario had its largest decrease in sub-Saharan Africa (5·2% [3·5–6·8]), the Improved Behavioural and Metabolic Risks scenario in north Africa and the Middle East (23·2% [20·2–26·5]), and the Improved Nutrition and Vaccination scenario in sub-Saharan Africa (2·0% [–0·6 to 3·6]). Interpretation: Globally, life expectancy and age-standardised disease burden were forecasted to improve between 2022 and 2050, with the majority of the burden continuing to shift from CMNNs to NCDs. That said, continued progress on reducing the CMNN disease burden will be dependent on maintaining investment in and policy emphasis on CMNN disease prevention and treatment. Mostly due to growth and ageing of populations, the number of deaths and DALYs due to all causes combined will generally increase. By constructing alternative future scenarios wherein certain risk exposures are eliminated by 2050, we have shown that opportunities exist to substantially improve health outcomes in the future through concerted efforts to prevent exposure to well established risk factors and to expand access to key health interventions
Zinc-iodide redox flow battery for next generation of solar energy storage
La creixent demanda global de fonts d’energia renovables a la xarxa elèctrica va crear la necessitat d’introduir sistemes d’emmagatzematge d’energia a gran escala (ESS), bateries de flux redox (RFB). La bateria de flux redox de iodur de zinc (ZIFB) presenta un gran potencial per a ESS a gran escala d’alta densitat d’energia. No obstant això, el seu ús pràctic encara està limitat per la mala ciclabilitat, la baixa densitat de corrent i la pèrdua de capacitat, a causa del revestiment / decapament de Zn irreversible, la cinètica lenta de les reaccions redox.
En aquest context, l’objectiu d’aquesta tesi és dissenyar un ZIFB amb la millora de la química de l’ànode i l’electròlit, centrant-se en densitats de corrent més baixes, apte per combinar amb un sistema fotovoltaic. Per assolir aquests objectius, la tesi s’estructura en 7 capítols principals. El capítol 1 presenta el context general, els antecedents i la motivació de la recerca sobre els RFB. El capítol 2 descriu la preparació dels materials, mètodes experimentals aplicats en aquesta tesi. Els capítols següents se centren en els principals resultats obtinguts, la part I se centra en les millores del rendiment electroquímic de ZIFB (Capítols 3–5). La part II (Capítols 6 i 7) se centra en la fotocàrrega imparcial dels RFB, començant des de la bateria de flux redox de vanadi (VRFB) fins al ZIFB, optimitzat a la part I.
Al capítol 3, entre l’exploració de diferents ànodes carnàcies, es va trobar la làmina de grafit com el millor ànode optimitzat, que presentava una excel·lent eficiència global (~ 80%) com a resultat d’un revestiment / desmuntatge eficient de Zn. L’observació va afirmar que diversos factors influeixen en el revestiment / decapament eficient de Zn, com ara l’estructura física dels ànodes, la humectabilitat dels electròlits i la conductivitat elèctrica.
Els capítols 4 i 5, estan dedicats a la millora de la química dels electròlits. Un problema important en el cicle de RFB és la migració d’aigua entre electròlits de mitja cèl·lula, que es va resoldre al capítol 4. Els resultats experimentals del model proposat d’equilibrar les concentracions molars d’electròlits van mostrar que ZIFB ciclada amb electròlit ajustat suprimia 1/3 de la migració de l’aigua, amb una excel·lent capacitat de descàrrega i la menor resistència ohmica de la cel·la. El capítol 5 se centra a millorar la vida del cicle de ZIFB utilitzant NaCl com a electròlit de suport. La presència d’ions Cl- va augmentar el rendiment del ZIFB amb 100 cicles estables i una retenció de capacitat del 77%, amb millores en la reversibilitat de les reaccions redox Zn/Zn2+ i I3-/I-. La formació del compost ZnCl4 soluble és el factor clau per a la millora de la reversibilitat redox Zn/Zn2+.
