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Alzheimer’s disease is biologically heterogeneous, and detailed understanding of the processes involved in patients is critical for de-

velopment of treatments. CSF contains hundreds of proteins, with concentrations reflecting ongoing (patho)physiological processes.

This provides the opportunity to study many biological processes at the same time in patients. We studied whether Alzheimer’s dis-

ease biological subtypes can be detected in CSF proteomics using the dual clustering technique non-negative matrix factorization.

In two independent cohorts (EMIF-AD MBD and ADNI) we found that 705 (77% of 911 tested) proteins differed between

Alzheimer’s disease (defined as having abnormal amyloid, n = 425) and controls (defined as having normal CSF amyloid and tau

and normal cognition, n = 127). Using these proteins for data-driven clustering, we identified three robust pathophysiological

Alzheimer’s disease subtypes within each cohort showing (i) hyperplasticity and increased BACE1 levels; (ii) innate immune activa-

tion; and (iii) blood–brain barrier dysfunction with low BACE1 levels. In both cohorts, the majority of individuals were labelled as

having subtype 1 (80, 36% in EMIF-AD MBD; 117, 59% in ADNI), 71 (32%) in EMIF-AD MBD and 41 (21%) in ADNI were

labelled as subtype 2, and 72 (32%) in EMIF-AD MBD and 39 (20%) individuals in ADNI were labelled as subtype 3. Genetic

analyses showed that all subtypes had an excess of genetic risk for Alzheimer’s disease (all P40.01). Additional pathological com-

parisons that were available for a subset in ADNI suggested that subtypes showed similar severity of Alzheimer’s disease path-

ology, and did not differ in the frequencies of co-pathologies, providing further support that found subtypes truly reflect

Alzheimer’s disease heterogeneity. Compared to controls, all non-demented Alzheimer’s disease individuals had increased risk of

showing clinical progression (all P50.01). Compared to subtype 1, subtype 2 showed faster clinical progression after correcting

for age, sex, level of education and tau levels (hazard ratio = 2.5; 95% confidence interval = 1.2, 5.1; P = 0.01), and subtype 3 at

trend level (hazard ratio = 2.1; 95% confidence interval = 1.0, 4.4; P = 0.06). Together, these results demonstrate the value of CSF

proteomics in studying the biological heterogeneity in Alzheimer’s disease patients, and suggest that subtypes may require tailored

therapy.
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Introduction
Alzheimer’s disease is a neurodegenerative disorder and the

most common cause of dementia. The pathological hall-

marks are amyloid plaques and tau neurofibrillary tangles in

the brain. Biomarkers for amyloid and tau pathology are

therefore part of the biological definition of Alzheimer’s dis-

ease (Dubois et al., 2007, 2014; Albert et al., 2011; Jack

et al., 2011, 2018; Sperling et al., 2011). The current defin-

ition implies that Alzheimer’s disease is a single disease en-

tity. However, individuals with Alzheimer’s disease show

considerable variability in terms of clinical symptoms, age of

onset, disease progression, cortical atrophy patterns, CSF

levels of tau, and other pathological markers (Blennow and

Wallin, 1992; Iqbal et al., 2005; van der Vlies et al., 2009;

Wallin et al., 2010; Whitwell et al., 2012; Lam et al., 2013;

Möller et al., 2013; Ossenkoppele et al., 2015; Smits et al.,

2015; Hondius et al., 2016). Part of the heterogeneity in

Alzheimer’s disease is explained by genetic variance (Ridge

et al., 2016) indicating that multiple biological pathways are

involved in Alzheimer’s disease, and these include processes

related to amyloid and tau metabolism, the innate immune

system, lipid processing, and synaptic functioning (Lambert

et al., 2013; Kunkle et al., 2019; Jansen et al., 2020). It is

likely that patients will require personalized medicine de-

pending on the molecular processes involved, but at this

point there are no tools to identify biological subtypes in

Alzheimer’s disease in vivo. CSF contains many proteins that

reflect (patho)physiological processes in the brain, and could

provide insight into biological processes involved in

Alzheimer’s disease.

Previous studies examining heterogeneity in Alzheimer’s

disease based on CSF levels of targeted proteins amyloid,

tau and p-tau and/or ubiquitin, suggest that at least three
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subtypes exist, mainly characterized by having low, inter-

mediate or high tau levels (Iqbal et al., 2005; van der Vlies

et al., 2009; Wallin et al., 2010). Unbiased or large-scale tar-

geted proteomic CSF analyses have potential to further re-

fine which biological processes become disrupted in

Alzheimer’s disease. So far, Alzheimer’s disease proteomic

studies mostly focussed on finding novel biomarkers by com-

paring patients with Alzheimer’s disease with control sub-

jects (Maarouf et al., 2009; Meyer et al., 2018; for reviews

see Pedrero-Prieto et al., 2020; Wesenhagen et al., 2020),

and so it remains unclear whether pathophysiological sub-

types within Alzheimer’s disease can be discovering with

CSF proteomics. Furthermore, if genetic variance in

Alzheimer’s disease risk genes contributes to interindividual

variability in underlying disease mechanisms, it can be

hypothesized that these should already be detectable in pre-

symptomatic stages of Alzheimer’s disease.

In this study we used a data-driven dual clustering tech-

nique to identify biological subtypes of Alzheimer’s disease

in CSF proteomics in two large independent Alzheimer’s dis-

ease cohorts [i.e. the European Medical Information

Framework for Alzheimer’s Disease Multimodal Biomarker

Discovery (EMIF-AD MBD) and the Alzheimer’s Disease

Neuroimaging Initiative (ADNI)] across the clinical spec-

trum. We defined Alzheimer’s disease by the presence of

amyloid pathology as indicated by abnormal levels of CSF

amyloid-b1–42, because abnormal amyloid-b1–42 CSF shows

high concordance with the presence of amyloid and tau

pathology upon neuropathological examination (Shaw et al.,

2009). In contrast, CSF tau levels show more variability

amongst patients, with up to 30% of individuals with patho-

logically confirmed Alzheimer’s disease showing normal lev-

els of CSF tau (Shaw et al., 2009). Therefore, we used CSF

total (t)-tau and phosphorylated (p)-tau as independent out-

come markers. We further excluded patients that had evi-

dence of known neurodegenerative disorders associated with

amyloid aggregation other than Alzheimer’s disease. We first

identified which proteins were associated with Alzheimer’s

disease. Next, we used unsupervised clustering on these pro-

teins to identify biological subtypes of Alzheimer’s disease.

We interpreted Alzheimer’s disease subtype protein profiles

in terms of biological processes through enrichment analyses,

and performed post hoc analyses to characterize Alzheimer’s

disease subtypes in terms of: clinical and biological charac-

teristics known to be associated with Alzheimer’s disease i.e.

established CSF markers (neurogranin, BACE1 activity, neu-

rofilament light, VILIP, YKL-40, sTREM2), APOE geno-

type, Alzheimer’s disease polygenic risk scores, MRI markers

for cortical atrophy, cognitive functioning and decline.

