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Abstract

To make decisions, animals must evaluate candidate choices by accessing memories of relevant experiences. Yet
little is known about which experiences are considered or ignored during deliberation, which ultimately governs
choice. We propose a normative theory predicting which memories should be accessed at each moment to optimize
future decisions. Using nonlocal “replay” of spatial locations in hippocampus as a window into memory access, we
simulate a spatial navigation task where an agent accesses memories of locations sequentially, ordered by utility:
how much extra reward would be earned due to better choices. This prioritization balances two desiderata: the need
to evaluate imminent choices, vs. the gain from propagating newly encountered information to preceding locations.
Our theory offers a simple explanation for numerous findings about place cells; unifies seemingly disparate proposed
functions of replay including planning, learning, and consolidation; and posits a mechanism whose dysfunction may
underlie pathologies like rumination and craving.
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1 Introduction

A hallmark of adaptive behavior is the effective use of experience to maximize reward [1]. In sequential decision tasks
such as spatial navigation, actions can be separated from their consequences in space and time. Anticipating these
consequences, so as to choose the best actions, thus often requires integrating multiple intermediate experiences
from pieces potentially never experienced together [2, 3]. For instance, planning may involve sequentially retrieving
experiences to compose a series of possible future situations [4, 5]. Recent theories suggest that humans and
animals selectively engage in such prospective planning as appropriate to the circumstances, and that omitting
such computations could underlie habits and compulsion [6, 7, 8]. However, by focusing only on whether or not to
deliberate about the immediate future, these theories largely fail to address which of the many possible experiences
to consider in this evaluation process, which ultimately governs which decisions are made.

In addition to prospective planning, behavioral and neuroimaging data suggest that actions can also be evaluated
by integrating experiences long before decisions are needed. Indeed, future decisions can be predicted not only
from prospective neural activity [5], but also from neural reinstatement when relevant information is first learned
[9] and during subsequent rest [10, 11] (Fig. 1a). Yet, this further highlights the selection problem: If actions can
be evaluated long before they are needed, which experiences should the brain consider at each moment to set the
stage for the most rewarding future decisions? Addressing this question requires a more granular theory of memory
access for evaluation, which takes forward planning as a special case of general value computation.

A window into patterns of memory access is offered by the hippocampus [12]. During spatial navigation,
hippocampal place cells typically represent an animal’s spatial position, though it can also represent locations
ahead of the animal during movement pauses [13, 14, 15]. For instance, during “sharp wave ripple” events, activity
might progress sequentially from the animal’s current location toward a goal location [14, 15]. These “forward
replay” sequences predict subsequent behavior and have been suggested to support a planning mechanism that
links actions to their consequences along a spatial trajectory [15]. However, this pattern is also not unique: Activity
in the hippocampus can also represent locations behind the animal [16, 14, 17, 18, 19], and even altogether disjoint,
remote locations (especially during sleep [20, 21]; Fig. 1a). Collectively, these three patterns (forward, reverse,
and offline replay) parallel the circumstances, discussed above, in which reinstatement in humans predict choice.
The various patterns of hippocampal replay have been suggested to support a range of distinct functions such as
planning [13, 15], learning through credit assignment [22, 16, 19], memory retrieval [23, 24], consolidation [25, 23],
and forming and maintaining a cognitive map [18]. Yet, we still lack a theory describing how these various functions
of replay come together to promote adaptive behavior, and predicting which memories are replayed at each time
and in which order.

To address this gap, we develop a normative theory to predict not just whether but which memories should
be accessed at each time to enable the most rewarding future decisions. Our framework, based on the DYNA
reinforcement learning (RL) architecture [26], views planning as learning about values from remembered experiences,
generalizing and reconceptualizing work on tradeoffs between model-based and model-free controllers [6, 7]. We
derive, from first principles, the utility of retrieving each individual experience at each moment to predict which
memories a rational agent ought to access to lay the groundwork for the most rewarding future decisions. This utility
is formalized as the increase in future reward resulting from such memory access and is shown to be the product of
two terms: a gain term that prioritizes states behind the agent when an unexpected outcome is encountered; and
a need term that prioritizes states ahead of the agent that are imminently relevant. Importantly, this theory at
present investigates which experience among all would be most favorable in principle; it is not intended as (but
may help point the way toward) a mechanistic or process-level account of how the agent might efficiently find them.

To test the implications of our theory, we simulate a spatial navigation task in which an agent generates and
stores experiences which can be later retrieved. We show that an agent that accesses memories in order of utility
produces patterns of sequential state reactivation that resemble place cell replay, reproducing qualitatively and with
no parameter fitting a wealth of empirical findings in this literature including (i) the existence and balance between
forward and reverse replay; (ii) the content of replay; and (iii) effects of experience. We propose the unifying view
that all patterns of replay during behavior, rest, and sleep reflect different instances of a general state retrieval
operation that integrates experiences across space and time to propagate value and guide decisions. This framework
formalizes and unifies aspects of the various putatively distinct functions of replay previously proposed, and may
shed light onto related psychiatric disorders including craving, hallucinations, and rumination.

2 Results

We address how best to order individual steps of computation, known as Bellman backups (Fig. 1b-d), for estimating
an action’s value. A Bellman backup updates an estimate of the future value of taking a particular “target” action
in some state, by summing the immediate payoff received for the action with the estimated future value of the
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successor state that follows it. Stringing together multiple backup operations over a sequence of states and actions
computes aggregate value over a trajectory.

To analyze the optimal scheduling of individual steps of value computation, we derive the instantaneous utility
of every possible individual Bellman backup: the expected increase in future reward that will result if the backup is
executed (see Methods for formal derivation). The intuition is that a backup, by changing an action’s value, can
improve the choice preferred at the target state, leading to better rewards if that state is ever visited. Thus, the
utility of a backup can be intuitively understood as the increase in reward following the target state multiplied by
the expected number of times the target state will be visited: the product of a gain and a need term, respectively.
The gain term quantifies the increase in discounted future reward expected from a policy change at the target state
— that is, it measures how much more reward the agent can expect to harvest following any visit to the target state,
due to what it learns from the update (Fig. 1e). Importantly, this value depends on whether the update changes the
agent’s policy, meaning that (in contrast to other prioritization heuristics considered in AI; [27, 28, 29]), the theory
predicts asymmetric effects of positive and negative prediction errors due to their differential effect on behavior
(Fig. 1f). To determine priority, the gain term is multiplied by the need term, which quantifies the number of times
the agent is expected to harvest the gain by visiting the target state in the future. Here, earlier visits are weighted
more heavily than later visits due to temporal discounting. This weighting implies that the need term prioritizes
the agent’s current state, and others likely to be visited soon (Fig. 1g).

