50 research outputs found

    Interseismic deformation above the Sunda Megathrust recorded in coral microatolls of the Mentawai islands, West Sumatra

    Get PDF
    The geomorphology and internal stratigraphy of modern coral microatolls show that all the outer arc Mentawai islands of West Sumatra have been subsiding over the past several decades. These same islands rose as much as 3 m during the giant megathrust earthquakes of 1797 and 1833, and the current subsidence probably reflects strain accumulation that will lead to future large earthquakes. Average subsidence rates over the past half century vary from 2 to 14 mm yr^(−1) and increase southwestward, toward the subduction trench. The pattern is consistent with rates of subsidence measured by a sparse network of continuously recording Global Positioning System (cGPS) stations and with locking of a 400-km-long section of the underlying subduction megathrust, between about 1°S and 4°S. This record of subsidence and tilting, extending nearly a century into the past, implies that the region is advancing toward the occurrence of another giant earthquake. However, evidence of episodic rather than steady subsidence reflects a behavior that is more complex than simple elastic strain accumulation and relief. Most prominent of these episodes is an extensive emergence/subsidence couplet in about 1962, which may be the result of rapid, aseismic slip on the megathrust, between the islands and the trench. Lower subsidence rates recorded by the corals since about 1985 may reflect failure on many small patches within the locked section of the megathrust

    Interseismic coupling and seismic potential along the Central Andes subduction zone

    Get PDF
    We use about two decades of geodetic measurements to characterize interseismic strain build up along the Central Andes subduction zone from Lima, Peru, to Antofagasta, Chile. These measurements are modeled assuming a 3-plate model (Nazca, Andean sliver and South America Craton) and spatially varying interseismic coupling (ISC) on the Nazca megathrust interface. We also determine slip models of the 1996 M_w = 7.7 Nazca, the 2001 M_w = 8.4 Arequipa, the 2007 M_w = 8.0 Pisco and the M_w = 7.7 Tocopilla earthquakes. We find that the data require a highly heterogeneous ISC pattern and that, overall, areas with large seismic slip coincide with areas which remain locked in the interseismic period (with high ISC). Offshore Lima where the ISC is high, a M_w∌8.6–8.8 earthquake occurred in 1746. This area ruptured again in a sequence of four M_w∌8.0 earthquakes in 1940, 1966, 1974 and 2007 but these events released only a small fraction of the elastic strain which has built up since 1746 so that enough elastic strain might be available there to generate a M_w > 8.5 earthquake. The region where the Nazca ridge subducts appears to be mostly creeping aseismically in the interseismic period (low ISC) and seems to act as a permanent barrier as no large earthquake ruptured through it in the last 500 years. In southern Peru, ISC is relatively high and the deficit of moment accumulated since the M_w∌8.8 earthquake of 1868 is equivalent to a magnitude M_w∌8.4 earthquake. Two asperities separated by a subtle aseismic creeping patch are revealed there. This aseismic patch may arrest some rupture as happened during the 2001 Arequipa earthquake, but the larger earthquakes of 1604 and 1868 were able to rupture through it. In northern Chile, ISC is very high and the rupture of the 2007 Tocopilla earthquake has released only 4% of the elastic strain that has accumulated since 1877. The deficit of moment which has accumulated there is equivalent to a magnitude M_w∌8.7 earthquake. This study thus provides elements to assess the location, size and magnitude of future large megathurst earthquakes in the Central Andes subduction zone. Caveats of this study are that interseismic strain of the forearc is assumed time invariant and entirely elastic. Also a major source of uncertainty is due to fact that the available data place very little constraints on interseismic coupling at shallow depth near the trench, except offshore Lima where sea bottom geodetic measurements have been collected suggesting strong coupling

    Coseismic Slip and Afterslip of the Great M_w 9.15 Sumatra–Andaman Earthquake of 2004