Furthermore, we compared subtypes on vascular comorbid-

ity using MRI markers for vascular damage. Finally, we

compared subtypes on neuropathological measures that

were available for a subset of individuals (ADNI only), and

we assessed stability of proteomic subtypes over time for a

subset of individuals who had longitudinal proteomics avail-

able (ADNI only).

Materials and methods

Participants

We selected individuals with CSF amyloid-b1–42, tau, and pro-
teomics data from two independent multicentre Alzheimer’s dis-
ease studies, the EMIF-AD MBD (Bos et al., 2018) and the
ADNI (adni.loni.usc.edu). Both cohorts included individuals
with normal cognition, mild cognitive impairment (MCI) or
Alzheimer’s disease-type dementia, as determined according to
international consensus criteria (McKhann et al., 1984, 2011;
Petersen et al., 1999; Winblad et al., 2004). Control was defined
by normal cognition and normal CSF amyloid-b1–42 and tau
biomarkers (see below), and Alzheimer’s disease pathological
change was defined by abnormal CSF amyloid-b1–42 (Jack et al.,
2018). Both studies excluded patients with any neurological dis-
ease other than suspected Alzheimer’s disease, such as
Parkinson’s disease, dementia with Lewy bodies, frontotemporal
dementia, progressive supranuclear palsy, corticobasal syn-
drome, normal pressure hydrocephalus, or vascular dementia.
ADNI began in 2003 as a public-private collaboration under
the supervision of principle investigator Michael W. Weiner,
MD. The primary goal of ADNI is to study whether serial MRI,
PET, other biological markers, and clinical and neuropsycho-
logical measures can be combined to measure the progression of
MCI and early Alzheimer’s disease. See www.adni-info.org for
the latest information. The institutional review boards of all par-
ticipating institutions approved the procedures for this study.
Written informed consent was obtained from all participants or
surrogates.

CSF data

CSF samples were obtained as previously described (Shaw,
et al., 2009; Toledo et al., 2013; Bos et al., 2018). CSF amyloid-
b1–42, t-tau and p-tau levels were measured with INNOTEST
ELISAsor INNOBIA AlzBio3 kit (Fujirebio) in EMIF-AD MBD
(Bos et al., 2018), and in ADNI with the multiplex xMAP lumi-
nex platform (Luminex Corp) at the ADNI Biomarker Core la-
boratory at the University of Pennsylvania Medical Center. For
the ADNI cohort, biomarker abnormality was defined by amyl-
oid-b1–42 levels 5192 pg/ml, and t-tau levels 493 pg/ml (Shaw
et al., 2009). In the EMIF-AD MBD cohort, cut-offs for p-tau
and t-tau were study-specific, as previously reported (Bos et al.,
2018). For amyloid-b1–42 cut-offs, the studies in EMIF-AD
MBD differed in methodologies used to determine cut-offs,
which may lead to bias (Bertens et al., 2017). To minimize such
bias across studies, we determined centre-specific cut-offs using
unbiased Gaussian mixture modelling (Supplementary Table 1)
(De Meyer, 2010; Bertens et al., 2017; Tijms et al., 2018).
Cluster analyses were performed on proteomic data using the
tandem mass tag (TMT) technique with 10 + 1 plexing in
EMIF-AD MBD using high pH reverse phase HPLC for peptide
prefractionation (Batth et al., 2014; Magdalinou et al., 2017)
(Supplementary material). For EMIF-AD MBD, the median
(interquartile range, IQR) analytical coefficient of variation
across included proteins was 5.6 (3.8, 8.0) (see Supplementary
Table 2 for protein-specific coefficients of variation). The EMIF-
AD MBD mass spectrometry proteomics data have been depos-
ited to the ProteomeXchange Consortium via the PRIDE (Perez-
Riverol et al., 2018) partner repository with the dataset
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identifiers PXD019910 and 10.6019/PXD019910. Normalized
abundances with associated clinical data can be requested from
the EMIF-AD MBD consortium (Bos et al., 2018). In the ADNI
cohort, four proteins included were determined with ELISAs,
311 protein fragments determined with Multi Reaction
Monitoring (MRM) targeted mass spectroscopy, and 83 pro-
teins measured with the Rules Based Medicine (RBM) multiplex.
Information on protein assessment and quality control is
described at http://adni.loni.usc.edu/data-samples/biospecimen-
data/. For ADNI MRM we used the quality-controlled finalized
‘normalized intensity’ data (Spellman et al., 2015) (for detailed
explanation of the normalization procedure see the ‘Biomarkers
Consortium CSF Proteomics MRM dataset’ in the ‘Data Primer’
document at adni.loni.ucla.edu). All protein (EMIF-AD MBD
and ADNI) and protein fragment (ADNI) values were first nor-
malized according to mean and standard deviation (SD) values
of the control group. Then, for ADNI, protein fragments from
MRM measurements were combined into a protein score when
these correlated with r4 0.5, and fragments that did not correl-
ate were omitted from the present analyses. Eleven proteins
were measured by different platforms in ADNI, for which values
were averaged if they correlated with r40.5, or we selected the
protein as measured by MRM [mean r = 0.74; min r = –0.50,
max r = 0.92; for one protein RBM was excluded, another pro-
tein (CST3) showed a strong anticorrelation between RBM and
MRM of r = –0.85, and was excluded]. Only proteins that
were observed in 100% of the sample were considered for sub-
sequent analyses, resulting in a total 707 proteins in EMIF-AD
MBD and 204 proteins in ADNI. A subset of individuals had
additional protein measurements available, which we excluded
from clustering to use as independent outcomes for subtype in-
terpretation. In ADNI these were amyloid-b1–40 and amyloid-
b1–38, measured with 2D-UPLC tandem mass spectrometry,
BACE1 activity, and ELISA measures of neurogranin, neurofila-
ment light, VILIP, YKL40, SNAP25 and sTREM2. In EMIF-AD
MBD measurements were available for amyloid-b1–40, amyloid-
b1–38, neurogranin, neurofilament light, and YKL-40 (Bos et al.,
2018). A subset of 70 (29%) ADNI individuals had repeated
MRM for 62 proteins [median five repeated measures; over me-
dian (IQR) of 6 (4.3, 6.7) years for cognitively normal subjects
and median (IQR) of 4 (3.9, 6.0) years for Alzheimer’s disease
patients], which we used to study the stability of proteomic sub-
types. For these analyses, we first standardized the proteins lev-
els according to the baseline mean and SD levels of the control
group, and then we constructed proteomic profile scores by
averaging levels of proteins specific for a subtype.