La part II (Capítols 6 i 7) està dedicada a l’estudi a nivell de dispositiu per aconseguir una fotocàrrega imparcial dels RFB solars. El capítol 6 se centra en la integració de la cèl·lula fotovoltaica CIGS i VRFB. La fotocàrrega totalment imparcial va aconseguir una alta eficiència energètica (77%), una càrrega solar (7,5%) i una eficiència de conversió d’energia d’anada i tornada (5%). Tenint en compte els reptes restants d’aquesta configuració de VRFB solar, es va realitzar la integració entre el ZIFB optimitzat (de la part I) i una cèl·lula solar orgànica (OSC) feta de materials fotoabsorbents respectuosos amb el medi ambient al capítol 7. Gràcies a la tensió de càrrega (~ 1,3 V) d’OSC, alimentat amb ZIFB a diferència de VRFB (rang de tensió de càrrega: 1,4–1,7 V), el ZIFB es va carregar fins a un 22% només alimentat per OSC.La creciente demanda mundial de fuentes de energía renovable en la red eléctrica creó la necesidad de introducir sistemas de almacenamiento de energía (ESS) a gran escala, baterías de flujo redox (RFB). La batería de flujo redox de yoduro de zinc (ZIFB) exhibe un gran potencial para ESS a gran escala de alta densidad de energía. Sin embargo, su uso práctico sigue estando limitado por la mala ciclabilidad, la baja densidad de corriente y la pérdida de capacidad, debido al recubrimiento/desprendimiento irreversible de Zn y la cinética lenta de las reacciones redox.
En este contexto, el objetivo de esta tesis es diseñar un ZIFB con la mejora en la química del ánodo y el electrolito, centrándose en densidades de corriente más bajas, adecuado para combinar con el sistema fotovoltaico. Para lograr estos objetivos, la tesis se estructura en 7 capítulos principales. El Capítulo 1 presenta el contexto general, los antecedentes y la motivación de la investigación sobre los OPR. En el capítulo 2 se describe la preparación de materiales, métodos experimentales aplicados en esta tesis. Los siguientes capítulos se centran en los principales resultados obtenidos, la Parte I se centra en las mejoras del rendimiento electroquímico de ZIFB (Capítulos 3–5). La Parte II (Capítulos 6 y 7) se centra en la fotocarga imparcial de los RFB, desde la batería de flujo redox de vanadio (VRFB) hasta el ZIFB, optimizado en la Parte I.
En el Capítulo 3, entre la exploración de diferentes ánodos carnonáceos, se encontró que la lámina de grafito es el ánodo mejor optimizado, exhibiendo una excelente eficiencia general (~80 %) como resultado de un revestimiento/desprendimiento de Zn eficiente. La observación indicó que varios factores influyen en el recubrimiento/desprendimiento de Zn eficiente, como la estructura física de los ánodos, la humectabilidad del electrolito y la conductividad eléctrica.
Los capítulos 4 y 5 están dedicados a la mejora de la química de electrolitos. Un problema importante en el ciclo de RFB es la migración de agua entre electrolitos de media celda, que se resolvió en el Capítulo 4. Los resultados experimentales del modelo propuesto de equilibrio de concentraciones molares de electrolitos mostraron que ZIFB ciclado con electrolito sintonizado suprimió 1/3 de la migración de agua, con excelente capacidad de descarga y resistencia óhmica de celda más baja. El capítulo 5 se centra en mejorar el ciclo de vida de ZIFB utilizando NaCl como electrolito de apoyo. La presencia de iones Cl- impulsó el rendimiento de ZIFB con 100 ciclos estables y una retención de capacidad del 77 %, con mejoras en la reversibilidad de las reacciones redox Zn/Zn2+ e I3-/I-. La formación del compuesto ZnCl4 soluble es el factor clave para mejorar la reversibilidad redox de Zn/Zn2+.