    Get PDF
    We determine coseismic and the first-month postseismic deformation associated with the Sumatra–Andaman earthquake of 26 December 2004 from near- field Global Positioning System (GPS) surveys in northwestern Sumatra and along the Nicobar-Andaman islands, continuous and campaign GPS measurements from Thailand and Malaysia, and in situ and remotely sensed observations of the vertical motion of coral reefs. The coseismic model shows that the Sunda subduction megathrust ruptured over a distance of about 1500 km and a width of less than 150 km, releasing a total moment of 6.7–7.0 x 10^(22) N m, equivalent to a magnitude M_w 9.15. The latitudinal distribution of released moment in our model has three distinct peaks at about 4° N, 7° N, and 9° N, which compares well to the latitudinal variations seen in the seismic inversion and of the analysis of radiated T waves. Our coseismic model is also consistent with interpretation of normal modes and with the amplitude of very-long-period surface waves. The tsunami predicted from this model fits relatively well the altimetric measurements made by the JASON and TOPEX satellites. Neither slow nor delayed slip is needed to explain the normal modes and the tsunami wave. The near-field geodetic data that encompass both coseismic deformation and up to 40 days of postseismic deformation require that slip must have continued on the plate interface after the 500-sec-long seismic rupture. The postseismic geodetic moment of about 2.4 x 10^(22) N m (M_w 8.8) is equal to about 30 ± 5% of the coseismic moment release. Evolution of postseismic deformation is consistent with rate-strengthening frictional afterslip

    Source parameters of the great Sumatran megathrust earthquakes of 1797 and 1833 inferred from coral microatolls

    Get PDF
    Large uplifts and tilts occurred on the Sumatran outer arc islands between 0.5° and 3.3°S during great historical earthquakes in 1797 and 1833, as judged from relative sea level changes recorded by annually banded coral heads. Coral data for these two earthquakes are most complete along a 160-km length of the Mentawai islands between 3.2° and 2°S. Uplift there was as great as 0.8 m in 1797 and 2.8 m in 1833. Uplift in 1797 extended 370 km, between 3.2° and 0.5°S. The pattern and magnitude of uplift imply megathrust ruptures corresponding to moment magnitudes (M_w) in the range 8.5 to 8.7. The region of uplift in 1833 ranges from 2° to at least 3.2°S and, judging from historical reports of shaking and tsunamis, perhaps as far as 5°S. The patterns and magnitude of uplift and tilt in 1833 are similar to those experienced farther north, between 0.5° and 3°N, during the giant Nias-Simeulue megathrust earthquake of 2005; the outer arc islands rose as much as 3 m and tilted toward the mainland. Elastic dislocation forward modeling of the coral data yields megathrust ruptures with moment magnitudes ranging from 8.6 to 8.9. Sparse accounts at Padang, along the mainland west coast at latitude 1°S, imply tsunami runups of at least 5 m in 1797 and 3–4 m in 1833. Tsunamis simulated from the pattern of coral uplift are roughly consistent with these reports. The tsunami modeling further indicates that the Indian Ocean tsunamis of both 1797 and 1833, unlike that of 2004, were directed mainly south of the Indian subcontinent. Between about 0.7° and 2.1°S, the lack of vintage 1797 and 1833 coral heads in the intertidal zone demonstrates that interseismic submergence has now nearly equals coseismic emergence that accompanied those earthquakes. The interseismic strains accumulated along this reach of the megathrust have thus approached or exceeded the levels relieved in 1797 and 1833

    Partial rupture of a locked patch of the Sumatra megathrust during the 2007 earthquake sequence

    Get PDF
    The great Sumatra–Andaman earthquake and tsunami of 2004 was a dramatic reminder of the importance of understanding the seismic and tsunami hazards of subduction zones [1,2,3,4]. In March 2005, the Sunda megathrust ruptured again, producing an event [5] of moment magnitude (Mw) 8.6 south of the 2004 rupture area, which was the site of a similar event in 1861 (ref. 6). Concern was then focused on the Mentawai area, where large earthquakes had occurred in 1797 (Mw = 8.8) and 1833 (Mw = 9.0) [6,7]. Two earthquakes, one of Mw = 8.4 and, twelve hours later, one of Mw = 7.9, indeed occurred there on 12 September 2007. Here we show that these earthquakes ruptured only a fraction of the area ruptured in 1833 and consist of distinct asperities within a patch of the megathrust that had remained locked in the interseismic period. This indicates that the same portion of a megathrust can rupture in different patterns depending on whether asperities break as isolated seismic events or cooperate to produce a larger rupture. This variability probably arises from the influence of non-permanent barriers, zones with locally lower pre-stress due to the past earthquakes. The stress state of the portion of the Sunda megathrust that had ruptured in 1833 and 1797 was probably not adequate for the development of a single large rupture in 2007. The moment released in 2007 amounts to only a fraction both of that released in 1833 and of the deficit of moment that had accumulated as a result of interseismic strain since 1833. The potential for a large megathrust event in the Mentawai area thus remains large

