13 research outputs found

    Pathophysiological subtypes of Alzheimer's disease based on cerebrospinal fluid proteomics.

    Get PDF
    Alzheimer's disease is biologically heterogeneous, and detailed understanding of the processes involved in patients is critical for development of treatments. CSF contains hundreds of proteins, with concentrations reflecting ongoing (patho)physiological processes. This provides the opportunity to study many biological processes at the same time in patients. We studied whether Alzheimer's disease biological subtypes can be detected in CSF proteomics using the dual clustering technique non-negative matrix factorization. In two independent cohorts (EMIF-AD MBD and ADNI) we found that 705 (77% of 911 tested) proteins differed between Alzheimer's disease (defined as having abnormal amyloid, n = 425) and controls (defined as having normal CSF amyloid and tau and normal cognition, n = 127). Using these proteins for data-driven clustering, we identified three robust pathophysiological Alzheimer's disease subtypes within each cohort showing (i) hyperplasticity and increased BACE1 levels; (ii) innate immune activation; and (iii) blood-brain barrier dysfunction with low BACE1 levels. In both cohorts, the majority of individuals were labelled as having subtype 1 (80, 36% in EMIF-AD MBD; 117, 59% in ADNI), 71 (32%) in EMIF-AD MBD and 41 (21%) in ADNI were labelled as subtype 2, and 72 (32%) in EMIF-AD MBD and 39 (20%) individuals in ADNI were labelled as subtype 3. Genetic analyses showed that all subtypes had an excess of genetic risk for Alzheimer's disease (all P > 0.01). Additional pathological comparisons that were available for a subset in ADNI suggested that subtypes showed similar severity of Alzheimer's disease pathology, and did not differ in the frequencies of co-pathologies, providing further support that found subtypes truly reflect Alzheimer's disease heterogeneity. Compared to controls, all non-demented Alzheimer's disease individuals had increased risk of showing clinical progression (all P < 0.01). Compared to subtype 1, subtype 2 showed faster clinical progression after correcting for age, sex, level of education and tau levels (hazard ratio = 2.5; 95% confidence interval = 1.2, 5.1; P = 0.01), and subtype 3 at trend level (hazard ratio = 2.1; 95% confidence interval = 1.0, 4.4; P = 0.06). Together, these results demonstrate the value of CSF proteomics in studying the biological heterogeneity in Alzheimer's disease patients, and suggest that subtypes may require tailored therapy

    Mechanisms of functional compensation, delineated by eigenvector centrality mapping, across the pathophysiological continuum of Alzheimer’s disease

    No full text
    Background: Mechanisms of functional compensation throughout the progression of Alzheimer's disease (AD) remain largely underspecified. By investigating functional connectomics in relation to cerebrospinal fluid (CSF) biomarkers across the pathophysiological continuum of AD, we identify disease-stage-specific patterns of functional degradation and functional compensation. Methods: Data from a sample of 96 participants, comprised of 49 controls, 11 preclinical AD subjects, 21 patients with mild cognitive impairment (MCI) due to AD and 15 patients with mild dementia due to AD, were analyzed. CSF ratio of phosphorylated tau protein over amyloid beta peptide 42 (p-tau/Aβ42) was computed and used as a marker of progression along the AD continuum. Whole-brain, voxel-wise eigenvector centrality mapping (ECM) was computed from resting-state fMRI and regression against p-tau/Aβ42 was performed. Surviving clusters were used as data-derived seeds in functional connectivity analyses and investigated in relation to memory performance scores (delayed free recall and memory alteration) via complementary regression models. To investigate disease-stage-specific effects, the whole-brain connectivity maps of each cluster were compared between progressive groups. Results: Centrality in BA39-BA19 is negatively correlated with the p-tau/Aβ42 ratio and associated to memory function impairment across the AD continuum. The thalamus, anterior cingulate (ACC), midcingulate (MCC) and posterior cingulate cortex (PCC) show the opposite effect. The MCC shows the highest increase in centrality as memory performance decays. In the asymptomatic preclinical group, MCC shows reduced functional connectivity (FC) with the left hippocampus and stronger FC with the precuneus (PCu). Additionally, BA39-BA19 show reduced FC with the cerebellum, compensated by stronger FC between cerebellum and PCC. In the MCI group, PCC shows reduced FC with PCu, compensated by stronger FC with the left pars orbitalis, insula and temporal pole, as well as by stronger FC of MCC with its anterior and ventral neighboring areas and the cerebellum. In the mild dementia group, extensive functional decoupling occurs across the entire autobiographical memory network and functional resilience ensues in posterior regions and the cerebellum. Conclusions: Functional decoupling in preclinical AD occurs predominantly in AD-vulnerable regions (e.g. hippocampus, cerebellar lobule VI / Crus I, visual cortex, frontal pole) and coupling between MCC and PCu, as well as between PCC and cerebellum, emerge as intrinsic mechanisms of functional compensation. At the MCI stage, the PCu can no longer compensate for hippocampal decoupling, but the compensatory role of the MCC and PCC ensue into the stage of dementia. These findings shed light on the neural mechanisms of functional compensation across the pathophysiological continuum of AD, highlighting the compensatory roles of several key brain areas. Keywords: Resting-state fMRI, Eigenvector centrality, Functional connectomics, Hippocampus, Neural capacit

