181 research outputs found

    Toxines et Transferts ioniques

    Get PDF
    Collection Rencontres en Toxinologie, ISSN 1760-6004 ; http://sfet.asso.fr/international/images/stories/SFET/pdf/Ebook-RT19-2011-signets.pdfInternational audienc

    Detection of Anatoxin-a and Three Analogs in Anabaena spp. Cultures: New Fluorescence Polarization Assay and Toxin Profile by LC-MS/MS

    Get PDF
    Anatoxin-a (ATX) is a potent neurotoxin produced by several species of Anabaena spp. Cyanobacteria blooms around the world have been increasing in recent years; therefore, it is urgent to develop sensitive techniques that unequivocally confirm the presence of these toxins in fresh water and cyanobacterial samples. In addition, the identification of different ATX analogues is essential to later determine its toxicity. In this paper we designed a fluorescent polarization (FP) method to detect ATXs in water samples. A nicotinic acetylcholine receptor (nAChR) labeled with a fluorescein derivative was used to develop this assay. Data showed a direct relationship between the amount of toxin in a sample and the changes in the polarization degree of the emitted light by the labeled nAChR, indicating an interaction between the two molecules. This method was used to measure the amount of ATX in three Anabaena spp. cultures. Results indicate that it is a good method to show ATXs presence in algal samples. In order to check the toxin profile of Anabaena cultures a LC-MS/MS method was also developed. Within this new method, ATX-a, retention time (RT) 5 min, and three other molecules with a mass m/z 180.1 eluting at 4.14 min, 5.90 min and 7.14 min with MS/MS spectra characteristic of ATX toxin group not previously identified were detected in the Anabaena spp. cultures. These ATX analogues may have an important role in the toxicity of the sampleThe research leading to these results has received funding from the following FEDER cofunded-grants: From Ministerio de Ciencia y Tecnología, Spain: AGL2009-13581-CO2-01, AGL2012-40485-CO2-01. From Xunta de Galicia, Spain: 10PXIB261254 PR. From the European Union’s Seventh Framework Programme managed by REA—Research Executive Agency http://ec.europa.eu/research/rea (FP7/2007-2013) under grant agreement Nos. 211326—CP (CONffIDENCE), 265896 BAMMBO, 265409 µAQUA, and 262649 BEADS, 315285 Ciguatools and 312184 PharmaSea. From the Atlantic Area Programme (Interreg IVB Trans-national): 2008-1/003 (Atlantox) and 2009-1/117 (Pharmatlantic)S

    The young open cluster NGC 7067 using Strömgren photometry

    Get PDF
    © 2016 The Authors. NGC 7067 is a young open cluster located in the direction between the first and the second Galactic quadrants and close to the Perseus spiral arm. This makes it useful for studies of the nature of the MilkyWay spiral arms. Strömgren photometry taken with theWide Field Camera at the Isaac Newton Telescope allowed us to compute individual physical parameters for the observed stars and hence to derive the cluster's physical parameters. Spectra from the 1.93-m telescope at the Observatoire de Haute-Provence helped to check and improve the results. We obtained photometry for 1233 stars, individual physical parameters for 515 and spectra for 9 of them. The 139 selected cluster members lead to a cluster distance of 4.4 ±0.4 kpc, with an age below log10(t(yr)) = 7.3 and a present mass of 1260 ± 160 M⊙. The morphology of the data reveals that the centre of the cluster is at (α, δ) = (21: 24: 13.69, +48: 00: 39.2) J2000, with a radius of 6.1 arcmin. Strömgren and spectroscopic data allowed us to improve the previous parameters available for the cluster in the literature

    Brevenal Inhibits Pacific Ciguatoxin-1B-Induced Neurosecretion from Bovine Chromaffin Cells

    Get PDF
    Ciguatoxins and brevetoxins are neurotoxic cyclic polyether compounds produced by dinoflagellates, which are responsible for ciguatera and neurotoxic shellfish poisoning (NSP) respectively. Recently, brevenal, a natural compound was found to specifically inhibit brevetoxin action and to have a beneficial effect in NSP. Considering that brevetoxin and ciguatoxin specifically activate voltage-sensitive Na+ channels through the same binding site, brevenal has therefore a good potential for the treatment of ciguatera. Pacific ciguatoxin-1B (P-CTX-1B) activates voltage-sensitive Na+ channels and promotes an increase in neurotransmitter release believed to underpin the symptoms associated with ciguatera. However, the mechanism through which slow Na+ influx promotes neurosecretion is not fully understood. In the present study, we used chromaffin cells as a model to reconstitute the sequence of events culminating in ciguatoxin-evoked neurosecretion. We show that P-CTX-1B induces a tetrodotoxin-sensitive rise in intracellular Na+, closely followed by an increase in cytosolic Ca2+ responsible for promoting SNARE-dependent catecholamine secretion. Our results reveal that brevenal and β-naphtoyl-brevetoxin prevent P-CTX-1B secretagogue activity without affecting nicotine or barium-induced catecholamine secretion. Brevenal is therefore a potent inhibitor of ciguatoxin-induced neurotoxic effect and a potential treatment for ciguatera