La Parte II (Capítulos 6 y 7) está dedicada al estudio a nivel de dispositivo para alcanzar la fotocarga imparcial de los RFB solares. El capítulo 6 se centra en la integración de la celda fotovoltaica CIGS y VRFB. La fotocarga completa e imparcial logró una alta eficiencia energética (77 %), carga solar (7,5 %) y eficiencia de conversión de energía de ida y vuelta (5 %). Teniendo en cuenta los desafíos restantes de esta configuración de VRFB solar, en el Capítulo 7 se realizó la integración entre el ZIFB optimizado (de la Parte I) y una celda solar orgánica (OSC) hecha de materiales fotoabsorbentes que no dañan el medio ambiente. voltaje de carga (~ 1,3 V) de OSC, ZIFB alimentado a diferencia de VRFB (rango de voltaje de carga: 1,4–1,7 V), el ZIFB se carga hasta un 22% alimentado únicamente por OSC.The globally increasing demand of renewable energy sources into the electricity grid created the need to introduce large-scale energy storage systems (ESS), redox flow batteries (RFBs). Zinc-iodide redox flow battery (ZIFB) exhibits a great potential for high energy density large-scale ESS. However, their practical use is still limited by poor cyclability, low current density, and capacity loss, due to irreversible Zn plating/stripping, slow kinetics of the redox reactions.
In this context, the aim of this thesis is to design a ZIFB with the improvement on the anode and electrolyte chemistry, focusing on lower current densities, suitable for matching with photovoltaic system. To achieve these objectives, the thesis is structured in 7 main chapters. Chapter 1 presents the general context, background and motivation of the research on RFBs. Chapter 2 describes the materials preparation, experimental methods applied in this thesis. The following chapters are focused on the main results obtained, Part I is focused on the electrochemical performance improvements of ZIFB (Chapters 3–5). Part II (Chapters 6 and 7) is focused on the unbiased photocharge of RFBs, starting from vanadium redox flow battery (VRFB) to the ZIFB, optimised in Part I.
In Chapter 3, among exploration of different carnonaceous anodes, graphite foil was found as the best optimised anode, exhibiting excellent overall efficiency (~80%) as a result of efficient Zn plating/stripping. The observation stated that several factors influence the efficient Zn plating/stripping, such as physical structure of anodes, electrolyte wettability, and electrical conductivity.
Chapter 4 and 5, are devoted to the improvement of the electrolyte chemistry. A major issue in RFB cycling is water migration between half-cell electrolytes, which was resolved in Chapter 4. The experimental results of the proposed model of balancing molar concentrations of electrolytes showed that ZIFB cycled with tuned electrolyte suppressed 1/3 of water migration, with excellent discharge capacity and lowest cell ohmic resistance. Chapter 5 focuses on enhancing the cycle life of ZIFB using NaCl as supporting electrolyte. The presence of Cl- ions boosted the ZIFB performance with 100 stable cycles and 77% capacity retention, with improvements in the reversibility of Zn/Zn2+ and I3-/I- redox reactions. Formation of the soluble ZnCl4 compound is the key factor for the improvement of Zn/Zn2+ redox reversibility.