    Virtual reality neurofeedback paradigm for the assessment of hippocampal hyperactivity and cognitive reserve.

    No full text
    <p>Poster presented at the ‘1st International Conference on Cognitive Reserve in the Dementias (ResDem)'; 24th  November 2017, Munich, Germany.                                          </p

    Cerebrospinal fluid total tau levels indicate aberrant neuronal plasticity in Alzheimer's disease

    No full text
    Alzheimer's disease (AD) is characterised by abnormal amyloid beta and tau processing. Previous studies reported that cerebrospinal fluid (CSF) total tau (t-tau) levels vary between patients. Here we show that CSF t-tau variability is associated with distinct impairments in neuronal plasticity mediated by gene repression factors SUZ12 and REST. AD individuals with abnormal t-tau levels have increased CSF concentrations of plasticity proteins regulated by SUZ12 and REST. AD individuals with normal t-tau, on the contrary, have decreased concentrations of these plasticity proteins and increased concentrations in proteins associated with blood-brain and blood CSF-barrier dysfunction. Genomic analyses suggested that t-tau levels in part depend on genes involved in gene expression. The distinct plasticity abnormalities in AD as signaled by t-tau urge the need for personalised treatment

    Effect of BDNF Val66Met on hippocampal subfields volumes and compensatory interaction with APOE-ε4 in middle-age cognitively unimpaired individuals from the ALFA study

    No full text
    Altres ajuts: The research leading to these results has received funding from "la Caixa" Foundation (LCF/PR/GN17/10300004). J.D.G. holds a 'Ramón y Cajal' fellowship (RYC-2013-13054).Background: Current evidence supports the involvement of brain-derived neurotrophic factor (BDNF) Val66Met polymorphism, and the ε4 allele of APOE gene in hippocampal-dependent functions. Previous studies on the association of Val66Met with whole hippocampal volume included patients of a variety of disorders. However, it remains to be elucidated whether there is an impact of BDNF Val66Met polymorphism on the volumes of the hippocampal subfield volumes (HSv) in cognitively unimpaired (CU) individuals, and the interactive effect with the APOE-ε4 status. Methods: BDNF Val66Met and APOE genotypes were determined in a sample of 430 CU late/middle-aged participants from the ALFA study (ALzheimer and FAmilies). Participants underwent a brain 3D-T1-weighted MRI scan, and volumes of the HSv were determined using Freesurfer (v6.0). The effects of the BDNF Val66Met genotype on the HSv were assessed using general linear models corrected by age, gender, education, number of APOE-ε4 alleles and total intracranial volume. We also investigated whether the association between APOE-ε4 allele and HSv were modified by BDNF Val66Met genotypes. Results: BDNF Val66Met carriers showed larger bilateral volumes of the subiculum subfield. In addition, HSv reductions associated with APOE-ε4 allele were significantly moderated by BDNF Val66Met status. BDNF Met carriers who were also APOE-ε4 homozygous showed patterns of higher HSv than BDNF Val carriers. Conclusion: To our knowledge, the present study is the first to show that carrying the BDNF Val66Met polymorphisms partially compensates the decreased on HSv associated with APOE-ε4 in middle-age cognitively unimpaired individuals
    corecore