To explore the implications of this theory, we simulate an agent’s behavior in two spatial navigation tasks
(Fig. 1c). First, we simulate a linear track where the agent shuttles back and forth to collect rewards at the ends, a
task widely used in studies of hippocampal replay (Fig. 1c, right). Second, we simulate a two-dimensional field with
obstacles (walls) where the agent needs to move toward a reward placed at a fixed location, a task used extensively
in previous RL studies [28, 1] (Fig. 1c, left). In both, the agent learns which actions lead to reward by propagating
value information through Bellman backups. We assume that when the agent is paused (here, before starting a
run and upon receiving a reward), it may access nonlocal memories, and that it does so in order of utility. By
reactivating memories sequentially, value information can be propagated along spatial trajectories that may have
never been traversed continuously by the agent. In particular, value information can be propagated backward by
chaining successive backups in the reverse direction, or forward by chaining successive backups in the forward
direction. The latter case is achieved by allowing the agent to look one step deeper into the value of an action

— i.e., we consider the utility of all individual backups and, in particular, one that extends the previous backup
with one extra state and updates the values of all actions along a trajectory. This approach allows for symmetric
forward and reverse updates that have comparable effects along all the states of a trajectory. To connect the theory
to hippocampal recordings, we assume that this local operation is accompanied by place cell activity at the target
location.

2.1 Memory access and learning

We first predicted that prioritized memory access speeds learning. In both environments, we contrasted an agent
that accesses memories in prioritized order with a model-free agent that learns only by direct experience, and an
agent that replays experiences drawn at random (original DYNA [26]). In all cases, the number of steps to complete
an trial (find the reward) gradually declines as the agent learns the task. Learning with prioritized experience
replay progresses faster due to rapid propagation of value information along relevant trajectories (Fig. 1d). Notice
that our theory predicts that a model-free agent is nonetheless able to learn this type of task, albeit in a slower
fashion, in line with empirical demonstrations that disrupting replay slows learning without abolishing it [24].

Figure 1:

2.2 Context-dependent balance between forward and reverse sequences

A major prediction of our theory is that patterns of memory access are not random, but often involve patterned
trajectories. In our simulations, as in hippocampal recordings, replayed locations typically followed continuous
sequences in either forward or reverse order (Fig. 2). In the model, this is because backups tend to produce
situations that favor adjacent backups. In particular, our theory predicts two predominant patterns of backup,
driven by the two terms of the prioritization equation.

First, when an agent encounters a prediction error, this produces a large gain behind the agent (Fig. 2a-f),
reflecting the value of propagating the new information to predecessor states where it is relevant to choice. Following
this backup, gain now favors, recursively, propagating the information toward that state’s predecessors, and so on.
Thus, following an unexpected reward, sequences tend to start at the agent’s location and move backwards toward
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the start state (Fig. 2c,f). Because the need term is largest for states the agent expects to visit next (Fig. 2e), and
since following reward the agent returns to the start for a new trial, prioritized backups often extend backwards,
depth-first, even in a 2D environment (Fig. 2f, S1). The depth-first pattern reflects the agent’s expectation that it
will return to the reward in the future following a trajectory similar to that followed in the past, in contrast to a
breadth-first pattern observed in alternative prioritization heuristics that do not include a need term [27, 28, 29].

The need term, instead, tends to be largest in front of the agent (Fig. 2g-l). When it dominates, sequences
tend to start at the agent’s location and move forward toward the goal (Fig. 2i,l). They tend to iterate forward
because following a forward sequence of n steps, an adjacent step can extend it to an n+ 1-step backup that carries
information about each preceding action. This pattern is observed whenever the utility of looking one step deeper
into the value of the actions along the route is sufficiently high.

Figure 2:

The model thus predicts when different patterns of backup (driven by fluctuating gain and need) are likely to
occur. To quantify this in simulation, we classified each backup as forward or reverse (see Methods). In line with
rodent hippocampal recordings on the linear track, we observed that replay (driven by need) extended forward
before a run (Fig. 3a, left), providing information relevant for evaluating future trajectories. In contrast, replay
extended backward upon completing a run (driven by gain, Fig. 3a, right), providing a link between behavioral
trajectories and their outcomes. Very few reverse sequences were observed prior to a run, or vice versa, in line with
previous findings [14] (Fig. 3b). Note that the need term must be positive for either pattern to occur (Fig. S2).

Figure 3:

2.3 Statistics of replayed locations: current position, goals, and paths

In addition to directionality, the theory predicts which particular routes should be considered, which ultimately
determines the locations of behavioral change. Coarsely, replay should be biased toward relevant locations such as
the agent’s position (due to high need) and reward sites (due to high gain). Such general biases arise from the
average over individual replay trajectories, which are patterned due to the influence of locations like reward sites on
both the need and gain terms.

In our simulations, most significant events start in locations at or immediately behind the agent and extend in
either direction (Fig. 4a). Empirical results on the linear track support this prediction: hippocampal events display
an “initiation bias,” a tendency to begin at the animal’s location [16, 17, 14] (Fig. 4b).

Sequences that start at the animal’s location can, nonetheless, extend in any direction, especially in open
field environments where trajectories are less constrained. Yet, gain and need in the model both favor important
locations like reward sites. Empirically, sequential replay in open environments is also biased toward these locations
[30, 15]. We simulated navigation in an open field (Fig. 1c, left), and examined these content biases by calculating
the activation probability of a backup occurring at each location. Visualized over space (Fig. 4c), backups tended to
concentrate near the reward (goal) locations, in line with rodent recordings [15, 31]. Quantified as a function of
distance (Fig. 4d), backups were again more likely than chance to happen near the reward or the agent [32, 15].

Results like these have been taken to reflect replay’s involvement in planning future routes. Indeed, the bias
toward locations near the goal was seen even for forward replay considered separately (Fig. S3). (This cannot
simply reflect initiation bias because our simulations randomized starting locations were randomized.) Locations at
the final turn toward the reward were emphasized even more than locations nearer the reward itself, a consequence
of the gain term being higher where there is a greater effect on behavior. The over-representation of turning points
is a consequence of the barriers in the simulated environment, and is consistent with reports that reactivated place
fields congregate around relevant cues [33].

The hypothesized involvement of replay (both forward and reverse) in evaluating potential routes can also be
assessed by comparing replayed trajectories to recent or future paths. In the model, these tend to coincide, both
because backups tend to occur in locations favored by the need term, and additionally, for forward trajectories,
by the definition of valid n-step sampling, which measures rewards expected along the agent’s predicted future
trajectory. However, the correspondence is not perfect; in fact backups can sometimes construct trajectories not
previously traversed continuously by the agent [18]. (Although our model as implemented only replays individual
transitions that have previously been made in real experience, these can be recombined, and the same framework
would work equally with transitions whose availability and future need can be inferred, as by vision.) We measured
the probability that the first 5 backups of a forward or reverse event would include locations visited by the agent in
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the future or past. In the open field, forward replay correlated with the agent’s future trajectory much more than
its past (Fig. 4e). In contrast, reverse replay showed the opposite pattern (Fig. 4f). That replayed trajectories tend
to correspond to the trajectories followed by the agent in either the past (reverse replay) or future (forward replay)
is again in line with rodent recordings [33, 15].

Last, we address remote replay, where sequences correspond to spatial locations away from the animal [17] or
remote environments [21]. Even during sleep (where replay rarely corresponds to the location where the animal is
sleeping) replay tends to represent rewarding areas of the environment, in comparison to similar but unrewarding
areas [31]. In our model, biases in reactivation during rest can again be understood in terms of the same need-
and gain-based prioritization (with need defined as expected future occupancy subsequently). We tested these
predictions of sleep replay by simulating a T-maze with a reward placed at the end of one of the two arms (Fig. 4g),
with the agent absent from the environment (see Methods). The proportion of backups corresponding to actions
leading to the rewarded arm was much greater than the proportion of backups corresponding to actions leading to
the unrewarded arm (Fig. 4h), reproducing equivalent empirical results [31].

