138 research outputs found
Development of functional ectopic compound eyes in scarabaeid beetles by knockdown of orthodenticle
Complex traits like limbs, brains, or eyes form through coordinated integration of diverse cell fates across developmental space and time, yet understanding how complexity and integration emerge from uniform, undifferentiated precursor tissues remains limited. Here, we use ectopic eye formation as a paradigm to investigate the emergence and integration of novel complex structures following massive ontogenetic perturbation. We show that down-regulation via RNAi of a single head patterning gene—orthodenticle—induces ectopic structures externally resembling compound eyes at the middorsal adult head of both basal and derived scarabaeid beetle species (Onthophagini and Oniticellini). Scanning electron microscopy documents ommatidial organization of these induced structures, while immunohistochemistry reveals the presence of rudimentary ommatidial lenses, crystalline cones, and associated neural-like tissue within them. Further, RNA-sequencing experiments show that after orthodenticle down-regulation, the transcriptional signature of the middorsal head—the location of ectopic eye induction—converges onto that of regular compound eyes, including up-regulation of several retina-specific genes. Finally, a light-aversion behavioral assay to assess functionality reveals that ectopic compound eyes can rescue the ability to respond to visual stimuli when wild-type eyes are surgically removed. Combined, our results show that knockdown of a single gene is sufficient for the middorsal head to acquire the competence to ectopically generate a functional compound eye-like structure. These findings highlight the buffering capacity of developmental systems, allowing massive genetic perturbations to be channeled toward orderly and functional developmental outcomes, and render ectopic eye formation a widely accessible paradigm to study the evolution of complex systems.Fil: Zattara, Eduardo Enrique. Indiana University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Macagno, Anna L. M.. Indiana University; Estados UnidosFil: Busey, Hannah A.. Indiana University; Estados UnidosFil: Moczek, Armin P.. Indiana University; Estados Unido
Adaptive maternal behavioral plasticity and developmental programming mitigate the transgenerational effects of temperature in dung beetles
Phenotypic plasticity allows organisms to cope with rapid environmental change. Yet exactly when during ontogeny plastic responses are elicited, whether plastic responses produced in one generation influence phenotypic variation and fitness in subsequent generations, and the role of plasticity in shaping population divergences, remains overall poorly understood. Here, we use the dung beetle Onthophagus taurus to assess plastic responses to temperature at several life stages bridging three generations and compare these responses across three recently diverged populations. We find that beetles reared at hotter temperatures grow less than those reared at mild temperatures, and that this attenuated growth has transgenerational consequences by reducing offspring size and survival in subsequent generations. However, we also find evidence that plasticity may mitigate these consequences in two ways: 1) mothers modify the temperature of their offspring's developmental environment via behavioral plasticity and 2) in one population, offspring exhibit accelerated growth when exposed to hot temperatures during very early development (‘developmental programming’). Lastly, our study reveals that offspring responses to temperature diverged among populations in fewer than 100 generations, possibly in response to range-specific changes in climatic or social conditions.Fil: Macagno, Anna L. M.. Indiana University; Estados UnidosFil: Zattara, Eduardo Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina. Indiana University; Estados UnidosFil: Ezeakudo, Onye. Homestead High School; Estados UnidosFil: Moczek, Armin P.. Indiana University; Estados UnidosFil: Ledón Rettig, Cristina. Indiana University; Estados Unido
Community engagement and data quality: best practices and lessons learned from a citizen science project on birdsong