Genetic analyses

ADNI samples were genotyped using either the Illumina 2.5-M
array (a byproduct of the ADNI whole-genome sequencing sam-
ple) or the Illumina OmniQuad array (Saykin et al., 2010).
APOE genotype was assessed with two single nucleotide poly-
morphisms (SNPs) (rs429358, rs7412) that define the e2, 3, and
4 alleles, using DNA extracted by Cogenics from a 3 ml aliquot
of EDTA blood. EMIF-AD MBD samples were genotoyped at
the USKH site using the Global Screening Array (Illumina, Inc)
(see Hong et al., 2019 for more details on imputation prepro-
cessing). In the ADNI cohort, SNPs were imputed using the
1000 Genomes reference panel, with the use of the Michigan
imputation server. Genotype data were quality checked for gen-
der mismatch, relatedness and ancestry. SNPs were excluded

prior to data analyses if they had a minor allele frequency
52%, deviated significantly from Hardy-Weinberg equilibrium
(P51 � 10–6) in the total sample of founder individuals, or
had a call rate of 598%. We only used SNPs with 55% geno-
type missingness and removed samples with excess heterozygos-
ity rate (45 SD). After filtering, the genotype data in ADNI
included 1 496 949 SNPs and 6 706 731 SNPs in EMIF-AD
MBD. To control for population stratification, five principal
components were computed on a subset of relatively uncorre-
lated (r2 5 0.2) SNPs (PC1–PC5). Polygenic risk scores for
Alzheimer’s disease were calculated by adding the sum of each
allele weighted by the strength of its association with
Alzheimer’s disease risk using PRSice (Euesden et al., 2014).
The strength of these associations was calculated previously by
the International Genomics of Alzheimer’s project (IGAP) gen-
ome-wide association study (GWAS) (Lambert et al., 2013).
Clumping was performed prior to calculating polygenic risk
score to remove SNPs that are in linkage disequilibrium (r2

50.1) within a slicing 1 Mbp window. After clumping we com-
puted 14 PGRSs with varying SNP inclusion threshold (P510–30

to P50.5). Finally, we constructed specialized polygenic risk
scores including only SNPs that corresponded to genes part of the
GO pathways ‘innate immune response’ and ‘complement activa-
tion’ for SNP inclusion thresholds (P510–30 to P5 1). All poly-
genic risk scores were regressed on PC1–PC3.

Cluster analyses with non-negative
matrix factorization

First, in each cohort we selected proteins for clustering that dif-
fered between the control and Alzheimer’s disease groups at un-
corrected P50.10 using Kruskal-Wallis tests. As protein levels
can change non-linearly with levels of neuronal injury and/or
disease severity (De Leon et al., 2018; Duits et al., 2018), we
repeated analyses stratifying Alzheimer’s disease individuals on
disease stage (i.e. normal cognition, MCI and dementia), and on
the presence of abnormal CSF levels of the neuronal injury
marker t-tau. Next, we clustered these proteins with non-nega-
tive matrix factorization (NMF). NMF is a dual clustering ap-
proach that is based on decomposition of the data by parts,
which reduces the dimensionality of data protein expression lev-
els into fewer components that we consider protein profiles (Lee
and Seung, 1999), and at the same time this algorithm groups
subjects together into subtypes based on how well their protein
expression levels match the protein profiles. A strength of NMF
compared to correlation-based approaches is that it is able cap-
ture non-linear patterns associated with a certain subtype. To
aid interpretation of the results, we labelled proteins according
to which subtype showed the highest average levels. We used
the R package NMF for clustering, with the ‘nonsmooth’ option
that ensures sparse cluster solutions with enhanced separability
(Gaujoux and Seoighe, 2010). The NMF algorithm is stochastic
and therefore subject classification to a subtype can vary from
run to run, based on the random initial conditions. We assessed
stability of subtype classification over 50 different runs of NMF
with the co-phonetic coefficient, with values ranging from 0 (i.e.
unstable solution) to 1 (i.e. subjects are always classified the
same). We tested up to five clusters, and the optimal number of
clusters was determined as the number of clusters for which: (i)
the co-phonetic correlation was high; (ii) fit compared to a
lower cluster number solution was improved at least 2-fold over
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a random solution; and (iii) silhouette width of the cluster solu-

tion was 4 0.5. Clustering analyses were performed separately

for each cohort. We performed pathway enrichment analysis for

proteins that were characteristic for each subtype using the on-

line Panther application (Mi et al., 2013). We used the

ENCODE and ChEA consensus transcription factor database in

the Enrichr webserver to identify potential upstream drivers of

subtype-specific protein alterations (Chen et al., 2013; Kuleshov

et al., 2016). We selected pathways that were most consistently

associated with the subtypes for visualization, and report all

observed pathways in the Supplementary material. To determine

cell type production we used the BRAIN RNASeq database

(http://www.brainrnaseq.org) (Zhang et al., 2014). Proteins

were labelled as being specifically produced by a certain cell

type when levels were 450% of the total produced across cell

types, as non-specific when none of the cell types was 450%,

or as not detected when levels were all 50.2.

Statistical procedures for post hoc
subtype comparisons

We performed the following post hoc comparisons of subtypes:

CSF levels of t-tau, p-tau and other established Alzheimer’s dis-

ease CSF markers that were not included in the cluster analyses

to provide further independent interpretation of the cluster solu-

tions, age, gender, disease stage, APOE e4 genotype,

Alzheimer’s disease PGRS, pathological measures, cortical thick-

ness measures from 34 cortical areas as defined by the Desikan-

Killiany atlas (averaged over the left and right hemispheres) (see

Bos et al., 2018 for EMIF-AD MBD and http://adni.loni.cule.

edu/ for detailed documentation on variable specific methods in

ADNI), vascular damage (visual ratings in EMIF-AD MBD, and

white matter hyperintensity volumes in ADNI), Mini-Mental

State Examination (MMSE) scores, level of education, neuro-

psychological test scores covering the memory (memory immedi-

ate and delayed recall scores on the logical memory subscale II

of the Wechsler Memory Scale), language (Boston Naming Test,

and animal fluency), visuospatial processing (Clock drawing)

and attention/executive domains [digit span, Trail Making Test

(TMT) A and TMT B]. All continuous variables (except for age,

MMSE, and years of education) were standardized according to

the mean and SD of the control group. Subtype comparisons

were performed with general linear models in case of continuous

variables with two-sided testing, and with Chi-square tests for

discrete variables. Comparisons for continuous variables were

performed without and with adjustment for age and sex, and

cognitive measures were additionally adjusted for level of educa-

tion. We used the R package ‘emmeans’ to obtain estimated

marginalized means. Finally, we performed an exploratory ran-

dom forest analysis on the subset of 92 proteins that were asso-

ciated with Alzheimer’s disease in both EMIF-AD MBD and

ADNI to identify the best subset of proteins that can separate

the subtypes in the pooled sample and for each cohort separate-

ly. For this, we used a bootstrap approach that fitted the model

in two-thirds of the dataset and tested classification performance

in the left out one-third, repeated 10 000 times in order to esti-

mate 95% confidence intervals (CI) for classification performan-

ces. ADNI data were downloaded on 30 March 2018. All

analyses were performed in R v3.5.1 ‘Feather Spray’.