Part II (Chapters 6 and 7), is dedicated to the device-level study to reach unbiased photocharge of solar RFBs. Chapter 6 is focused on the integration of the CIGS PV cell and VRFB. Full unbiased photocharge achieved high energy efficiency (77%), solar-to-charge (7.5%), and round-trip energy conversion efficiency (5%). Taking into account the remaining challenges from this solar VRFB set-up, the integration was performed between the optimised ZIFB (from Part I) and an organic solar cell (OSC) made of environment-friendly photoabsorber materials in Chapter 7. Thanks to the stable charging voltage (~1.3 V) of OSC, powered ZIFB unlike VRFB (charge voltage range: 1.4–1.7 V), the ZIFB charged up to 22% solely powered by OSC.Universitat Autònoma de Barcelona. Programa de Doctorat en Ciència de Material
Zinc-iodide redox flow battery for next generation of solar energy storage
La creixent demanda global de fonts d'energia renovables a la xarxa elèctrica va crear la necessitat d'introduir sistemes d'emmagatzematge d'energia a gran escala (ESS), bateries de flux redox (RFB). La bateria de flux redox de iodur de zinc (ZIFB) presenta un gran potencial per a ESS a gran escala d'alta densitat d'energia. No obstant això, el seu ús pràctic encara està limitat per la mala ciclabilitat, la baixa densitat de corrent i la pèrdua de capacitat, a causa del revestiment / decapament de Zn irreversible, la cinètica lenta de les reaccions redox. En aquest context, l'objectiu d'aquesta tesi és dissenyar un ZIFB amb la millora de la química de l'ànode i l'electròlit, centrant-se en densitats de corrent més baixes, apte per combinar amb un sistema fotovoltaic. Per assolir aquests objectius, la tesi s'estructura en 7 capítols principals. El capítol 1 presenta el context general, els antecedents i la motivació de la recerca sobre els RFB. El capítol 2 descriu la preparació dels materials, mètodes experimentals aplicats en aquesta tesi. Els capítols següents se centren en els principals resultats obtinguts, la part I se centra en les millores del rendiment electroquímic de ZIFB (Capítols 3-5). La part II (Capítols 6 i 7) se centra en la fotocàrrega imparcial dels RFB, començant des de la bateria de flux redox de vanadi (VRFB) fins al ZIFB, optimitzat a la part I. Al capítol 3, entre l'exploració de diferents ànodes carnàcies, es va trobar la làmina de grafit com el millor ànode optimitzat, que presentava una excel·lent eficiència global (~ 80%) com a resultat d'un revestiment / desmuntatge eficient de Zn. L'observació va afirmar que diversos factors influeixen en el revestiment / decapament eficient de Zn, com ara l'estructura física dels ànodes, la humectabilitat dels electròlits i la conductivitat elèctrica. Els capítols 4 i 5, estan dedicats a la millora de la química dels electròlits. Un problema important en el cicle de RFB és la migració d'aigua entre electròlits de mitja cèl·lula, que es va resoldre al capítol 4. Els resultats experimentals del model proposat d'equilibrar les concentracions molars d'electròlits van mostrar que ZIFB ciclada amb electròlit ajustat suprimia 1/3 de la migració de l'aigua, amb una excel·lent capacitat de descàrrega i la menor resistència ohmica de la cel·la. El capítol 5 se centra a millorar la vida del cicle de ZIFB utilitzant NaCl com a electròlit de suport. La presència d'ions Cl- va augmentar el rendiment del ZIFB amb 100 cicles estables i una retenció de capacitat del 77%, amb millores en la reversibilitat de les reaccions redox Zn/Zn2+ i I3-/I-. La formació del compost ZnCl4 soluble és el factor clau per a la millora de la reversibilitat redox Zn/Zn2+. La part II (Capítols 6 i 7) està dedicada a l'estudi a nivell de dispositiu per aconseguir una fotocàrrega imparcial dels RFB solars. El capítol 6 se centra en la integració de la cèl·lula fotovoltaica CIGS i VRFB. La fotocàrrega totalment imparcial va aconseguir una alta eficiència energètica (77%), una càrrega solar (7,5%) i una eficiència de conversió d'energia d'anada i tornada (5%). Tenint en compte els reptes restants d'aquesta configuració de VRFB solar, es va realitzar la integració entre el ZIFB optimitzat (de la part I) i una cèl·lula solar orgànica (OSC) feta de materials fotoabsorbents respectuosos amb el medi ambient al capítol 7. Gràcies a la tensió de càrrega (~ 1,3 V) d'OSC, alimentat amb ZIFB a diferència de VRFB (rang de tensió de càrrega: 1,4-1,7 V), el ZIFB