Figure 4:

2.4 Asymmetric effect of prediction errors

We have shown that prioritized memory access for action evaluation applied in different conditions may give rise to
forward and reverse sequences. However, our claim that both sorts of replay may arise from the same prioritized
operation may seem at odds with the general view that forward and reverse sequences have distinct functions (e.g.,
planning and learning, respectively [14, 19]). One observation that has been argued to support this distinction is
that reverse and forward replay are differently sensitive to reward context. In rodents navigating a linear track, the
rate of reverse replay increases when the animal encounters an increased reward, but decreases when the animal
encounters a decreased reward. In contrast, the rate of forward replay is similar despite either change in reward
[33, 19].

Our hypothesis is instead that planning and learning are better understood as different variants of the same
operation: using backups (in different orders) to propagate reward information over space and time. In our model,
asymmetric effects of increases vs. decreases in reward are a hallmark of the gain term, arising from its definition in
terms of policy change (Fig. 1e,f), and distinguishing our prioritization hypothesis from others that simply trigger
update on any surprise [27, 28, 29]).

Because gain is accrued when an update changes the agent’s choices toward a better one, it depends both on
whether the news is good or bad, and also what alternative actions are available (Fig. 1e,f). Fig. 5a,b demonstrates
this predicted interaction by plotting gain for different types of feedback about the action previously believed to be
better (Fig. 5a) or worse (Fig. 5b) in a two-action situation. Gain is large for learning that the seemingly worse
action is actually better than the alternative, or that the seemingly better action is worse — either result teaches
the agent a better choice. There is a second, subtler asymmetry when (as in our model due to “softmax” choice)
how reliably an action is executed depends on its relative advantage over alternatives. Learning that the best
action is even more rewarding makes the agent more likely than previously to choose it, so there is small positive
gain; learning it is somewhat worse (but still the best option) carries zero or negative gain since it makes choice
sloppier. All these effects arise only for reverse replay occurring at the end of a run, when the gain term is large
and, therefore, dominates the utility of the backup.

We investigated the asymmetric effects of positive or negative prediction errors on replay by simulating two
conditions on a linear track task similar to that studied by Ambrose et al. (2016) [19]: (i) an increased reward
condition where the reward encountered by the agent was four times larger in half of the episodes, and (ii) a
decreased reward condition where the reward encountered by the agent was zero in half of the episodes. The number
of forward events was approximately equal in all cases. In contrast, the number of reverse events was larger upon
receiving a larger reward than upon receiving a conventional reward (Fig. 5c,d). This effect was driven both by an
increase in reverse replay for larger rewards, and a decrease for conventional (1x) rewards (Fig. S4), as observed
experimentally [19]. In contrast, the number of reverse events was smaller upon receiving no reward than upon
receiving a conventional reward (Fig. 5e,f). This effect was driven both by a decrease in reverse replay when the
reward was 0, and an increase when the reward was conventional (1x) (Fig. S4), again replicating empirical findings
[19].

Another crucial prediction of the model is that propagating negative prediction error is unhelpful if no better
action is available, but advantageous if alternative actions become preferred. Above, reduced reward produces no
replay because no better option is available. If negative reward (e.g., electric shock) is encountered, propagating it
has positive gain (Fig. 5a), as it enables omitting the action altogether. Staying still or moving backwards is better
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than moving toward a shock zone. Indeed, in simulation, backup occurs at the shock zone after shock delivery
(to propagate this information and prevent the agent’s return), but not prior to shock delivery (Fig. 5g). This
prediction has also been confirmed: In a conditioned place avoidance task, replays were observed extending from
the animal’s position toward the end of a track previously paired with shock, despite the fact that the animals did
not then enter the shock zone [34] (Fig. 5h). These results not only provide direct support to our theory’s notion of
gain, but also illustrate how the notion of planning embodied by our model differs from a narrower, colloquial sense
of planning. Evaluating candidate actions by simulation does not just find paths to goals, it also helps agents figure
out what not to do.

Figure 5:

2.5 Effects of familiarity and specific experiences

As a learning model, our theory also predicts effects of experience on the prevalence and location of replay. In
particular, change in the need vs. gain terms predicts countervailing effects of experience. As a task is learned,
prediction errors decrease, policies stabilize, and the gain expected due to replay decreases, causing a reduction in
significant replay events. At the same time, as behavior crystallizes, need becomes more focused along the routes
learned by the agent (e.g., compare Fig. 1g, top and bottom). This predicts that, conditional on replay occurring,
particular states are increasingly likely to participate.

These countervailing effects may help to explain apparent inconsistencies in the replay literature, as both
increases and decreases in replay have been reported, albeit using a range of dependent measures and designs
[32, 35, 36, 33, 37, 16]. Specifically, the more time an animal spends between two place fields, the more the
corresponding place cell pair is reactivated during sleep. This is consistent with focusing of need on these states
[35]. In contrast, replay is more easily observed in novel than in familiar tracks (consistent with a decrease in gain
overall [16]), and the average activation probability is highest in novel environments [36]. It has been suggested that
replay tends to increase within session with exposure, but decrease across sessions as the animal becomes familiar
with a novel environment [37]. This may reflect the additional effect of experience vs. computation on learning in
our model. In particular, both need (favoring focused replay) and gain (opposing overall replay) are affected by
actual experience in an environment, but only gain is affected by replay (e.g. during rest between sessions). This
is because only experience can teach an agent about the situations it is likely to encounter (i.e. need), but value
learning from replayed experience reduces subsequent gain.

We examined the effect of familiarity and specific experience on replay by calculating the number of significant
replay events as a function of experience (episode number). In line with previous reports [16], we observed that the
number of significant events decays steadily with experience. This effect was due to a decrease in both forward and
reverse replay. Similarly, activation probability decayed steadily with experience (Fig. 6a), in line with empirical
findings (Fig. 6b) [36], and this decay occurred for both forward and reverse sequences (Fig. 6a, insets). In contrast,
when events occurred, the probability they included a specific state increased with number of visits (Fig. 6c), also
in line with previous reports (Fig. 6d) [35]. These two effects reflect the effect of experience on the two terms
governing priority: while the gain term decreases with exposure, the need term increases as the agent’s trajectory
becomes more predictable.

Figure 6:

2.6 Effect of replay on choice behavior

The preceding simulations demonstrate that a range of properties of place cell replay can be predicted if replay
is optimized for planning involving the reactivated locations. This implies a complementary set of behavioral
predictions about replay’s involvement guiding choices. Behavioral effects are most characteristically expected
for acquiring tasks (like shortcuts) that exercise the ability of replay to compose novel trajectories from separate
experiences [3], and which cannot be solved by simple model-free learning from experience.

Hippocampal replay can follow novel paths or shortcuts [18], though there is less direct evidence for its behavioral
consequences. In one report [31], activation of a path not yet explored was followed by rats subsequently being able
to choose that path, correctly, over another, consistent with planning. Forward hippocampal replay predicts future
paths even when the goal location is novel [15]. Finally, blocking sharp wave ripples selectively impairs learning
and performance of a spatial working memory task [24]. Though our model would require elaboration to simulate
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that task (because it is non-Markovian), it demonstrates that awake replay is required for associating events over
space and time [24].