Citizen Science (CS) is a research approach that has become popular in recent years and offers innovative potential for dialect research in ornithology. As the scepticism about CS data is still widespread, we analysed the development of a 3-year CS project based on the song of the Common Nightingale (Luscinia megarhynchos) to share best practices and lessons learned. We focused on the data scope, individual engagement, spatial distribution and species misidentifications from recordings generated before (2018, 2019) and during the COVID-19 outbreak (2020) with a smartphone using the ‘Naturblick’ app. The number of nightingale song recordings and individual engagement increased steadily and peaked in the season during the pandemic. 13,991 nightingale song recordings were generated by anonymous (64%) and non-anonymous participants (36%). As the project developed, the spatial distribution of recordings expanded (from Berlin based to nationwide). The rates of species misidentifications were low, decreased in the course of the project (10–1%) and were mainly affected by vocal similarities with other bird species. This study further showed that community engagement and data quality were not directly affected by dissemination activities, but that the former was influenced by external factors and the latter benefited from the app. We conclude that CS projects using smartphone apps with an integrated pattern recognition algorithm are well suited to support bioacoustic research in ornithology. Based on our findings, we recommend setting up CS projects over the long term to build an engaged community which generates high data quality for robust scientific conclusions.Gesellschaftliches Engagement und Datenqualität: Bewährte Praktiken und Erfahrungen aus einem bürgerwissenschaftlichen Projekt zum Vogelgesang
Citizen Science (CS) ist eine Forschungsmethode, die in den letzten Jahren an Bedeutung gewonnen hat und innovatives Potenzial für die Dialektforschung in der Ornithologie bietet. Da die Vorbehalte gegenüber CS-Daten immer noch weit verbreitet sind, haben wir die Entwicklung eines dreijährigen CS-Projekts zum Gesang der Nachtigall (Luscinia megarhynchos) analysiert, um bewährte Praktiken und gewonnene Erfahrungen darzustellen. Wir fokussierten uns auf den Datenumfang, das individuelle Engagement von Teilnehmenden, die räumliche Verteilung und die Fehlbestimmungen von Arten aus Aufnahmen, die vor (2018, 2019) und während des COVID-19-Ausbruchs (2020) mit einem Smartphone unter Verwendung der "Naturblick" App erstellt wurden. Die Anzahl der Aufnahmen von Nachtigallgesängen und das individuelle Engagement stiegen stetig an und erreichten ihren Höhepunkt in der Saison während der Pandemie. 13.991 Aufnahmen von Nachtigallgesängen wurden von anonymen (64%) und nicht-anonymen Teilnehmenden (36%) erstellt. Im Laufe des Projekts weitete sich die räumliche Verteilung der Aufnahmen aus (von Berlin auf bundesweit). Die Rate der Fehlbestimmungen war gering, ging im Laufe des Projekts zurück (von 10% auf 1%) und wurde hauptsächlich von gesanglichen Ähnlichkeiten mit anderen Vogelarten beeinflusst. Unsere Studie zeigte außerdem, dass das gesellschaftliche Engagement und die Datenqualität nicht direkt von den durchgeführten Disseminationsaktivitäten beeinflusst wurden, sondern dass erstere von externen Faktoren abhingen und letztere von der App profitierte. Wir schließen daraus, dass CS-Projekte, die Smartphone-Apps mit einem integrierten Mustererkennungsalgorithmus verwenden, gut geeignet sind, um die bioakustische Forschung in der Ornithologie zu unterstützen. Auf der Grundlage unserer Ergebnisse empfehlen wir, CS-Projekte langfristig zu etablieren, um eine aktive Teilnehmergemeinschaft (Community) aufzubauen, die qualitativ hochwertige Daten für fundierte wissenschaftliche Schlussfolgerungen generiert
Shape - but Not Size - Codivergence between Male and Female Copulatory Structures in Onthophagus Beetles
Genitalia are among the fastest evolving morphological traits in arthropods. Among the many hypotheses aimed at explaining this observation, some explicitly or implicitly predict concomitant male and female changes of genital traits that interact during copulation (i.e., lock and key, sexual conflict, cryptic female choice and pleiotropy). Testing these hypotheses requires insights into whether male and female copulatory structures that physically interact during mating also affect each other's evolution and patterns of diversification. Here we compare and contrast size and shape evolution of male and female structures that are known to interact tightly during copulation using two model systems: (a) the sister species O. taurus (1 native, 3 recently established populations) and O. illyricus, and (b) the species-complex O. fracticornis-similis-opacicollis. Partial Least Squares analyses indicated very little to no correlation between size and shape of copulatory