86 research outputs found

    Memory, Space, and Planning: Multiscale Predictive Representations

    Full text link
    Memory is inherently entangled with prediction and planning. Flexible behavior in biological and artificial agents depends on the interplay of learning from the past and predicting the future in ever-changing environments. This chapter reviews computational, behavioral, and neural evidence suggesting these processes rely on learning the relational structure of experiences, known as cognitive maps, and draws two key takeaways. First, that these memory structures are organized as multiscale, compact predictive representations in hippocampal and prefrontal cortex, or PFC, hierarchies. Second, we argue that such predictive memory structures are crucial to the complementary functions of the hippocampus and PFC, both for enabling a recall of detailed and coherent past episodes as well as generalizing experiences at varying scales for efficient prediction and planning. These insights advance our understanding of memory and planning mechanisms in the brain and hold significant implications for advancing artificial intelligence systems.Comment: To be published as a chapter in an edited volume by Oxford University Press (Editors: Sara Aronowitz and Lynn Nadel

    In-Context Learning in Large Language Models: A Neuroscience-inspired Analysis of Representations

    Full text link
    Large language models (LLMs) exhibit remarkable performance improvement through in-context learning (ICL) by leveraging task-specific examples in the input. However, the mechanisms behind this improvement remain elusive. In this work, we investigate embeddings and attention representations in Llama-2 70B and Vicuna 13B. Specifically, we study how embeddings and attention change after in-context-learning, and how these changes mediate improvement in behavior. We employ neuroscience-inspired techniques, such as representational similarity analysis (RSA), and propose novel methods for parameterized probing and attention ratio analysis (ARA, measuring the ratio of attention to relevant vs. irrelevant information). We designed three tasks with a priori relationships among their conditions: reading comprehension, linear regression, and adversarial prompt injection. We formed hypotheses about expected similarities in task representations to investigate latent changes in embeddings and attention. Our analyses revealed a meaningful correlation between changes in both embeddings and attention representations with improvements in behavioral performance after ICL. This empirical framework empowers a nuanced understanding of how latent representations affect LLM behavior with and without ICL, offering valuable tools and insights for future research and practical applications.Comment: Added overview figures 1-3 in this versio

    A Prefrontal Cortex-inspired Architecture for Planning in Large Language Models

    Full text link
    Large language models (LLMs) demonstrate impressive performance on a wide variety of tasks, but they often struggle with tasks that require multi-step reasoning or goal-directed planning. To address this, we take inspiration from the human brain, in which planning is accomplished via the recurrent interaction of specialized modules in the prefrontal cortex (PFC). These modules perform functions such as conflict monitoring, state prediction, state evaluation, task decomposition, and task coordination. We find that LLMs are sometimes capable of carrying out these functions in isolation, but struggle to autonomously coordinate them in the service of a goal. Therefore, we propose a black box architecture with multiple LLM-based (GPT-4) modules. The architecture improves planning through the interaction of specialized PFC-inspired modules that break down a larger problem into multiple brief automated calls to the LLM. We evaluate the combined architecture on three challenging planning tasks -- graph traversal, Tower of Hanoi, and logistics -- finding that it yields significant improvements over standard LLM methods (e.g., zero-shot prompting, in-context learning, and chain-of-thought). These results demonstrate the benefit of utilizing knowledge from cognitive neuroscience to improve planning in LLMs

    Searchlight-based multi-voxel pattern analysis of fMRI by cross-validated MANOVA

    Get PDF
    Multi-voxel pattern analysis (MVPA) is a fruitful and increasingly popular complement to traditional univariate methods of analyzing neuroimaging data. We propose to replace the standard ‘decoding’ approach to searchlight-based MVPA, measuring the performance of a classifier by its accuracy, with a method based on the multivariate form of the general linear model. Following the well-established methodology of multivariate analysis of variance (MANOVA), we define a measure that directly characterizes the structure of multi-voxel data, the pattern distinctness D. Our measure is related to standard multivariate statistics, but we apply cross-validation to obtain an unbiased estimate of its population value, independent of the amount of data or its partitioning into ‘training’ and ‘test’ sets. The estimate can therefore serve not only as a test statistic, but also as an interpretable measure of multivariate effect size. The pattern distinctness generalizes the Mahalanobis distance to an arbitrary number of classes, but also the case where there are no classes of trials because the design is described by parametric regressors. It is defined for arbitrary estimable contrasts, including main effects (pattern differences) and interactions (pattern changes). In this way, our approach makes the full analytical power of complex factorial designs known from univariate fMRI analyses available to MVPA studies. Moreover, we show how the results of a factorial analysis can be used to obtain a measure of pattern stability, the equivalent of ‘cross-decoding’

    Prioritized memory access explains planning and hippocampal replay.

    Get PDF
    To make decisions, animals must evaluate candidate choices by accessing memories of relevant experiences. Yet little is known about which experiences are considered or ignored during deliberation, which ultimately governs choice. We propose a normative theory predicting which memories should be accessed at each moment to optimize future decisions. Using nonlocal 'replay' of spatial locations in hippocampus as a window into memory access, we simulate a spatial navigation task in which an agent accesses memories of locations sequentially, ordered by utility: how much extra reward would be earned due to better choices. This prioritization balances two desiderata: the need to evaluate imminent choices versus the gain from propagating newly encountered information to preceding locations. Our theory offers a simple explanation for numerous findings about place cells; unifies seemingly disparate proposed functions of replay including planning, learning, and consolidation; and posits a mechanism whose dysfunction may underlie pathologies like rumination and craving

    Author response image 2.

    Get PDF
    The hippocampal–entorhinal system encodes a map of space that guides spatial navigation. Goal-directed behaviour outside of spatial navigation similarly requires a representation of abstract forms of relational knowledge. This information relies on the same neural system, but it is not known whether the organisational principles governing continuous maps may extend to the implicit encoding of discrete, non-spatial graphs. Here, we show that the human hippocampal–entorhinal system can represent relationships between objects using a metric that depends on associative strength. We reconstruct a map-like knowledge structure directly from a hippocampal–entorhinal functional magnetic resonance imaging adaptation signal in a situation where relationships are non-spatial rather than spatial, discrete rather than continuous, and unavailable to conscious awareness. Notably, the measure that best predicted a behavioural signature of implicit knowledge and blood oxygen level-dependent adaptation was a weighted sum of future states, akin to the successor representation that has been proposed to account for place and grid-cell firing patterns
    • …
    corecore