Our theory also emphasizes that several different patterns of replay (Fig. 1a) can solve decision tasks requiring
integrating multiple experiences, which have largely been assumed to reflect forward planning at choice time. Apart
from forward replay, reverse replay allows connecting an experienced outcome with potential predecessor actions,
and nonlocal replay can compose sequences of experiences during rest. Although these behavioral consequences have
not been examined in hippocampal spatial research, research with humans using non-spatial versions of revaluation
tasks (and activity of category-specific regions of visual cortex to index state reinstatement) verifies that forward
replay [5], reverse replay [9], and nonlocal replay [11] all predict subjects’ ability to solve these tasks. The present
theory’s account of which replay events are prioritized might provide a basis for explaining why different task
variants in different studies have evoked different solution strategies.

3 Discussion

Given all the experience accumulated in a lifetime, which memories should one access to plan the most rewarding
decisions? We offer a rational account for the prioritization of memory access to support action evaluation. We
propose that various nonlocal place cell phenomena reflect a single evaluation operation, which has different utility
in different circumstances. This utility, derived from first principles, amounts to the product of two terms, gain and
need. Simulations qualitatively reproduced a range of results about hippocampal replay without parameter fitting.

This theory draws new connections between hippocampus and decision making, with implications for both areas.
It has long been recognized that place cell activity (including forward and reverse replay) likely supports choice
[13, 16]; we render this idea experimentally testable by specifying a hypothesis about what the brain learns from
any particular replay event.

Hippocampal researchers typically envision that replay serves disjoint functions in different circumstances,
including learning [16], planning [13, 14, 15, 38], spatial memory retrieval [24], and consolidation [25, 23]. By
focusing on a specific operation (long-run value computation), we sharpen these suggestions and expose their
relationships. In RL, learning amounts to propagating value between adjacent states for temporal credit assignment.
This perspective unifies the proposed role of forward replay in planning with that of reverse replay in learning
(both linking sequences to their outcome [16]), and attributes a similar role to nonlocal replay. Though serving a
common goal, these patterns are appropriate in different circumstances, explaining differential regulation (such as
asymmetric effects of prediction errors on forward vs. reverse replay), which has previously been taken as evidence
for distinct functions [19]. As for consolidation, our perspective echoes other work [25] in viewing it not merely as
strengthening existing memories, but more actively computing new summaries from the replayed content. As with
other systems consolidation theories, the summaries (here, value) are likely stored elsewhere in the brain (here,
cortico-striatal synapses), and replay presumably evokes coordinated activity throughout the brain, especially the
dopaminergic-striatal reward networks [39, 40].

While we explore a specific role for replay in computing long-run action value, we do not exclude other
computations over replayed experiences [25]. One variant of our theory uses replay to learn a successor representation
(SR): a model of the long-run locations expected to follow some action, instead of the reward consequences alone.
The SR can be used as an intermediate representation for computing action values [41], and has been proposed
to be learned within hippocampal recurrents [42]. Like value, it can be learned from replayed experience [43],
connecting learning from replay more directly with building a type of cognitive map [18]. Our account extends fully
to this case. Indeed, our prioritization computation is the same whether replay updates an SR or action values,
because an SR update has the same utility (under our myopic approximation) as the corresponding action value
update: both implement the same Bellman backup.

A key insight in decision neuroscience is that how decision variables are computed governs what is ultimately
chosen. Thus, the view that the brain contains separate systems for “model-based” vs. “model-free” value
computation (which differ in whether they recompute values at decision time) may explain phenomena such as
habits and compulsion. We extend this to a more granular view, addressing which branches are considered during
recomputation [44]. Dysfunction in such selection may explain symptoms involving biased (e.g., craving, obsession)
and abnormal patterns of thought (e.g., rumination, hallucination). Our theory goes beyond planning about the
immediate future, to consider value computation at nonlocal states: offline replay [26, 22]. This systematizes several
instances where tasks thought to index model-based planning at choice time are instead apparently solved by
computations occurring earlier [9, 10, 11], and links them (hypothetically) to different patterns of replay. Finally,
reinterpreting planning as learning from remembered experience suggests this operation might be subserved by the
same dopaminergic machinery as learning from direct experience — driving it with replayed experiences instead.
Indeed, trajectory replay in the hippocampus drives activation and plasticity throughout this system [39, 40].
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Such shared machinery would explain the otherwise puzzling involvement of dopamine in model-based evaluation
[45, 46, 47, 48].

The AI literature suggests one alternative approach for prioritizing backups: Prioritized Sweeping (PS) [28, 27, 29].
PS triggers backups on large prediction errors (whether negative or positive), to propagate unexpected information
to predecessor states. Our approach adds the need term, to focus backups on states likely to be visited again. Also,
our gain term considers the effect of a backup on an agent’s policy, propagating information only when it has
behavioral consequences. Data support both features of our model over PS. Positive and negative prediction errors
have asymmetric effects, consistent with gain but not PS [19] (Fig. 5c-f). Also, due to need, our model also searches
forward from the current state, in addition to PS’s largely backward propagation. The need term also channels
activity along recently or frequently observed trajectories. This may help to explain why nonlocal place cell activity
follows extended sequences even though straightforward error propagation is often more breadth-first [28, 27].

Our model has a number of limitations, which are opportunities for future work. We have omitted many model
features to construct the simplest instantiation that exposes the key intuition behind the theory: the roles of gain
and need driving, respectively, reverse and forward replay. For instance, we restricted our simulations to simple
spatial environments, though the framework applies generally to sequential tasks. Because these environments are
stationary and deterministic, we omitted uncertainty from the model. Both stochasticity and nonstationarity would
give rise to uncertainty about action values, which would be crucial to a fuller account of prioritized deliberation.
This will require, in future, re-introducing these features from previous accounts of online deliberation [6, 7]; with
these features restored, the current theory should inherit its predecessors’ account of habits, such as how they arise
with overtraining.

The most important limitation of our work is that to investigate the decision theoretic considerations governing
replay, we define priority abstractly, and do not offer a mechanism for how the brain would realistically compute
it. Although the need term is straightforward (it is the SR [41], which the brain has been proposed to track for
other reasons [49, 42]), the calculation of gain, as we define it, requires that the agent knows the effect of a backup
on its policy prior to deciding whether to perform it. We use this admittedly unrealistic rule to investigate the
characteristics of efficient backup, but a process-level model will require heuristics or approximations to the gain
term, whose form might be motivated by our simulations.

To highlight the role of sequencing computations, we constructed the theory at a single spatial and temporal
scale, with a Bellman backup as the elementary unit of computation. We build both forward and reverse replay
trajectories recursively, step by step. Of course, research in both hippocampus and decision making (separately)
stresses the multiscale nature of task representations. A fuller account of planning would include temporally
extended actions (“options”) [50, 44] or similarly extended state predictions [41]. In this case, the principles of
prioritization would carry over directly, but over a set of extended trajectories rather than individual locations.