es va carregar fins a un 22% només alimentat per OSC.La creciente demanda mundial de fuentes de energía renovable en la red eléctrica creó la necesidad de introducir sistemas de almacenamiento de energía (ESS) a gran escala, baterías de flujo redox (RFB). La batería de flujo redox de yoduro de zinc (ZIFB) exhibe un gran potencial para ESS a gran escala de alta densidad de energía. Sin embargo, su uso práctico sigue estando limitado por la mala ciclabilidad, la baja densidad de corriente y la pérdida de capacidad, debido al recubrimiento/desprendimiento irreversible de Zn y la cinética lenta de las reacciones redox. En este contexto, el objetivo de esta tesis es diseñar un ZIFB con la mejora en la química del ánodo y el electrolito, centrándose en densidades de corriente más bajas, adecuado para combinar con el sistema fotovoltaico. Para lograr estos objetivos, la tesis se estructura en 7 capítulos principales. El Capítulo 1 presenta el contexto general, los antecedentes y la motivación de la investigación sobre los OPR. En el capítulo 2 se describe la preparación de materiales, métodos experimentales aplicados en esta tesis. Los siguientes capítulos se centran en los principales resultados obtenidos, la Parte I se centra en las mejoras del rendimiento electroquímico de ZIFB (Capítulos 3-5). La Parte II (Capítulos 6 y 7) se centra en la fotocarga imparcial de los RFB, desde la batería de flujo redox de vanadio (VRFB) hasta el ZIFB, optimizado en la Parte I. En el Capítulo 3, entre la exploración de diferentes ánodos carnonáceos, se encontró que la lámina de grafito es el ánodo mejor optimizado, exhibiendo una excelente eficiencia general (~80 %) como resultado de un revestimiento/desprendimiento de Zn eficiente. La observación indicó que varios factores influyen en el recubrimiento/desprendimiento de Zn eficiente, como la estructura física de los ánodos, la humectabilidad del electrolito y la conductividad eléctrica. Los capítulos 4 y 5 están dedicados a la mejora de la química de electrolitos. Un problema importante en el ciclo de RFB es la migración de agua entre electrolitos de media celda, que se resolvió en el Capítulo 4. Los resultados experimentales del modelo propuesto de equilibrio de concentraciones molares de electrolitos mostraron que ZIFB ciclado con electrolito sintonizado suprimió 1/3 de la migración de agua, con excelente capacidad de descarga y resistencia óhmica de celda más baja. El capítulo 5 se centra en mejorar el ciclo de vida de ZIFB utilizando NaCl como electrolito de apoyo. La presencia de iones Cl- impulsó el rendimiento de ZIFB con 100 ciclos estables y una retención de capacidad del 77 %, con mejoras en la reversibilidad de las reacciones redox Zn/Zn2+ e I3-/I-. La formación del compuesto ZnCl4 soluble es el factor clave para mejorar la reversibilidad redox de Zn/Zn2+. La Parte II (Capítulos 6 y 7) está dedicada al estudio a nivel de dispositivo para alcanzar la fotocarga imparcial de los RFB solares. El capítulo 6 se centra en la integración de la celda fotovoltaica CIGS y VRFB. La fotocarga completa e imparcial logró una alta eficiencia energética (77 %), carga solar (7,5 %) y eficiencia de conversión de energía de ida y vuelta (5 %). Teniendo en cuenta los desafíos restantes de esta configuración de VRFB solar, en el Capítulo 7 se realizó la integración entre el ZIFB optimizado (de la Parte I) y una celda solar orgánica (OSC) hecha de materiales fotoabsorbentes que no dañan el medio ambiente. voltaje de carga (~ 1,3 V) de OSC, ZIFB alimentado a diferencia de VRFB (rango de voltaje de carga: 1,4-1,7 V), el ZIFB se carga hasta un 22% alimentado únicamente por OSC.The globally increasing demand of renewable energy sources into the electricity grid created the need to introduce large-scale energy storage systems (ESS), redox flow batteries (RFBs). Zinc-iodide redox flow battery (ZIFB) exhibits a great potential for high energy density large-scale ESS. However, their practical use is still limited by poor cyclability, low current density, and capacity loss, due to irreversible Zn plating/stripping, slow kinetics of the redox reactions. In this context, the aim of this thesis is to design a ZIFB with the improvement on the anode and electrolyte chemistry, focusing on lower current densities, suitable for matching with photovoltaic system. To achieve these objectives, the thesis is structured in 7 main chapters. Chapter 