Results
We included 127 control subjects with normal cognition and

normal CSF amyloid-b1–42 and tau, and 425 individuals

with Alzheimer’s disease across the clinical spectrum [89

(21%) normal cognition, 195 (46%) MCI, and 141 (33%)

Alzheimer’s disease-type dementia]. Compared to controls,

individuals with Alzheimer’s disease more often carried an

APOE e4 allele, had lower MMSE scores, and more often

abnormal CSF p-tau and t-tau in both cohorts (Table 1).

Other characteristics were similar between groups in both

cohorts, except that individuals with Alzheimer’s disease

were older than controls in the EMIF-AD MBD. Relative to

controls, individuals with Alzheimer’s disease showed differ-

ential CSF levels for 556 of 707 proteins (79%) measured in

EMIF-AD MBD and 149 of 204 (73%) proteins measured

in ADNI (Supplementary Table 2). These Alzheimer’s dis-

ease-specific proteins were considered for cluster analyses

with NMF within in each cohort.

Three biological Alzheimer’s disease
subtypes detected in CSF
proteomic data

According to our fit criteria, three clusters best described the

CSF proteomic data in both cohorts (Supplementary Table

3). Repeating clustering of proteins using a Louvain modu-

larity algorithm on a weighted protein co-expression net-

work also resulted in three protein clusters, which showed

good correspondence with the NMF protein clusters of 80%

in EMIF-AD MBD and 86% in ADNI (Supplementary

Tables 5A and B). A 3D plot of subject loadings on clusters

revealed a subset of five individuals with extreme loadings in

EMIF-AD MBD (Supplementary Fig. 1). These individuals

did not show differences with other Alzheimer’s disease indi-

viduals in terms of sample characteristics (Supplementary

Table 4). To avoid potential overfitting, we repeated cluster

analyses excluding these individuals, and a three-cluster solu-

tion remained most optimal. We next labelled individuals

according to the subtype they scored highest on (Fig. 1A). In

both cohorts, the majority of individuals were labelled as

having subtype 1 [80 (36%) in EMIF-AD MBD, 117 (59%)

in ADNI]; 71 (32%) in EMIF-AD MBD and 41 (21%) in

ADNI were labelled as subtype 2; and 72 (32%) in EMIF-

AD MBD and 39 (20%) individuals in ADNI were labelled

as subtype 3. A subset of 92 proteins was measured in both

EMIF-AD MBD and ADNI, which showed consistent sub-

type differences in levels for 84–98% of proteins across the

cohorts (Supplementary Fig. 2 and Supplementary Table

5A). An exploratory random forest analysis on this subset of

92 overlapping proteins identified a subset of five proteins

(SLITRK1, NEO1, EXTL2, TNFRSF21, IGFBP2) that best

separate the subtypes, with an overall accuracy of 80%

(95% CI: 74–86%) in the pooled sample, and similar per-

formance within cohorts (EMIF: 80%, 95% CI: 71%–88%;

ADNI: 80%, 95% CI: 71%–89%), further supporting that
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subtype definitions are robust. Individuals with subtype 1,

compared to controls, had significantly higher levels for the

majority of proteins in both cohorts [EMIF-AD MBD: 309

(56%); ADNI: 92 (65%); P-values ranging between

0.02 � 10–21 and 0.049] (Fig. 1B and Supplementary Table

5A and B). The predominant cell types producing these pro-

teins were neurons and astrocytes in both cohorts (Fig. 1C

and Supplementary Table 6). GO pathway analyses for pro-

teins increased in subtype 1 showed in both EMIF-AD MBD

and ADNI enrichment for processes related to the MAPK/

ERK cascade, synaptic structure and function, axonal devel-

opment, and glucose metabolism, suggesting that subtype 1

shows neuronal hyperplasticity (Fig. 1D and Supplementary

Table 7) (77% processes enriched in ADNI overlapped with

those enriched in EMIF-AD MBD). Subtype 2 also showed

mostly higher protein levels than controls [EMIF-AD MBD:

202 (36%); ADNI: 31 (21%); P-values ranging between

0.01 � 10–16 and 0.049]. The predominant cell types pro-

ducing these proteins were oligodendrocytes, neurons and

astrocytes. GO pathway analyses for proteins specifically

increased in subtype 2 showed enrichment for innate im-

mune response, extracellular matrix organization and oligo-

dendrocyte development, hence these individuals may be

characterized as having innate immune activation (54% of

the processes enriched in ADNI overlapped with those

enriched in EMIF-AD MBD). Compared to controls, sub-

type 3 individuals showed mostly decreased proteins [415

(75%) in EMIF-AD MBD; 120 (81%) in ADNI; P-values

ranging between 0.02 � 10–22 and 0.049] that mirrored the

increases observed in subtype 1, which suggests that type 3

has neuronal hypoplasticity. Another group of proteins was

specifically increased in subtype 3 compared to control sub-

jects [76 (14%) in EMIF-AD MBD; 6 (4%) in ADNI],

including albumin and immunoglobulin proteins, of which

higher CSF levels have been reported with blood–brain bar-

rier dysfunction (Dayon et al., 2019). GO pathway analyses

for proteins specifically increased in subtype 3 were per-

formed for EMIF-AD MBD only, as the number of subtype

3-specific increased proteins in ADNI was too low (note that

for proteins showing subtype 3-specific decreases 99% of

the pathways enriched in ADNI overlapped with EMIF-AD

MBD, and these pathways involved 66% of those enriched

for subtype 1 increased proteins). Subtype 3 increased pro-

teins were enrichmed for acute inflammation, B-cell activa-

tion, blood coagulation-related processes, lipid processing,

and lipoprotein clearance, which together suggest that this

subtype may be characterized as having blood–brain barrier

dysfunction. Subtype 3 also showed enrichment for comple-

ment activation, but for a different group of proteins than

observed in subtype 2: C6, C8A, C8B and C9, which are

part of the terminal pathway of the complement system

(Veerhuis et al., 2011; Orsini et al., 2014) (Supplementary

Fig. 3). We searched the ENCODE and ChEA consensus

transcriptional factor database using the Enrichr server to

Table 1 Participant descriptions

Descriptive EMIF-AD MBD ADNI

Controls (n = 82) Alzheimer’s disease

(n = 228)