The key experimental opportunities suggested by our theory involve monitoring or manipulating nonlocal place
cell activity during trial-by-trial RL tasks, especially those that defeat alternative, model-free mechanisms[45, 5].
Fundamentally, the theory predicts a series of relationships spanning experience to choice: The statistics of
experience (via need and gain) influence the likelihood of particular trajectories replaying; these events update
action values (and their neural signatures, as in striatum) at the replayed locations; finally, this impacts choice
behavior. Each of these associations could be monitored or intervened upon. Furthermore, they are all detailed
event-by-event, so for instance we predict not just that replay promote better integrative learning overall, but what
computation is subserved by any particular nonlocal event. Thus, conditional on an event (or interrupting one),
the theory predicts specific, localized changes in neural value representations and choice behavior. Similarly, by
manipulating experience to affect need or gain, the theory predicts one can affect not just whether forward or
reverse replay is favored, but on which trajectories.
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Figure Legends

Figure 1: A rational model of prioritized memory access (a) Three ways an agent might learn, through
sequential memory access, the relationship between actions and rewards: Left : when reward is first encountered,
through reverse reactivation; Center : during sleep or rest through “offline” reactivation of the sequence; Right :
prior to choice, by prospective (forward) activation. The latter case is the most commonly envisioned in theories
of model-based deliberation, but replay of all three sorts exist, and human neuroimaging evidence suggests that
all can support decisions. (b) A schematic of a Bellman backup where the reactivation of a nonlocal experience
ek = (sk, ak, rk, s

′
k) propagates the one-step reward rk and the discounted value of s′k to the state-action pair

(sk, ak). (c) Grid-world environments simulated. Left : A two-dimensional maze (Sutton’s DYNA maze [26])
with obstacles. Right : a linear track simulated as two disjoint segments (to reflect the unidirectionality of the
hippocampal place code in linear tracks) with rewards in opposite ends. (d) Performance of a greedy agent in the
two simulated environments. Replaying experiences according to the proposed prioritization scheme speeds learning
compared to learning without replay or with replay of randomly ordered experiences. Left : Open field; Right : linear
track. Dotted lines represent optimal performance. (e) The gain term for updating the value of a target action
in a target state quantifies the expected increase in reward following a visit to the target state. Left : if the best
action is updated with a higher value, the policy changes little/nothing, resulting in a small/zero gain. Right : if
a non-optimal action is updated with value higher than the best action’s value, the policy in the corresponding
state changes, resulting in a large gain. Here, squares represent states, triangles represent actions, and the arrow
represents a Bellman backup which updates the value of an action. The highlighted triangle represents the action
with highest estimated value. (f) For a greedy agent (one who always chooses the best action; blue line), the gain is
positive either when the best action is found to be worse than the second best action (left, changing the policy to
disfavor it) or when a suboptimal action is found to be the best action (right, changing the policy to favor it). In
both cases, the gain increases depending how much better the new policy is. Otherwise, the gain is zero, reflecting
no effect in the policy. For a non-greedy agent (one who sometimes chooses random exploratory actions; thin gray
lines), changes in Q-values that do not change the best action can nonetheless affect the degree of exploration,
leading to nonzero gain (β: softmax inverse temperature parameter). Notice that a perfectly symmetric gain around
zero amounts to prediction error. (g) The need term for a particular target state corresponds to its expected future
occupancy, measuring how imminently and how often reward gains will be harvested there. This is shown as a heat
map over states, and also depends on the agent’s future action choice policy, e.g. Top: Random policy (initially).
Bottom: Learned policy (following training).

Figure 2: Replay produce extended trajectories in forward and reverse directions. (a-f) Example of
reverse replay. (g-l) Example of forward replay. (a,d) Gain term and state values. Notice that the gain term is
specific for each action (triangles), and that it may change after each backup due to its dependence on the current
state values. Replay of the last action executed before finding an unexpected reward often has a positive gain
because the corresponding backup will cause the agent to more likely repeat that action in the future. Once this
backup is executed, the value of the preceding state is updated and replaying actions leading to this updated state
will have a positive gain. Repeated iterations of this procedure lead to a pattern of replay that extends in the reverse
direction. The highlighted triangle indicates the action selected for value updating. (g,j) If gain differences are
smaller than need differences, the need term dominates and sequences will tend to extend in the forward direction.
(b,e,h,k) Need term. Notice that the need term is specific for each state and does not change after each backup
due to being fully determined by the current state of the agent. The need term prioritizes backups near the agent
and extends forwards through states the agent is expected to visit in the future. In the field, the need term is also
responsible for sequences expanding in a depth-first manner as opposed to breadth-first. (c,f) Example reverse
sequences obtained in the linear track (c) and open field (f). (i,l) Example forward sequences obtained in the linear
track (i) and open field (l). Notice that forward sequences tend to follow agent’s previous behavior but may also
find new paths towards the goal.

Figure 3: Forward and reverse sequences happen at different times and are modulated asymmet-
rically by reward. (a) Forward sequences tend to take place before the onset of a run while reverse sequences
tend to take place after the completion of a run, upon receipt of reward. (b) Data from Diba & Buzsáki (2007)
(their Fig. 1c) showing that the majority (841 out of 887) of forward sequences occurred at the start end of the
track before running, while the majority (395 out of 464) of reverse sequences occurred at the other end following
the run [14].

Figure 4: Replay over-represents agent and reward locations and predicts subsequent and past
behavior. (a) Distribution of start locations of significant replay events relative to the agent’s position and
heading on the linear track. Negative distances indicate that the replayed trajectory starts behind the agent. Most
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significant replay events in the linear track start at or immediately behind the agent’s location. (b) Data from
Davidson et al (2009) (their Fig. 3F), showing the distribution of start locations of replay trajectories relative to
the animal’s position and heading on the track (n = 136 cells; four rats) [17]. (c) Activation probability across
all backups within an episode. Colors represent the probability of a backup happening at each location within a
given episode. Notice that backups are more likely to occur in locations near the reward. (d) Probability that a
given backup happens at various distances from the agent (left) and from the reward (right) in the open field.
Dotted lines represent chance levels. Notice that backups are substantially more likely to happen near the agent
and/or near the reward than chance. (e,f) How forward and reverse replay predict future and previous steps in
the open field. The lines indicate the probability that the first 5 backups of any significant forward or reverse
sequence contains the state the agent will/have occupied a given number of steps in the future/past. Dotted lines
represent chance levels. Notice that forward replay is more likely to represent future states than past states, while
the opposite is true for reverse replay. (g) We simulated an agent in an offline setting (e.g. sleep) after exploring a
T-maze and receiving a reward on the right (cued) arm. (h) Left : The proportion of backups corresponding to
actions leading to the cued arm (orange) is much greater than the proportion of backups corresponding to actions
leading to the uncued arm (gray). Right : Data replotted from Ólafsdóttir et al (2015) (their Fig. 2D, used under
CC BY), showing the proportion of spiking events categorized as “preplay” events for the cued and uncued arms
(n = 212 cells; four rats). The dashed line indicates the proportion of events expected by chance [31].

