9 research outputs found

    Nitrogen Fixing Cyanobacteria: Future Prospect

    Get PDF

    Bacteria-inducing legume nodules involved in the improvement of plant growth, health and nutrition

    Get PDF
    Bacteria-inducing legume nodules are known as rhizobia and belong to the class Alphaproteobacteria and Betaproteobacteria. They promote the growth and nutrition of their respective legume hosts through atmospheric nitrogen fixation which takes place in the nodules induced in their roots or stems. In addition, rhizobia have other plant growth-promoting mechanisms, mainly solubilization of phosphate and production of indoleacetic acid, ACC deaminase and siderophores. Some of these mechanisms have been reported for strains of rhizobia which are also able to promote the growth of several nonlegumes, such as cereals, oilseeds and vegetables. Less studied are the mechanisms that have the rhizobia to promote the plant health; however, these bacteria are able to exert biocontrol of some phytopathogens and to induce the plant resistance. In this chapter, we revised the available data about the ability of the legume nodule-inducing bacteria for improving the plant growth, health and nutrition of both legumes and nonlegumes. These data showed that rhizobia meet all the requirements of sustainable agriculture to be used as bio-inoculants allowing the total or partial replacement of chemicals used for fertilization or protection of crops

    Bioconversion of plant wastes to β-carotene by Rhodotorula glutinis KU550702

    Get PDF
    Microbial synthesis of β-carotene has gained more interest as an alternative to synthetic β-carotene due to easy extraction and high yield. The vitamin microbial production is mainly dependent on culture conditions and the medium compositions. In this study, the β-carotene production by the Rhodo-torula glutinis ASU6 (KU550702) was evaluated under different growth conditions and nutrient composition. Different agro-renewable wastes were tested as carbon source for R. glutinis to obtain maximum amount of β-carotene. Meanwhile, it is clear that R. glutinis could grow well on acid extract of onion peels and produced large amount of β-carotene. Initial statistical screening using a Plackett-Burman design showed temperature, incubation time, fermentation type, non-treated onion waste, KH2PO4 and L-asparagine as significantly, influencing β-carotene production. Response surface methodology was applied to determine the mutual interactions between these parameters and optimal levels for β-carotene production. The maximum value of β-carotene production was 204.29 mg/l (7.5-fold) of value observed as central point of the central composite design. All the experimental data are in good agreement with predicted ones, confirming the responsibility of the proposed empirical model in describing β-carotene production by R. glutinis. In the whole, the outcomes of this study support the exploitation of onion peels through microbial fermentation for β-carotene production
    corecore