    IP3-dependent, post-tetanic calcium transients induced by electrostimulation of adult skeletal muscle fibers

    Get PDF
    Tetanic electrical stimulation induces two separate calcium signals in rat skeletal myotubes, a fast one, dependent on Cav 1.1 or dihydropyridine receptors (DHPRs) and ryanodine receptors and related to contraction, and a slow signal, dependent on DHPR and inositol trisphosphate receptors (IP3Rs) and related to transcriptional events. We searched for slow calcium signals in adult muscle fibers using isolated adult flexor digitorum brevis fibers from 5–7-wk-old mice, loaded with fluo-3. When stimulated with trains of 0.3-ms pulses at various frequencies, cells responded with a fast calcium signal associated with muscle contraction, followed by a slower signal similar to one previously described in cultured myotubes. Nifedipine inhibited the slow signal more effectively than the fast one, suggesting a role for DHPR in its onset. The IP3R inhibitors Xestospongin B or C (5 µM) also inhibited it. The amplitude of post-tetanic calcium transients depends on both tetanus frequency and duration, having a maximum at 10–20 Hz. At this stimulation frequency, an increase of the slow isoform of troponin I mRNA was detected, while the fast isoform of this gene was inhibited. All three IP3R isoforms were present in adult muscle. IP3R-1 was differentially expressed in different types of muscle fibers, being higher in a subset of fast-type fibers. Interestingly, isolated fibers from the slow soleus muscle did not reveal the slow calcium signal induced by electrical stimulus. These results support the idea that IP3R-dependent slow calcium signals may be characteristic of distinct types of muscle fibers and may participate in the activation of specific transcriptional programs of slow and fast phenotype

    Evidence for inhibition of cholinesterases in insect and mammalian nervous systems by the insect repellent deet

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>N,N-Diethyl-3-methylbenzamide (deet) remains the gold standard for insect repellents. About 200 million people use it every year and over 8 billion doses have been applied over the past 50 years. Despite the widespread and increased interest in the use of deet in public health programmes, controversies remain concerning both the identification of its target sites at the olfactory system and its mechanism of toxicity in insects, mammals and humans. Here, we investigated the molecular target site for deet and the consequences of its interactions with carbamate insecticides on the cholinergic system.</p> <p>Results</p> <p>By using toxicological, biochemical and electrophysiological techniques, we show that deet is not simply a behaviour-modifying chemical but that it also inhibits cholinesterase activity, in both insect and mammalian neuronal preparations. Deet is commonly used in combination with insecticides and we show that deet has the capacity to strengthen the toxicity of carbamates, a class of insecticides known to block acetylcholinesterase.</p> <p>Conclusion</p> <p>These findings question the safety of deet, particularly in combination with other chemicals, and they highlight the importance of a multidisciplinary approach to the development of safer insect repellents for use in public health.</p

    Preferential Entry of Botulinum Neurotoxin A Hc Domain through Intestinal Crypt Cells and Targeting to Cholinergic Neurons of the Mouse Intestine

    Get PDF
    Botulism, characterized by flaccid paralysis, commonly results from botulinum neurotoxin (BoNT) absorption across the epithelial barrier from the digestive tract and then dissemination through the blood circulation to target autonomic and motor nerve terminals. The trafficking pathway of BoNT/A passage through the intestinal barrier is not yet fully understood. We report that intralumenal administration of purified BoNT/A into mouse ileum segment impaired spontaneous muscle contractions and abolished the smooth muscle contractions evoked by electric field stimulation. Entry of BoNT/A into the mouse upper small intestine was monitored with fluorescent HcA (half C-terminal domain of heavy chain) which interacts with cell surface receptor(s). We show that HcA preferentially recognizes a subset of neuroendocrine intestinal crypt cells, which probably represent the entry site of the toxin through the intestinal barrier, then targets specific neurons in the submucosa and later (90–120 min) in the musculosa. HcA mainly binds to certain cholinergic neurons of both submucosal and myenteric plexuses, but also recognizes, although to a lower extent, other neuronal cells including glutamatergic and serotoninergic neurons in the submucosa. Intestinal cholinergic neuron targeting by HcA could account for the inhibition of intestinal peristaltism and secretion observed in botulism, but the consequences of the targeting to non-cholinergic neurons remains to be determined
    corecore