Figure 5: Forward and reverse sequences happen at different times and are modulated asymmet-
rically by reward. (a) Gain term for an example case where two actions are available and the agent learns a
new value (Qnew) for the best action. (b) Gain term for an example case where two actions are available and the
agent learns a new value (Qnew) for the worst action. (c) We simulated a task where, in half of the episodes, the
reward received was 4x larger than baseline. Left : The number of forward events was approximately equal in every
lap both when the rewards were equal (gray bar), as well as when the rewards were 4x larger (red bar). Right :
In contrast, the number of reverse events was approximately equal when the rewards were equal (gray bar), but
much larger upon receiving a larger reward in the unequal reward condition (red bar). (d) Data from Ambrose et
al (2016) (their Fig. 3E,H) showing percent difference in replay rate from unchanged to increased reward end of
track in the equal (gray bars) and unequal (red bars) reward conditions (n = maximum of 467 stopping periods in
the equal reward condition and 217 in the unequal reward condition; five rats; mean ± 95% confidence interval;
significance assessed with a Wald’s z test). Note that, forward replay (left), the effects on the two ends of the track
are not significantly different (n.s.) [19]. (e) We simulated a task where, in half of the episodes, the reward received
was zero. Left : The number of forward events was approximately equal in every lap both when the rewards were
equal (gray bar), as well as when the rewards were removed (blue bar). Right : In contrast, the number of reverse
events was approximately equal when the rewards were equal (gray bar), but almost completely abolished upon
receiving no reward in the unequal reward condition (blue bar). (f) Data replotted from Ambrose et al (2016)
(their Fig. 5C,F) showing percent difference in replay rate from unchanged to decreased reward end of track in the
equal (gray bars) and unequal (blue bars) reward conditions (n = maximum of 580 stopping periods in the equal
reward condition and 230 in the unequal reward condition; five rats; mean ± 95% confidence interval; significance
assessed with a Wald’s z test). Note that, forward replay (left), the effects on the two ends of the track are not
significantly different (n.s.) [19]. (g) Activation probability at the end of a linear track during random exploration
without rewards or punishments (left) and after shock delivery at the end of a track (right). Dots represent mean
activation probability across simulations. (h) Data from Wu et al (2017) (their Fig. 3e) showing the activation
probability during population burst events of cells with place fields at a light zone before shock delivery (left) and
similarly for cells with place fields at a shock zone after shock delivery (right). (n = 30 cells with place fields at a
light zone; n = 26 cells with place fields at a shock zone; four rats; horizontal lines in box plots are the median and
the 25% and 75% range values; whiskers indicate the most extreme data points ≤ 1 interquartile range from box
edges; significance assessed with a two-sided Wilcoxon rank-sum test [34]).

Figure 6: Replay frequency decays with familiarity and increases with experience. (a) In the linear
track, the probability that significant replay events include a state in the linear track decays across episodes,
peaking when the environment is novel. Insets show that the number of both forward (top) and reverse (bottom)
replay events decay with experience. (b) Data replotted from Cheng & Frank (2008) (their Fig. 4A), showing the
activation probability per high-frequency event (n = 41, 43, 34, 34, 31, 28 cells, respectively for each bar; four rats;
error bars represent standard errors; significance assessed with a Wilcoxon rank-sum test) [36]. (c) Probability
that significant replay events include a state in the linear track as a function of the number of visits in an episode.
Analogously to the effect reported in Fig. 1g, driven by the need term, the probability of a state being replayed
increases with experience in that state. (d) Data replotted from O’Neil et al (2008) (their Fig. 3c), showing that
the more time rats spent in the cofiring field during exploration, the larger is the increase in probability that these
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cell pairs fire together during sleep SWRs (n = 613 cells and 19, 054 cell pairs recorded over 33 sessions in the novel
(Nov) environment; n = 309 cells and 4, 865 cell pairs recorded over 15 sessions in the familiar (Fam) conditions; 14
rats; error bars represent standard errors) [35].
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4 Online Methods

4.1 Formal setting

We consider a class of sequential decision tasks where an agent must decide in each situation (state; e.g. a location
in a spatial task) which action to perform with the goal of maximizing its expected future reward. The optimal
course of action (policy) consists of selecting the actions with highest expected value. The value of an action
(Q-value) is defined as the expected discounted future reward from taking that action and following the optimal
policy thereafter. Optimal decision making, therefore, requires the agent to estimate action values as accurately as
possible for maximizing total reward.

We address how best to order individual steps of computation, known as Bellman backups (Fig. 1b), for
estimating an action’s value. A single Bellman backup updates the estimate of the future value of taking a particular
“target” action in some state, by summing the immediate payoff received for the action with the estimated future
value of the successor state that follows it. This backup operation is fundamental for predicting future reward in
RL, because it propagates information about reward to states and actions that precede it. Bellman backups can be
applied action-by-action during ongoing behavior to allow the agent to learn from experienced states and rewards;
this corresponds the standard update rule for “model-free” temporal difference (TD) learning, as thought to be
implemented in the brain by dopaminergic prediction errors [51]. Our account includes this sort of learning from
experienced events as a special case, but also allows for additional Bellman backups to be performed to update
estimates for target states and actions that are not currently being experienced (Fig. 1a,b). In these cases, the
resulting reward and successor state are given by remembered or simulated experiences, but the learning rule is
otherwise the same. In computer science, this approach is known as the DYNA framework [26]. We refer to the
information processed in a nonlocal backup as a “memory” — a target state and action, and the resulting reward
and successor state. However, the same approach applies regardless of whether this information is a retrieved
record of an individual event (like an episodic memory), or instead a simulated experience (a sample drawn from
a learned “world model” of the overall statistics of state transitions and rewards, more like a semantic memory).
These two representations are largely the same in the present work because we simulate only fixed, deterministic
tasks (Fig. 1c). Importantly, because this process can compose behavioral sequences of simulated experience from
pieces not experienced together, it can discover consequences missed by TD learning, which evaluate actions only in
terms of their directly experienced outcomes [1, 51].

Stringing together multiple backup operations over a sequence of states and actions computes expected value
over a trajectory. Thus, the value of an action — the expected cumulative discounted reward that will follow its
execution — can be sampled by adding up expected immediate rewards over a trajectory of one or more forward
steps, plus any additional value expected forward from the last state considered. This is known as an n-step
Bellman backup or a rollout, and can be composed from a series of one-step backups using a learning mechanism
called eligibility traces [1]. Similarly, value information can be propagated backwards along a trajectory (i.e. from a
destination state to each of a series of predecessors) by chaining successive one-step backups in the reverse direction.
Both of these patterns (forward and reverse value propagation) have precedent in different computer science methods
(e.g. Monte Carlo tree search [52] and Prioritized Sweeping [27]). Indeed, various existing “model-based” algorithms
for computing values from a world model amount to a batch of many such backup operations, performed in different
orders [1, 2]. A major goal of our theory is to provide a principled account of when each pattern is most useful.

4.2 Model description

The framework of reinforcement learning [1] formalizes how an agent interacting with an environment through a
sequence of states should select its actions so as to maximize some notion of cumulative reward. The agent’s policy
π assigns a probability π(a|s) to each action a ∈ A in state s ∈ S. Upon executing an action At at time t, the
agent transitions from state St to state St+1 and receives a reward Rt. The goal of the agent is to learn a policy
that maximizes the discounted return Gt following time t defined as:

Gt = Rt + γRt+1 + γ2Rt+2 + . . . =

∞∑
i=0

γiRt+i, (1)

where γ ∈ (0, 1] is the discount factor that determines the present value of future rewards.
The expected return obtained upon performing action a in state s and subsequently following policy π is denoted

qπ(s, a) and is given by:

qπ(s, a) = E
π

[ ∞∑
i=0

γiRt+i|St = s,At = a

]
. (2)

16



The policy that maximizes the expected return is the optimal policy and denoted q∗. Following Q-learning
[53], the agent can learn an action-value function Q that approximates q∗ through iteratively performing Bellman
backups:

Q(St, At)←− Q(St, At) + α

[
Rt + γmax

a∈A
Q(St+1, a)−Q(St, At)

]
, (3)

where α ∈ [0, 1] is a learning rate parameter. Bellman backups are performed automatically after each transition in
real experience and may also be performed nonlocally during simulated experience, as in the DYNA architecture
[26].