Controls (n = 45) Alzheimer’s disease

(n = 197)

Cognitive status, n (%)

Intact cognition 82 (100) 57 (25) 45 (100) 32 (16)

MCI 0 (0) 92 (40)* 0 (0) 103 (52)

Dementia 0 (0) 79 (35) 0 (0) 62 (31)

Age in years, mean (SD) 61.1 (7)** 68.1 (8)*,*** 75.8 (6) 74.9 (7)

Female, n (%) 47 (57) 126 (55)* 23 (51) 81 (41)

Years of education, mean (SD) 11.9 (3.5)** 11.2 (3.5)* 15.6 (3) 15.6 (3)

MMSE, mean (SD)a 28.6 (1.3)** 25.6 (3.9)*** 29.2 (0.6) 26.1 (2.6)***

APOE e4, at least one allele (%)b 14 (22)** 140 (52) 4 (8) 129 (65)***

Hippocampal volume, mean (SD)c,e 0 (1) –1.4 (1.5)*,*** 0 (1) –1.7 (1.4)***

Amyloid-b1–42 pg/ml, mean (SD)f 0 (1) –2.8 (1.5)*,*** 247.5 (29.2) 139.1 (23.1)***

t-tau pg/ml, mean (SD)f 0 (1) 4.4 (4.7)*** 57.1 (13.1) 114.3 (54.9)***

Abnormal t-tau, n (%)g 0 (0) 151 (66)*** 0 (0) 115 (58)***

p-tau pg/ml, mean (SD)d,f 0 (1) 2.1 (2.5)*** 20.3 (9.4) 39.1 (17.5)***

Abnormal p-tau, n (%)g 7 (8.5) 149 (65)*,*** 9 (20) 168 (85)***

MMSE = Mini-Mental State Examination.
aData missing for one individual; b16 individuals; c159 individuals; and dfive individuals.
eScaled according to the mean and SD values in controls.
fBased on Luminex in ADNI and scaled for EMIF according to cohort-specific controls as previously described (Bos et al., 2018).
gCut-off points to define abnormal levels for ADNI: t-tau 4 93 pg/ml, p-tau 4 21 pg/ml (Shaw et al., 2009), and cohort specific for EMIF-AD MBD as previously described (Bos

et al., 2018).

Groups were compared with v2 tests or t-test where appropriate.

*P5 0.05 for across cohort comparisons between Alzheimer’s disease groups.

**P5 0.05 for across cohort comparisons between controls.

***P5 0.01 � 10–30 for controls versus Alzheimer’s disease within cohort.

Cohort differences in continuous amyloid-b1-42, t-tau and p-tau levels are based on cohort scaled values according to control group levels.
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Figure 1 Cluster results. (A) Subject loadings on subtype scores (orange: subtype 1, hyperplasticity; blue: subtype 2, innate immune activa-

tion; green: subtype 3, blood–brain barrier dysfunction) for EMIF-AD MBD (left) and ADNI (right). Each dot shows how an individual matches all

three proteomic subtypes at the same time, e.g. the right-most green dot is a subject who shows very high loading on the subtype 3 axis, and

very low loadings on subtypes 1 and 2 axes. (B) Heat map of subtype average Z-scores (according to the mean and SD of controls). Labels not

shown, see Supplementary Table 5 for list of proteins. (C) Proportion of cell type production for protein levels higher (positive proportions) or

lower than control subjects (negative proportions). (D) Selected subset of GO pathways that show subtype-specific enrichment with log(pFDR)

positive values for proteins with higher levels than controls, and negative values for proteins with lower levels than controls (see Supplementary

Table 7 for complete list of enriched pathways).
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identify potential upstream drivers for proteins that were

highest in each subtype and significantly different from con-

trols. The strongest transcriptional factors associated with

increased proteins specifically in subtype 1 in both EMIF-

AD MBD and ADNI were REST and SUZ12, which are

transcriptional repressors that are important for neuronal

development and synaptic plasticity (Rodenas-Ruano et al.,

2012) (Supplementary Table 8). The top transcription fac-

tors associated with subtype 2 did not show consistent pat-

terns between EMIF-AD MBD and ADNI, and no

significant transcription factors were observed for subtype 3-

specific increases (tested in EMIF-AD MBD only).

Longitudinal proteomics was available for a subset in ADNI

[n = 70 (29%), including 23 controls and 47 Alzheimer’s dis-

ease: 31 with subtype 1; nine with subtype 2; seven with

subtype 3], including only proteins associated with subtypes

1 and 2. Proteomic profile scores that summarized levels of

proteins that were associated with either subtype 1 (52 pro-

teins) or 2 (12 proteins) in the discovery dataset remained

stable over time in all subtypes, as none of the slopes dif-

fered from 0 (all subtypes P4 0.10, Supplementary Table

9). This suggests that subtype definitions remained stable

over time.

Genetic comparisons of subtypes

Subtypes showed similar proportions of APOE e4 carriers

in both cohorts (Fig. 2A and Supplementary Table 10; all

P’s 4 0.05). Relative to controls, all subtypes had an excess

of Alzheimer’s disease genetic risk (Fig. 2B and

Supplementary Table 11; P-values ranging between

0.02 � 10–13 and 0.004). For SNP inclusion thresholds 0.1

to 0.5, subtype 2 individuals showed higher Alzheimer’s dis-

ease polygenic risk score than subtype 1 and 3, but these

associations lost significance after adjusting for age and sex.

Because subtype 2 individuals were associated with innate

immune response, which has been previously associated

with top Alzheimer’s disease risk SNPs, we compared sub-

types on polygenic risk score for innate immune response

and complement activation, and found for the majority of

SNP inclusion thresholds the highest scores for subtype 2

(Fig. 2C and Supplementary Table 11; P-values compared to

controls ranging between 0.02 � 10–7 and 0.045; P-values

compared to the other subtypes ranging between 0.004 and

0.045). These effects remained largely unchanged after

adjusting for age and sex.

Other biological and clinical subtype
characterization

We next compared subtypes on clinical characteristics and

established Alzheimer’s disease CSF markers. In EMIF-AD

MBD, subtypes had comparable proportions of disease

stages and sex, and comparable age (Fig. 3A). In ADNI,

individuals with subtype 1 (hyperplasticity) less often had

dementia (compared to subtype 2, P = 0.02; compared to

subtype 3, P = 0.02), and individuals with subtype 2 (innate

immune activation) were older and more often male. In both

cohorts, t-tau and p-tau CSF levels were highest and most

often abnormal in the subtype 1 (hyperplasticity; Fig. 3B

and Supplementary Table 10), intermediate for subtype 2

(innate immune activation), and the lowest and most often

normal in subtype 3 (blood–brain barrier dysfunction).