    Plate-boundary deformation associated with the great Sumatra–Andaman earthquake

    Get PDF
    The Sumatra–Andaman earthquake of 26 December 2004 is the first giant earthquake (moment magnitude M_w > 9.0) to have occurred since the advent of modern space-based geodesy and broadband seismology. It therefore provides an unprecedented opportunity to investigate the characteristics of one of these enormous and rare events. Here we report estimates of the ground displacement associated with this event, using near-field Global Positioning System (GPS) surveys in northwestern Sumatra combined with in situ and remote observations of the vertical motion of coral reefs. These data show that the earthquake was generated by rupture of the Sunda subduction megathrust over a distance of >1,500 kilometres and a width of <150 kilometres. Megathrust slip exceeded 20 metres offshore northern Sumatra, mostly at depths shallower than 30 kilometres. Comparison of the geodetically and seismically inferred slip distribution indicates that ~30 per cent additional fault slip accrued in the 1.5 months following the 500-second-long seismic rupture. Both seismic and aseismic slip before our re-occupation of GPS sites occurred on the shallow portion of the megathrust, where the large Aceh tsunami originated. Slip tapers off abruptly along strike beneath Simeulue Island at the southeastern edge of the rupture, where the earthquake nucleated and where an M_w = 7.2 earthquake occurred in late 2002. This edge also abuts the northern limit of slip in the 28 March 2005 M_w = 8.7 Nias–Simeulue earthquake

    Seismic and aseismic slip on the Central Peru megathrust

    Get PDF
    Slip on a subduction megathrust can be seismic or aseismic, with the two modes of slip complementing each other in time and space to accommodate the long-term plate motions. Although slip is almost purely aseismic at depths greater than about 40 km, heterogeneous surface strain suggests that both modes of slip occur at shallower depths, with aseismic slip resulting from steady or transient creep in the interseismic and postseismic periods. Thus, active faults seem to comprise areas that slip mostly during earthquakes, and areas that mostly slip aseismically. The size, location and frequency of earthquakes that a megathrust can generate thus depend on where and when aseismic creep is taking place, and what fraction of the long-term slip rate it accounts for. Here we address this issue by focusing on the central Peru megathrust. We show that the Pisco earthquake, with moment magnitude M_w = 8.0, ruptured two asperities within a patch that had remained locked in the interseismic period, and triggered aseismic frictional afterslip on two adjacent patches. The most prominent patch of afterslip coincides with the subducting Nazca ridge, an area also characterized by low interseismic coupling, which seems to have repeatedly acted as a barrier to seismic rupture propagation in the past. The seismogenic portion of the megathrust thus appears to be composed of interfingering rate-weakening and rate-strengthening patches. The rate-strengthening patches contribute to a high proportion of aseismic slip, and determine the extent and frequency of large interplate earthquakes. Aseismic slip accounts for as much as 50–70% of the slip budget on the seismogenic portion of the megathrust in central Peru, and the return period of earthquakes with M_w = 8.0 in the Pisco area is estimated to be 250  years

    Rapid response to the M_w 4.9 earthquake of November 11, 2019 in Le Teil, Lower RhĂŽne Valley, France

    Get PDF
    On November 11, 2019, a Mw 4.9 earthquake hit the region close to Montelimar (lower RhĂŽne Valley, France), on the eastern margin of the Massif Central close to the external part of the Alps. Occuring in a moderate seismicity area, this earthquake is remarkable for its very shallow focal depth (between 1 and 3 km), its magnitude, and the moderate to large damages it produced in several villages. InSAR interferograms indicated a shallow rupture about 4 km long reaching the surface and the reactivation of the ancient NE-SW La Rouviere normal fault in reverse faulting in agreement with the present-day E-W compressional tectonics. The peculiarity of this earthquake together with a poor coverage of the epicentral region by permanent seismological and geodetic stations triggered the mobilisation of the French post-seismic unit and the broad French scientific community from various institutions, with the deployment of geophysical instruments (seismological and geodesic stations), geological field surveys, and field evaluation of the intensity of the earthquake. Within 7 days after the mainshock, 47 seismological stations were deployed in the epicentral area to improve the Le Teil aftershocks locations relative to the French permanent seismological network (RESIF), monitor the temporal and spatial evolution of microearthquakes close to the fault plane and temporal evolution of the seismic response of 3 damaged historical buildings, and to study suspected site effects and their influence in the distribution of seismic damage. This seismological dataset, completed by data owned by different institutions, was integrated in a homogeneous archive and distributed through FDSN web services by the RESIF data center. This dataset, together with observations of surface rupture evidences, geologic, geodetic and satellite data, will help to unravel the causes and rupture mechanism of this earthquake, and contribute to account in seismic hazard assessment for earthquakes along the major regional CĂ©venne fault system in a context of present-day compressional tectonics
    corecore