The following framework provides a rational account for prioritizing Bellman backups according to the im-
provement in cumulative reward expected to result. Let the agent be in state St = s at time t. We represent
an experience ek by the 4-tuple ek = (sk, ak, rk, s

′
k), and we consider that accessing experience ek amounts to a

Bellman backup which updates Q(sk, ak) with the target value rk + γmaxa∈AQ(s′k, a). We also denote by πold
the current (old) policy, prior to executing the backup, and πnew the resulting (new) policy after the backup.

The utility of accessing experience ek to update the value of Q(sk, ak), or Expected Value of Backup, is denoted
by EV B(sk, ak) and is defined as:

EV B(sk, ak) = E
πnew

[ ∞∑
i=0

γiRt+i

∣∣∣∣∣St = s

]
− E
πold

[ ∞∑
i=0

γiRt+i

∣∣∣∣∣St = s

]
, (4)

i.e., EVB is the improvement in expected return due to a policy change. A key point about this definition is
that although it sums rewards over all future timesteps, it can be rewritten in terms of a sum over expected
visits to the updated state sk (the full derivation is given below.) This is because accessing ek can only affect
the policy in state sk (i.e., πnew and πold differs only in state sk); and we can then separately consider the gain
accrued each time the agent visits that state sk, and the expected number of times sk will be visited. In other
words, by conditioning EV B(sk, ak) on St = sk, this expression can be separated into the product of two terms:
EV B(sk, ak) = Gain(sk, ak)×Need(sk).

4.2.1 Gain term

The gain term quantifies the expected improvement in return accrued at the target state, sk:

Gain(sk, ak) =
∑
a∈A

Qπnew(sk, a)πnew(a|sk)−
∑
a∈A

Qπnew(sk, a)πold(a|sk), (5)

where πnew(a|sk) represents the probability of selecting action a in state sk after the Bellman backup, and πold(a|sk)
is the same quantity before the Bellman backup.

4.2.2 Need term

The need term measures the discounted number of times the agent is expected to visit the target state, a proxy for
the current relevance of each state:

Need(sk) = µπ(sk) =

∞∑
i=0

γiδSt+i,sk , (6)

where δ·,· is the Kronecker delta function. Notice that, for γ = 1, the need term is the exact count of how many
visits to state sk are expected in the future, starting from current state St = s.

The need term can be estimated by the Successor Representation [41], which can be learned directly by the
agent or computed from a model. Here, we assume that the agent learns a state-state transition probability model
T for the purpose of computing the need term. The need term is thus obtained directly from the n-th row of the
SR matrix, (I − γT )−1, where n is the index of the agent’s current state St. An alternative option is to use the
stationary distribution of the MDP, which estimates the asymptotic fraction of time spent in each state (i.e., after
convergence). This formulation is particularly useful when the transition probability from the agent’s current state
is unavailable (e.g., during sleep). The need term bears close resemblance to the concept of need probability from
rational models of human memory [54] — the probability that an item needs to be retrieved from memory because
of its relevance to the current situation.

Note that the utility of a backup depends simultaneously on gain and need. Thus, a backup that has no effect
on behavior has zero utility even if the target state is expected to be visited in the future (because it has zero
gain, despite high need). Similarly, the utility of a backup is zero if a state is never expected to be visited again,
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even if this backup would greatly impact behavior at the that state (because it has zero need, despite high gain).
Crucially, utility is computed separately for each individual backup. This “myopic” view neglects the possibility
that a backup may harvest additional gains by setting the stage for other, later backups.

4.3 Simulation details

We simulated two “grid-world” environments (Fig. 1c) where an agent can move in any of the four cardinal directions
– i.e. A = {up,down, right, left}. At each state, the agent selects an action according to a softmax decision rule over
the estimated Q-values, π(a|s) ∝ eβ·Q(s,a), where β is the inverse temperature parameter which sets the balance
between exploration versus exploitation. In our simulations, β = 5. Upon selecting action At = a in state St = s,
the agent observes a reward Rt = r and is transported to an adjacent state St+1 = s′. The value of Q(s, a) is
then updated according to (3) using α = 1.0 and γ = 0.9. We used a learning rate of α = 1 due to it being both
maximally simple and optimal when the world’s dynamics are deterministic.

The first environment — a linear track (Fig. 1c, right) — was simulated as two disjoint 1× 10 segments. (The
motivation for this was for the state space to differentiate both location and direction of travel, as do hippocampal
place cells in this sort of environment; this also clearly disambiguates forward from reverse replay.) The agent
started in location (1, 1) of the first segment. Upon reaching the state (1, 10), the agent received a unit reward with
Gaussian noise added with standard deviation of σ = 0.1 (noise is added to each encountered reward to promote
continuous learning). The agent was then transported to state (1, 10) of the second segment. Upon reaching
state (1, 1) in the second segment, the agent received a new unit reward (plus independent Gaussian noise with
σ = 0.1) and was transported back to state (1, 1) of the first segment. Each simulation comprised of 50 episodes
(i.e. sequence of steps from starting location to reward). The second environment was a 6× 9 field with obstacles
(Fig. 1c, left), with a unit reward (σ = 0.1) placed at coordinate (1, 9). Each simulation comprised of 50 episodes
with the start location randomized at each episode.

Our theory assumes that the memory access leads to more accurate Q-values. Improved estimates of action
values can be obtained from samples of experience in which that action is used (whether by single or multiple-step
sample backups). Thus, at every planning step we compute the need and gain for activating each possible one-step
experience ek = (sk, ak, rk, s

′
k); these correspond to one-step updates given by (3). However, one of these experiences

has special properties that permit additional learning if it is selected (which corresponds to a so-called n-step backup,
from a version of the Bellman equation that sums n rewards before the recursive step, and must be accounted for
with different need and gain). In particular, if the target state action (sk, ak) is an optimal continuation of the
sequence replayed immediately previously (i.e. if sk was the end state considered previously, and ak is the optimal
action there), then this replay can extend a previous one-step backup to a two-step backup, updating the values of
both ak and the action replayed previously in light of the value at the next end state. Similarly, following an n-step
backup, one experience corresponds to an optimal n + 1st-step, updating the values of all intermediate actions.
Note that only the optimal action is allowed as a continuation of the sequence replayed previously. This is because
n-step backups are only valid estimators of the target function if the choices, after the first, are on-policy with
respect to the target function Q∗.

Such sequence-extending experience activations permit a special learning step, and a corresponding special
case of need/gain computation. If a sequence-extending experience is activated, the corresponding learning rule
applies an n-step Bellman update at each of the preceding states in the sequences (i.e. it updates the value of all n
preceding state/actions according to their subsequent cumulative, discounted rewards over the whole trajectory,
plus the Q-value of the best action a at the added state s′k.) Implementationally, this can be accomplished using a
Q(1) update rule over eligibility traces that are cleared whenever a sequence is not continued. The gain for this
update, then, accumulates the gain over each of these state updates according to any policy changes at each, and
this sum is multiplied by the need for the last state s′k (looking one step deeper at the value of an action only makes
sense if the additional state is actually likely to be visited). Thus, a sequence-extending experience is only activated
if the need is sufficiently large along the entire trajectory.