Other neuronal injury markers such as neurogranin (both

cohorts), VILIP and SNAP25 (ADNI only) were consistently

highest in subtype 1 (hyperplasticity), and lowest in subtype

3 (blood–brain barrier dysfunction) (Fig. 3C and D). NEFL

levels were comparable across subtypes in EMIF-AD MBD,

but were increased in subtype 2 (innate immune activation)

in ADNI, which remained after additional correction for age

and sex. Subtype 1 (hyperplasticity) further showed higher

levels of proteins associated with amyloid precursor protein

(APP) processing (i.e. higher levels of amyloid-b1–40 and

amyloid-b1–38 in both cohorts, and higher levels of BACE1

activity in ADNI). Subtype 3 (blood–brain barrier dysfunc-

tion) showed the lowest concentrations for those markers.

Both subtypes 1 (hyperplasticity) and 2 (innate immune acti-

vation) showed higher levels of inflammation markers

YKL40 and sTREM2 (ADNI only) than subtype 3 (blood–

brain barrier dysfunction). Since some of these markers can

increase with disease severity, we repeated subtype compari-

sons stratified for disease stage (normal cognition, MCI and

dementia). Results showed largely similar subtype profiles

(all Pinteraction 4 0.05; Supplementary Figs 4 and 5).

Atrophy, vascular damage, cognitive
profiles and pathological
comparisons

Atrophy relative to controls was most pronounced in the

hippocampus, medial and lateral temporal cortex and the

precuneus for all subtypes (Fig. 4A, Supplementary Table 12

and Supplementary Fig. 6). Compared to subtype 1 (hyper-

plasticity), individuals with subtypes 2 (innate immune acti-

vation) and 3 (blood–brain barrier dysfunction) showed

more atrophy in the posterior cingulate in both cohorts

(Fig. 4B). In ADNI, subtype 2 (innate immune activation)

showed more atrophy than subtype 1 (hyperplasticity) in the

inferior temporal gyrus, insula, isthmus cingulate, rostral

middle frontal and temporal pole. Visual ratings for vascular

damage on MRI in EMIF-AD MBD showed that subtype 3

(blood–brain barrier dysfunction) more often had a lacunar

infarct (n = 10, 22%) than subtype 2 (n = 1, 2%; P = 0.003)

and subtype 1 (n = 4, 7.5%; P = 0.04). No differences be-

tween subtypes were observed in white matter intensity load

(Fazekas score of 3), or the presence of more than one

microbleed (Supplementary Table 10). In ADNI, white mat-

ter hyperintensity volumes were larger in subtype 3 (blood–

brain barrier dysfunction; 1.2± 2.7 cm3) and subtype 2 (in-

nate immune activation; 1.3±1.4 cm3) compared to subtype

1 (hyperplasticity; 0.85± 3.0 cm3; subtype 1 versus subtype

2, P = 0.0004; subtype 1 versus subtype 3, P = 0.01; sub-

type 2 versus subtype 3, P = 0.44). Subtypes showed largely
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similar scores on cognitive tests (Fig. 4C and Supplementary

Table 13). Repeating analyses stratified on disease stage,

showed that individuals with subtype 3 in the dementia

stage scored worse on the TMT (A) than the other two sub-

types (Pinteraction = 0.004; both subtype 1 versus subtype 3,

and subtype 2 versus subtype 3, P5 0.001) (Supplementary

Table 13 and Supplementary Fig. 7). Worsening over time

on Clinical Dementia Rating Scale Sum of Boxes (CDRsob)

was steeper for subtype 2 compared to subtype 1 in MCI

(P = 0.01; Fig. 4E, F and Supplementary Table 14), and for

subtype 3 compared to subtype 1 in dementia (P = 0.02).

Compared to subtype 1, individuals without dementia and

subtype 2 showed increased risk of progression to dementia,

also after correcting for age, sex, level of education and tau

levels [hazard ratio (HR) (95% CI) subtype 2 versus subtype

1 = 2.5 (1.2, 5.1), P = 0.01], and subtype 3 at trend level

[HR = 2.1 (1.0, 4.4), P = 0.06] (Fig. 4G and Supplementary

Table 15). For a subset of 20 (10%) ADNI individuals with

neuropathological information, we found similar pathologic-

al scores for amyloid and tau for subtypes, and they showed

similar frequencies of occurring co-pathologies, such as

Lewy body pathology, TDP-43 and hippocampal sclerosis

(Supplementary Table 16).

Discussion
Understanding biological heterogeneity in patients with

Alzheimer’s disease is critical for treatment development. We

proteomically defined three Alzheimer’s disease pathophysio-

logical subtypes that were associated with distinct biological

processes, i.e. hyperplasticity, innate immune activation and

Figure 2 Genetic factor comparisons between subtypes. (A) Proportion of APOE e4 carriers according to subtype. (B) Effect sizes (95%

CI) of Alzheimer’s disease polygenic risk scores for increasing SNP inclusion P-value thresholds, comparing Alzheimer’s disease subtypes to the

control group (normal cognition, normal CSF amyloid and tau levels). (C) Comparisons of Alzheimer’s disease subtypes in Alzheimer’s disease

polygenic risk specific for GO innate immune response (left) and GO complement activation (right), for increasing SNP inclusion P-value thresh-

olds. (B and C) The pooled sample, and the cohorts separately. The dotted vertical lines in B and C indicate mean scores for the control group.

See Supplementary Tables 10 and 11 for test statistics of all comparisons.
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Figure 3 Clinical stage, age, sex and other CSF markers comparisons between subtypes. (A) Proportions of disease stage (NC =

normal cognition), and females according to Alzheimer’s disease subtypes and cohort. (B) Distributions of age, t-tau and p-tau levels according to

Alzheimer’s disease subtypes and cohort. (C) Distributions of CSF markers not included in clustering according to subtype and cohort, including

additional CSF biomarkers that were available in ADNI only for a subset of individuals. See Supplementary Table 10 for test statistics of all

comparisons.
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Figure 4 Cortical thickness and cognition comparisons between subtypes. (A) All brain areas where differences compared to controls

were observed. (B) Brain areas with a significant main effect for subtype; all beta values reflect volumetric differences of subtypes compared to

controls. (C) Comparisons of cognitive profiles between subtypes. (D) Changes over time on MMSE (left), and CDRsob (right) in ADNI only. (E)

Cumulative progression to dementia curves for subtypes, in ADNI only. All cortical thickness and neuropsychological test values are standardized

according to the mean and SD values of the control subjects. See Supplementary Tables 10 and 12–15 for test statistics of all comparisons.
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blood–brain barrier dysfunction, and these subtypes were ro-

bustly observed in two large independent cohorts. These bio-

logical subtypes of Alzheimer’s disease showed pronounced

differences in levels of proteins associated with processes

known to be deregulated in Alzheimer’s disease, including

APP processing, neuronal injury, and inflammation. All sub-

type-specific alterations in CSF protein levels could both be

increased or decreased for subsets of proteins, indicating

that differences cannot be explained by trivial aspecific

changes in CSF composition. All subtypes had an excess gen-

etic risk for Alzheimer’s disease, and pathological measures

did not show a difference in the presence of comorbidities,

providing further support that these differences reflect het-

erogeneity within Alzheimer’s disease. A particularly novel

finding is the observation of the blood–brain barrier dys-

function subtype that showed mostly abnormally low con-

centrations of proteins associated with APP processing, as

well as t-tau and p-tau levels. Together, these results demon-

strate the potential for CSF proteomics to identify which bio-

logical processes are disrupted in individual patients with

Alzheimer’s disease, and suggest that individuals might re-

quire specific treatments depending on their subtype.

