310 research outputs found

    Exploring the validity and limitations of the Mott-Gurney law for charge-carrier mobility determination of semiconducting thin-films

    Get PDF
    Using drift-diffusion simulations, we investigate the voltage dependence of the dark current in single carrier devices, typically used to determine charge-carrier mobilities. For both low and high voltages, the current increases linearly with the applied voltage. Whereas the linear current at low voltages is mainly due to space charge in the middle of the device, the linear current at high voltage is caused by charge-carrier saturation due to a high degree of injection. As a consequence, the current density at these voltages does not follow the classical square law derived by Mott and Gurney, and we show that for trap-free devices, only for intermediate voltages, a space-charge-limited drift current can be observed with a slope that approaches two. We show that, depending on the thickness of the semiconductor layer and the size of the injection barriers, the two linear current-voltage regimes can dominate the whole voltage range, and the intermediate Mott-Gurney regime can shrink or disappear. In this case, which will especially occur for thicknesses and injection barriers typical for single-carrier devices used to probe organic semiconductors, a meaningful analysis using the Mott-Gurney law will become unachievable, because a square-law fit can no longer be achieved, resulting in the mobility being substantially underestimated. General criteria for when to expect deviations from the Mott-Gurney law when used for analysis of intrinsic semiconductors are discussed

    The role of hole transport between dyes in solid-state dye-sensitized solar cells

    Get PDF
    In dye-sensitized solar cells (DSSCs) photogenerated positive charges are normally considered to be carried away from the dyes by a separate phase of hole-transporting material (HTM). We show that there can also be significant transport within the dye monolayer itself before the hole reaches the HTM. We quantify the fraction of dye regeneration in solid-state DSSCs that can be attributed to this process. By using cyclic voltammetry and transient anisotropy spectroscopy, we demonstrate that the rate of interdye hole transport is prevented both on micrometer and nanometer length scales by reducing the dye loading on the TiO<sub>2</sub> surface. The dye regeneration yield is quantified for films with high and low dye loadings (with and without hole percolation in the dye monolayer) infiltrated with varying levels of HTM. Interdye hole transport can account for >50% of the overall dye regeneration with low HTM pore filling. This is reduced to about 5% when the infiltration of the HTM in the pores is optimized in 2 μm thick films. Finally, we use hole transport in the dye monolayer to characterize the spatial distribution of the HTM phase in the pores of the dyed mesoporous TiO<sub>2</sub>

    Cardiac output by model flow method from intra-arterial and finger tip pulse pressure profiles

    Get PDF
    Modelflow®, when applied to non-invasive fingertip pulse pressure recordings, is a poor predictor of cardiac output (Q’ litre· min-1). The use of constants established from the aortic elastic characteristics, which differ from those of finger arteries, may introduce signal distortions, leading to errors in computing Q’. We therefore hypothesized that peripheral recording of pulse pressure profiles undermines the measurement of Q’ withModelflow®, so we compared Modelflow® beat-by-beat Q’ values obtained simultaneously non-invasively from the finger and invasively from the radial artery at rest and during exercise. Seven subjects (age, 24.0 + - 2.9 years; weight, 81.2 + - 12.6 kg) rested, then exercised at 50 and 100 W, carrying a catheter with a pressure head in the left radial artery and the photoplethysmographic cuff of a finger pressure device on the third and fourth fingers of the contralateral hand. Pulse pressure from both devices was recorded simultaneously and stored on a PC for subsequent Q’ computation. The mean values of systolic, diastolic and mean arterial pressure at rest and exercise steady state were significantly (P < 0.05) lower from the finger than the intra-arterial catheter. The corresponding mean steady-state Q’ obtained from the finger (Q’porta) was significantly (P < 0.05) higher than that computed from the intra-arterial recordings (Q’pia). The line relating beat-by-beat Q’porta and Q’pia was y = 1.55x - 3.02 (r2 = 0.640). The bias was 1.44 litre · min-1 and the precision was 2.84 litre · min-1.The slope of this line was significantly higher than 1, implying a systematic overestimate of Q’ by Q’porta with respect to Q’pia. Consistent with the tested hypothesis, these results demonstrate that pulse pressure profiles from the finger provide inaccurate absolute Q’ values with respect to the radial artery, and therefore cannot be used without correction with a calibration factor calculated previously by measuring Q’ with an independent method

    Clinical characteristics and management of cancer-associated acute venous thromboembolism: findings from the MASTER Registry.

    Get PDF
    Background: Clinical characteristics and management of acute deep vein thrombosis and pulmonary embolism (PE) have been reported to be different in patients with and without cancer. The aim of this paper was to provide information on clinical characteristics and management of acute venous thromboembolism in patients with cancer by means of a large prospective registry. Design and Methods: MASTER is a multicenter registry of consecutively recruited patients with symptomatic, objectively confirmed, acute venous thromboembolism. Information about clinical characteristics and management was collected by an electronic data network at the time of the index event. Results: A total of 2119 patients were enrolled, of whom 424 (20%) had cancer. The incidence of bilateral lower limb deep vein thrombosis was significantly higher in patients with cancer than in patients without cancer (8.5% versus 4.6%; p&lt;0.01), as were the rates of iliocaval thombosis (22.6% versus 14%; p&lt;0.001), and upper limb deep vein thrombosis (9.9% versus 4.8%; p&lt;0.001). Major bleeding (3.3% versus 1.1%; p=0.001), in-hospital treatment (73.3% versus 66.6%; p=0.02) and inferior vena cava filter implantation (7.3% versus 4.1%; p=0.005) were significantly more frequent in patients with cancer, in whom oral anticoagulants were less often used (64.2% versus 82%; p&lt;0.0001). Conclusions: The clinical presentation of acute venous thromboembolism is different and often more extensive in cancer patients than in patients free from malignancy. Moreover, the management of the acute phase of venous thromboembolism is more problematic in cancer patients, especially because of a higher rate of major bleeding and the need for implantation of inferior vena cava filters

    Phase I dynamics of cardiac output, systemic O2 delivery and lung O2 uptake at exercise onset in men in acute normobaric hypoxia.