Thus, the utility of a multi-step backup is computed as follows:

• Need is computed from the last (appended) state;

• Gain is summed for all actions along the trajectory (to reflect the fact that all actions are updated);

• EV B ties are broken in favor of shorter sequences.

The inclusion of this case is important because it allows the model to choose to construct either forward or
backward replay sequences in parallel fashion by appending or prepending successive individual steps. Whether
built forward or backward, these sequences are also equivalent in the sense that they ultimately update the values
of all the state/actions along the trajectory with n-step returns. Note that the requirement that sampled forward
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trajectories follow what is currently believed to be the greedy policy does not mean they are uninformative; values
updated along the path can change behavior (and also potentially the path sampled on subsequent rollouts).
Conversely, a sequence-extending experience does not necessarily have a higher utility simply because it considers
the cumulative gain over all intermediate states; if the value of the subsequent state is unsurprising (leading to small
summed gains), or if the subsequent state is not expected to be visited (leading to a small need), the activation of a
new, one-step experience elsewhere will be favored.

The agent was allowed 20 planning steps at the beginning and at the end of each episode. Because the gain
term is a function of the current set of Q-values, the utilities EV B were re-computed for all experiences after each
planning step. In order to ensure that all 20 planning steps were used, a minimum gain of 10−10 was used for all
experiences. This small, nonzero minimal value is meant to capture an assumption of persistent uncertainty due to
the possibility of environmental change.

Prior to the first episode, the agent was initialized with a full set of experiences corresponding to executing
every action in every state (equivalent to a full state-action-state transition model, which in sparse environments
like these can be inferred directly from visual inspection when the agent first encounters the maze), including
transitions from goal states to starting states. The state-state transition probability model T (for the need term)
was initialized from this model under a random action selection policy, and thereafter updated after each transition
using a delta rule with learning rate αT = 0.9. In all simulations in the online setting, the need term was then
estimated from the SR matrix, (I − γT )−1. In the only simulation of sleep replay (Fig. 4g,h), where the agent is
not located in the environment where need is computed, we estimated the need term as the stationary distribution
of the MDP, i.e., the vector µ such that µT = µ.

4.4 Identification of significant replay events

We classified each individual backup as forward or reverse by examining the next backup in the sequence. When a
backed-up action was followed by a backup in that action’s resulting state, it was classified as a forward. In contrast,
when the state of a backup corresponded to the outcome of the following backed-up action, it was classified as
reverse. Backups that did not follow either pattern were not classified in either category. To identify significant
replay events, we followed standard empirical methods and assessed, with a permutation test, the significance of all
consecutive segments of forward/reverse backups of length five or greater [16, 14, 17].

4.5 Formal derivation

Below is a formal derivation of EVB for the general case of stochastic environments. Let the agent be in state
St = s at time t. The expected return from following policy π is defined as vπ(s) = Eπ

[∑∞
i=0 γ

kRt+i|St = s
]
, and

the true (yet unknown) value of taking action a in state s and following policy π thereafter is denoted by qπ(s, a).
The utility of updating the agent’s policy from πold to πnew is:

vπnew
(s)− vπold

(s) =
∑
a

πnew(a|s)qπnew
(s, a)−

∑
a

πold(a|s)qπold
(s, a)

=
∑
a

[πnew(a|s)qπnew
(s, a)− πold(a|s)qπnew

(s, a) + πold(a|s)qπnew
(s, a)− πold(a|s)qπold

(s, a)]

=
∑
a

[(πnew(a|s)− πold(a|s)) qπnew
(s, a) + πold(a|s) (qπnew

(s, a)− qπold
(s, a))] ,

(7)

where we have both added and subtracted the term πold(a|s)qπnew
(s, a) on the second line.

We then write q(s, a) in terms of v(s) using the definition of the MDP dynamics, p(s′, r|s, a)
.
= Pr(St+1 =

s′, Rt = r|St = s,At = a):

qπ(s, a) = E
π

[Rt + γvπ(St+1)]

=
∑
s′,r

p(s′, r|s, a) [r + γvπ(s′)] .
(8)

Since the MDP dynamics does not depend on π, we can write:
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qπnew(s, a)− qπold
(s, a) =

∑
s′,r

p(s′, r|s, a) [r + γvπnew(s′)]−
∑
s′,r

p(s′, r|s, a) [r + γvπold
(s′)]

= γ
∑
s′

p(s′|s, a) [vπnew
(s′)− vπold

(s′)] .
(9)

Substituting this result on (7):

vπnew
(s)− vπold

(s) =
∑
a

[(πnew(a|s)− πold(a|s)) qπnew
(s, a) + πold(a|s) (qπnew

(s, a)− qπold
(s, a))]

=
∑
a

[
(πnew(a|s)− πold(a|s)) qπnew

(s, a) + πold(a|s)

(
γ
∑
s′

p(s′|s, a) [vπnew
(s′)− vπold

(s′)]

)]
.

(10)

Notice that (10) contains an expression for vπnew(s)− vπold
(s) in terms of vπnew(s′)− vπold

(s′). We can use this
to ’unroll’ the expression and write vπnew

(s′)− vπold
(s′) in terms of vπnew

(s′′)− vπold
(s′′). After repeated unrolling

we obtain:

vπnew(s)− vπold
(s) =

∑
x∈S

∞∑
i=0

γi Pr(s −→ x, i, πold)
∑
a

(πnew(a|x)− πold(a|x)) qπnew(x, a), (11)

where Pr(s −→ x, i, πold) is the probability of transitioning from state s to state x in i steps under policy πold.
Since the effect of a backup on state-action pair (sk, ak) is localized at a single state for punctate representations,

πnew(a|si) = πold(a|sj), ∀i, j 6= k, and thus there is only one non zero term on the first summation:

vπnew
(s)− vπold

(s) =

∞∑
i=0

γi Pr(s −→ sk, i, πold)
∑
a

(πnew(a|sk)− πold(a|sk)) qπnew
(sk, a), (12)

Denoting µπ(sk) =
∑∞
i=0 γ

i Pr(s −→ sk, i, π) as the discounted number of time steps in which St = sk in a
randomly generated episode starting in St = s and following π, we have:

EV B(sk, ak) = µπold
(sk)

∑
a

(πnew(a|sk)− πold(a|sk)) qπnew
(sk, a)

= Need(sk)×Gain(sk, ak),

(13)

where Need(sk) = µπold
(sk) and Gain(sk, ak) =

∑
a (πnew(a|sk)− πold(a|sk)) qπnew

(sk, a).
We note that the same framework can be readily extended to the function approximation case and to policy

gradient methods — i.e., computing the utility of a policy change even when the policies differ in multiple states
(by using equation (11)). In this more general case, the above derivation corresponds to a discrete version of the
Policy Gradient Theorem [55].

4.6 Code availability

All simulations were conducted using custom code written in MATLAB v9.1.0 (R2016b). Code is available at
https://github.com/marcelomattar/PrioritizedReplay.

4.7 Life Science Reporting Summary

A Life Science Reporting Summary for this paper is available.
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