1 presents the general context, background and motivation of the research on RFBs. Chapter 2 describes the materials preparation, experimental methods applied in this thesis. The following chapters are focused on the main results obtained, Part I is focused on the electrochemical performance improvements of ZIFB (Chapters 3-5). Part II (Chapters 6 and 7) is focused on the unbiased photocharge of RFBs, starting from vanadium redox flow battery (VRFB) to the ZIFB, optimised in Part I. In Chapter 3, among exploration of different carnonaceous anodes, graphite foil was found as the best optimised anode, exhibiting excellent overall efficiency (~80%) as a result of efficient Zn plating/stripping. The observation stated that several factors influence the efficient Zn plating/stripping, such as physical structure of anodes, electrolyte wettability, and electrical conductivity. Chapter 4 and 5, are devoted to the improvement of the electrolyte chemistry. A major issue in RFB cycling is water migration between half-cell electrolytes, which was resolved in Chapter 4. The experimental results of the proposed model of balancing molar concentrations of electrolytes showed that ZIFB cycled with tuned electrolyte suppressed 1/3 of water migration, with excellent discharge capacity and lowest cell ohmic resistance. Chapter 5 focuses on enhancing the cycle life of ZIFB using NaCl as supporting electrolyte. The presence of Cl- ions boosted the ZIFB performance with 100 stable cycles and 77% capacity retention, with improvements in the reversibility of Zn/Zn2+ and I3-/I- redox reactions. Formation of the soluble ZnCl4 compound is the key factor for the improvement of Zn/Zn2+ redox reversibility. Part II (Chapters 6 and 7), is dedicated to the device-level study to reach unbiased photocharge of solar RFBs. Chapter 6 is focused on the integration of the CIGS PV cell and VRFB. Full unbiased photocharge achieved high energy efficiency (77%), solar-to-charge (7.5%), and round-trip energy conversion efficiency (5%). Taking into account the remaining challenges from this solar VRFB set-up, the integration was performed between the optimised ZIFB (from Part I) and an organic solar cell (OSC) made of environment-friendly photoabsorber materials in Chapter 7. Thanks to the stable charging voltage (~1.3 V) of OSC, powered ZIFB unlike VRFB (charge voltage range: 1.4-1.7 V), the ZIFB charged up to 22% solely powered by OSC
A dose Dependent hepatoprotective and nephroprotective activity of eucalyptus oil on Streptozotocin induced diabetic mice model
Abstract Background Eucalyptus globulus are a prime source of global eucalyptus oil production. This oil has therapeutic, flavoring, antimicrobial, and biopesticide properties. This oil has got popularity because they are reported as pharmacologically active. A study has been conducted with the aim to find dose dependant effect of eucalyptus oil on diabetic mice induced with Streptozotocin (STZ) and analyze the hepatoprotective and nephroprotective nature through biochemical and histological study. STZ at low dose was used to damage pancreatic β cells and induce type II diabetes on mice model. Oil was used in different percentages namely, 0.5%, 1%, 1.5%, 2% for treating hyperglycemia. Then after a treatment of 28 days, the total body weight, and biochemical parameters including blood glucose, serum glutamic pyruvic transaminase (SGPT), serum glutamic oxaloacetic transaminase (SGOT), alkaline phosphatase (ALP), gamma-glutamyl transpeptidase (GGT), Bilirubin, cholesterol, urea, creatinine were checked thoroughly. A complete histological study of different organs like liver, kidney, and pancreas was done. Results From the explained experiment the result was quite interesting which showed among all the concentration of essential oil, 1.5% showed maximum effect on hyperglycemia with a rapid approach to normalize high blood glucose level and also other biochemical parameters. The tissue was got rejuvenated and behaved as normal cells after being treated with 1.5% oil. Conclusion So the main purpose of the work is to search for an alternative substituent of antidiabetic drug which can work as potentially as conventional drug for diabetes but without having side effects. And Eucalyptus oil proved to be safe and steady source for hyperglycemic patients at a particular dose. So it can be used for further diabetic research
- …