    Get PDF
    We tested the hypothesis that vagal withdrawal plays a role in the rapid (phase I) cardiopulmonary response to exercise. To this aim, in five men (24.6+/-3.4 yr, 82.1+/-13.7 kg, maximal aerobic power 330+/-67 W), we determined beat-by-beat cardiac output (Q), oxygen delivery (QaO2), and breath-by-breath lung oxygen uptake (VO2) at light exercise (50 and 100 W) in normoxia and acute hypoxia (fraction of inspired O2=0.11), because the latter reduces resting vagal activity. We computed Q from stroke volume (Qst, by model flow) and heart rate (fH, electrocardiography), and QaO2 from Q and arterial O2 concentration. Double exponentials were fitted to the data. In hypoxia compared with normoxia, steady-state fH and Q were higher, and Qst and VO2 were unchanged. QaO2 was unchanged at rest and lower at exercise. During transients, amplitude of phase I (A1) for VO2 was unchanged. For fH, Q and QaO2, A1 was lower. Phase I time constant (tau1) for QaO2 and VO2 was unchanged. The same was the case for Q at 100 W and for fH at 50 W. Qst kinetics were unaffected. In conclusion, the results do not fully support the hypothesis that vagal withdrawal determines phase I, because it was not completely suppressed. Although we can attribute the decrease in A1 of fH to a diminished degree of vagal withdrawal in hypoxia, this is not so for Qst. Thus the dual origin of the phase I of Q and QaO2, neural (vagal) and mechanical (venous return increase by muscle pump action), would rather be confirmed

    Phase III studies on novel oral anticoagulants for stroke prevention in atrial fibrillation -a look beyond the excellent results

    Get PDF
    In this overview we address the three phase III studies that compared new oral anticoagulants (dabigatran, rivaroxaban and apixaban) with warfarin in the setting of stroke prevention in atrial fibrillation. Strengths and weaknesses of the studies were examined in detail through indirect comparison. We analyze and comment the inclusion and exclusion criteria, the characteristics of randomized patients, the primary efficacy and safety end points and side effects. All new oral anticoagulants resulted in being non-inferior to vitamin K antagonists in reducing stroke or systemic embolism in patients with atrial fibrillation. Dabigatran 150 mg and apixaban were superior to vitamin K antagonists. Importantly, new oral anticoagulants significantly reduced hemorrhagic stroke in all three studies. Major differences among new oral anticoagulants include the way they are eliminated and side effects. Both dabigatran and apixaban were tested in low- to moderate-risk patients (mean CHADS2 [Congestive heart failure, Hypertension, Age, Diabetes, Stroke] score = 2.1-2.2) whereas rivaroxaban was tested in high-risk patients (mean CHADS2 score = 3.48) and at variance with dabigatran and apixaban was administered once daily. Apixaban significantly reduced mortality from any cause. The choice of a new oral anticoagulant should take into account these and other differences between the new drugs

    The Role of the Side Chain on the Performance of N-type Conjugated Polymers in Aqueous Electrolytes.

    Get PDF
    We report a design strategy that allows the preparation of solution processable n-type materials from low boiling point solvents for organic electrochemical transistors (OECTs). The polymer backbone is based on NDI-T2 copolymers where a branched alkyl side chain is gradually exchanged for a linear ethylene glycol-based side chain. A series of random copolymers was prepared with glycol side chain percentages of 0, 10, 25, 50, 75, 90, and 100 with respect to the alkyl side chains. These were characterized to study the influence of the polar side chains on interaction with aqueous electrolytes, their electrochemical redox reactions, and performance in OECTs when operated in aqueous electrolytes. We observed that glycol side chain percentages of >50% are required to achieve volumetric charging, while lower glycol chain percentages show a mixed operation with high required voltages to allow for bulk charging of the organic semiconductor. A strong dependence of the electron mobility on the fraction of glycol chains was found for copolymers based on NDI-T2, with a significant drop as alkyl side chains are replaced by glycol side chains

    Prospects for measuring the gravitational free-fall of antihydrogen with emulsion detectors

    Get PDF
    The main goal of the AEgIS experiment at CERN is to test the weak equivalence principle for antimatter. AEgIS will measure the free-fall of an antihydrogen beam traversing a moir\'e deflectometer. The goal is to determine the gravitational acceleration g for antihydrogen with an initial relative accuracy of 1% by using an emulsion detector combined with a silicon micro-strip detector to measure the time of flight. Nuclear emulsions can measure the annihilation vertex of antihydrogen atoms with a precision of about 1 - 2 microns r.m.s. We present here results for emulsion detectors operated in vacuum using low energy antiprotons from the CERN antiproton decelerator. We compare with Monte Carlo simulations, and discuss the impact on the AEgIS project.Comment: 20 pages, 16 figures, 3 table
    corecore