Previous studies that clustered targeted proteins amyloid,

t-tau, p-tau and/or ubiquitin CSF levels suggested three to

five Alzheimer’s disease subtypes that were characterized by

having low, intermediate and high tau values (Iqbal et al.,

2005; van der Vlies et al., 2009; Wallin et al., 2010), and

our proteomically defined subtypes show a similar distinc-

tion in tau levels. We further show, with our large-scale

proteomic analyses, which biological processes may underlie

interindividual differences in tau levels. Individuals with

Alzheimer’s disease with the hyperplasticity subtype showed

high levels for the majority of proteins, and pathways

enriched in both cohorts showed involvement of regulation

of the MAPK/ERK cascade, glucose metabolism, synaptic

structure and function, and axonal development, all proc-

esses important for synaptic plasticity. This hyperplasticity

subtype also showed higher levels of markers presumed to

reflect neuronal injury, i.e. t-tau, p-tau, and neurogranin in

both cohorts (as well as VILIP, and SNAP25, which was

only measured in ADNI), which could reflect more severe

neuronal damage (Fagan and Perrin, 2012; Brinkmalm

et al., 2014). However, this is unlikely because these proteins

were already increased in individuals with Alzheimer’s dis-

ease and normal cognition, when atrophy was less severe

compared to the other subtypes. An alternative explanation

could be increased synaptic activity as this can lead to

increased tau (Pooler et al., 2013; Yamada et al., 2014) and

amyloid secretion (Cirrito et al., 2005; Bero et al., 2011).

Hyperactive neurons have been reported in Alzheimer’s dis-

ease with concurrent increased tau and amyloid levels

(Roberson et al., 2011; Palop and Mucke, 2016). Aberrant

increases in neuronal activation can be caused by amyloid

oligomers, which disrupt the balance of excitation and inhib-

ition of neuronal circuits (Palop and Mucke, 2016).

Furthermore, subtype 1-specific proteomic increases in both

EMIF and ADNI converged on the transcription factors

REST and SUZ12, which are transcription suppressors that

are known to interact with each other (Tsai et al., 2010) and

play an important role in regulating neuronal development

and synaptic plasticity (Ballas and Mandel, 2005; Rodenas-

Ruano et al., 2012; Yang et al., 2012). These factors have

previously been identified as key regulators in a sporadic

Alzheimer’s disease iPSC model (Meyer et al., 2019), in

which neurons also showed increase excitability, and

increased tau phosphorylation and amyloid-b1–40 concentra-

tions, which is in line with our observations and interpret-

ation of subtype 1. Finally, proteins increased in subtype 1

also showed enrichment for glucose metabolism, which has

been reported in two recent proteomic studies in tissue and

in CSF that also observed clusters of proteins associated

with glucose metabolism to be involved in Alzheimer’s dis-

ease, as well as clusters of synaptic proteins (Higginbotham

et al., 2019; Johnson et al., 2020). In those studies, and our

results, glucose metabolism pathways mostly included pro-

teins that were specific for neurons and/or astrocytes.

Neurons can increase neuronal glycolysis during neuronal

stimulation (Dı́az-Garcı́a et al., 2017). Although neurons use

most of the brain’s energy, glucose metabolism is predomin-

antly driven by astrocytes, which themselves consume only

up to 15% of energy in the brain, and can regulate glucose

metabolism upon neuronal activation (Magistretti and

Allaman, 2015). These findings indicate that non-neuronal

cell types may be dysregulated and/or have detrimental

effects on neurons in subtype 1.

The second subtype had a proteomic profile that also indi-

cated upregulation of plasticity-related processes like subtype

1, but less pronounced. Subtype 2 further showed higher lev-

els of proteins that—in both cohorts—pointed to involvement

of the innate immune system, extracellular matrix organiza-

tion and oligodendrocyte development. Oligodendrocytes are

important for axonal myelination. In ADNI, subtype 2

showed increased white matter hyperintensity volume, and

was increased in both EMIF-AD MBD and ADNI NEFL, sug-

gesting axonal damage in this subtype. Furthermore, individu-

als with subtype 2 showed high levels of complement proteins

C1q B chain and C4a in both cohorts, as well as C1q A

chain, C1q C chain, C1s, and C1r in EMIF-AD MBD (not

measured in ADNI), which are early components of the clas-

sical complement pathway (Veerhuis et al., 2011; Orsini

et al., 2014). Alzheimer’s disease PGRSs restricted to genes

involved in innate immune response and complement activa-

tion were mostly higher in subtype 2 in both cohorts, suggest-

ing that these CSF proteomic alterations reflect genetic effects.

Higher concentrations of C1q and C4 in Alzheimer’s disease

brains have been reported in pathological studies (Veerhuis

et al., 2011; Dejanovic et al., 2018), and therefore higher con-

centrations of C4a may indicate complement activation in this

subtype. Amyloid-b fibrils are known to activate the comple-

ment pathway by binding to the C1q complex (Rogers et al.,

1992; Webster et al., 2002). Complement activation may also

play a role in neuronal injury in Alzheimer’s disease, because

complement proteins can accumulate at synapses and tag

these for phagocytosis by activated microglia (Pooler et al.,
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2013; Orsini et al., 2014; Yamada et al., 2014). Knocking

out C1q in APP transgenic mice or blocking C1q in Tau-

P301S transgenic mice attenuates both complement activation

and neuronal injury (Pooler et al., 2013; Orsini et al., 2014;

Yamada et al., 2014), possibly by preventing inappropriate

microglia activation. Together, the biological processes specif-

ic for subtype 2 seem to be associated with activated micro-

glia, which may contribute to neuronal dysfunction.

Alternatively, these processes may be associated with activa-

tion or dysregulation of astrocytes, because microglia secret-

ing C1q can induce so-called ‘A1 reactive’ astrocytes that lose

the ability to facilitate plasticity processes that promote cell

survival and accelerate death of neurons and oligodendrocytes

(Liddelow et al., 2017).

In both cohorts, subtype 3 had low and more often nor-

mal t-tau and p-tau CSF levels compared to the other sub-

types, together with abnormally low levels for the

majority of other proteins. The generally low levels of t-

and p-tau raise the question as to whether these individu-

als have Alzheimer’s disease (Jack et al., 2018). Our

results provide strong support that in fact these individu-

als do have Alzheimer’s disease, because: (i) these individ-

uals had abnormal amyloid levels; (ii) the most severe

atrophy included typical Alzheimer’s disease regions, such

as the medial temporal lobe; (iii) non-demented individu-

als with subtype 3 showed increased risk for clinical pro-

gression; and (iv) they have an excess of genetic risk for

Alzheimer’s disease. The percentage of individuals classi-

fied as having subtype 3 is in line with previous studies

reporting pathologically confirmed Alzheimer’s disease,

which show that up to 30% of individuals can have nor-

mal CSF tau levels (Shaw et al., 2009). Thus, CSF tau lev-

els may reflect other processes in addition to

neurofibrillary tau tangles, and conversely, normal levels

do not exclude underlying tau pathology. Given the rela-

tionship of tau levels and neuronal activity discussed

above, low tau levels in this subtype may reflect hypoplas-

ticity. Alternatively, low levels of tau suggest less neuronal

injury. However, this explanation seems implausible, be-

cause subtype 3 had—in both cohorts—widespread atro-

phy and significantly higher levels of the axonal damage

marker NEFL. Furthermore, in EMIF-AD MBD only (be-

cause that cohort used an untargeted proteomics tech-

nique), a large group of proteins that were increased in

subtype 3 have previously been reported to correlate with

the CSF/plasma albumin ratio, which is a marker for

blood–brain barrier integrity (Dayon et al., 2019), and

this suggests that subtype 3 may have blood–brain barrier

dysfunction (Sagare et al., 2012; Yamazaki and Kanekiyo,

2017; Sweeney et al., 2018). Blood–brain barrier dysfunc-

tion disrupts glucose metabolism, which can impair neur-

onal activity and plasticity processes (Yamazaki and

Kanekiyo, 2017; Sweeney et al., 2018). This would ex-

plain why proteins involved in synaptic structure and

function were decreased in subtype 3, consistently

observed in both cohorts, and suggest that these individu-

als have hypoplasticity. Another subset of proteins

specifically increased in subtype 3 (in EMIF-AD MBD

only) was enriched for lipid processing, clearance and

regulation, and these included apoC1. ApoC1 is produced

by astrocytes (Petit-Turcotte et al., 2001; Abildayeva

et al., 2008), can inhibit receptor-mediated clearance of

lipoproteins containing APOE (Sehayek and Eisenberg,

1991; Shachter, 2001), and has been observed in amyloid

plaques (Abildayeva et al., 2008). This suggests that vas-

cular factors might play a role in amyloid pathogenesis,

possibly contributing to reduced clearance of aggregated

amyloid. Alternatively, amyloid might aggregate in the

vasculature, which could lead to blood–brain barrier

dysfunction.

The proteomic subtypes we discovered could have implica-

tions for treatment: subtype 1 showed the highest levels of

BACE1 activity (measured in ADNI only) and products of

amyloid metabolism (amyloid-b1–40 and amyloid-b1–38;

measured in both cohorts) and so it can be hypothesized

that particularly this subtype will benefit from treatments

that target APP processing, such as BACE1 inhibitors,

whereas this type of treatment may be harmful for individu-

als with subtype 3 that showed decreased levels of BACE1

activation. Individuals with subtype 2 may potentially bene-

fit from therapeutic strategies that target microglia and

astrocyte activation. Subtype 3 may benefit from therapies

that protect the vasculature. Future research should further

study treatment effects on CSF proteomic profiles, and

whether effects are subtype-dependent.

A potential limitation of this study is that proteins specific-

ally increased in subtype 3 were mostly observed in the

EMIF-AD MBD cohort, because that study used an untar-

geted approach, whereas those proteins were not measured

in ADNI, because that study selected a limited number of

proteins with brain enriched expression patterns. However,

subtype 3 in ADNI showed a hypoplasticity response, simi-

lar to that of subtype 3 in EMIF-AD MBD, suggesting that

they share common pathophysiological processes.

Furthermore, the random forest analysis showed that in

principle, it is possible to use these proteins as robust sub-

type markers, independent of cohort or measuring tech-

nique. Still, further analyses focussing on single biomarkers

are necessary since in ADNI, proteins were preselected, while

in EMIF, an untargeted technique was used, and so not all

top markers in EMIF for specific subtypes were available in

ADNI. Also, new studies are necessary for further validation

of these subtypes, using independent sets of proteins for sub-

typing and for characterization to avoid potential inflation

of classification accuracy due to circularity. Furthermore, al-

though many of the proteins specifically increased in subtype

3 were previously reported to be correlated to blood–brain

barrier function (Dayon et al., 2019), future analyses should

further verify this by measuring both CSF and plasma albu-

min. Furthermore, the EMIF-AD MBD and ADNI cohorts

are a clinical multicentre and a research multicentre study,

respectively, and differed in their baseline characteristics,

most notably ADNI participants being on average 10 years

older. However, it is unlikely cohort-specific and age effects
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explain the subtypes, as the subtypes showed highly similar

proteomic profiles across the cohorts. Furthermore, MRI

scans in EMIF-AD MBD were acquired in clinical routine,

in contrast to the harmonized scanning protocol in ADNI.

This may have made it more difficult to detect differences in

atrophy patterns amongst subtypes in combination with

relatively small sample sizes (Zhang et al., 2016; Scheltens

et al., 2017; Ten Kate et al., 2018). Another point of consid-

eration is that co-pathology often occurs with older age,

which may influence proteomic subtype definitions (Beach

et al., 2012). Our analyses in a subset of the ADNI cohort

showed that subtypes did not differ in the occurrence of co-

pathology, suggesting that it is unlikely that this has driven

the subtypes. Still, those analyses need further replication in

larger samples with combined tissue and CSF proteomic

data. Our subtypes were defined by their proteomic profiles,

and at this point single markers from our analyses should

not be used in practice until thoroughly validated, which we

aim to pursue in future studies. A strength of our study is

that we were able to replicate the biological subtypes that

we detected with CSF proteomics in two independent

cohorts, and even though different methods were used to

measure proteins, we observed similar processes to be

involved in Alzheimer’s disease, supporting the robustness of

our findings.

In conclusion, we have identified a hyperplasticity, innate

immune activation and a blood–brain barrier dysfunction

subtype in Alzheimer’s disease using CSF proteomics. The

most important implication of our results is that currently

existing—and even failed—treatments may be beneficial for

specific subtypes, and that CSF proteomics may serve as a

stratification tool to investigate this further.
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