structures, both in males and females. Accordingly, comparing shape and size diversification patterns of genitalia within each sex showed that the two components diversify readily - though largely independently of each other - within and between species. Similarly, comparing patterns of divergence across sexes showed that relative sizes of male and female copulatory organs diversify largely independent of each other. However, performing this analysis for genital shape revealed a signature of parallel divergence. Our results therefore suggest that male and female copulatory structures that are linked mechanically during copulation may diverge in concert with respect to their shapes. Furthermore, our results suggest that genital divergence in general, and co-divergence of male and female genital shape in particular, can evolve over an extraordinarily short time frame. Results are discussed in the framework of the hypotheses that assume or predict concomitant evolutionary changes in male and female copulatory organs
On Dorsal Prothoracic Appendages in Treehoppers (Hemiptera: Membracidae) and the Nature of Morphological Evidence
A spectacular hypothesis was published recently, which suggested that the “helmet” (a dorsal thoracic sclerite that obscures most of the body) of treehoppers (Insecta: Hemiptera: Membracidae) is connected to the 1st thoracic segment (T1; prothorax) via a jointed articulation and therefore was a true appendage. Furthermore, the “helmet” was interpreted to share multiple characteristics with wings, which in extant pterygote insects are present only on the 2nd (T2) and 3rd (T3) thoracic segments. In this context, the “helmet” could be considered an evolutionary novelty. Although multiple lines of morphological evidence putatively supported the “helmet”-wing homology, the relationship of the “helmet” to other thoracic sclerites and muscles remained unclear. Our observations of exemplar thoraces of 10 hemipteran families reveal multiple misinterpretations relevant to the “helmet”-wing homology hypothesis as originally conceived: 1) the “helmet” actually represents T1 (excluding the fore legs); 2) the “T1 tergum” is actually the anterior dorsal area of T2; 3) the putative articulation between the “helmet” and T1 is actually the articulation between T1 and T2. We conclude that there is no dorsal, articulated appendage on the membracid T1. Although the posterior, flattened, cuticular evagination (PFE) of the membracid T1 does share structural and genetic attributes with wings, the PFE is actually widely distributed across Hemiptera. Hence, the presence of this structure in Membracidae is not an evolutionary novelty for this clade. We discuss this new interpretation of the membracid T1 and the challenges of interpreting and representing morphological data more broadly. We acknowledge that the lack of data standards for morphology is a contributing factor to misinterpreted results and offer an example for how one can reduce ambiguity in morphology by referencing anatomical concepts in published ontologies
The emerging structure of the Extended Evolutionary Synthesis: where does Evo-Devo fit in?
The Extended Evolutionary Synthesis (EES) debate is gaining ground in contemporary evolutionary biology. In parallel, a number of philosophical standpoints have emerged in an attempt to clarify what exactly is represented by the EES. For Massimo Pigliucci, we are in the wake of the newest instantiation of a persisting Kuhnian paradigm; in contrast, Telmo Pievani has contended that the transition to an EES could be best represented as a progressive reformation of a prior Lakatosian scientific research program, with the extension of its Neo-Darwinian core and the addition of a brand-new protective belt of assumptions and auxiliary hypotheses. Here, we argue that those philosophical vantage points are not the only ways to interpret what current proposals to ‘extend’ the Modern Synthesis-derived ‘standard evolutionary theory’ (SET) entail in terms of theoretical change in evolutionary biology. We specifically propose the image of the emergent EES as a vast network of models and interweaved representations that, instantiated in diverse practices, are connected and related in multiple ways. Under that assumption, the EES could be articulated around a paraconsistent network of evolutionary theories (including some elements of the SET), as well as models, practices and representation systems of contemporary evolutionary biology, with edges and nodes that change their position and centrality as a consequence of the co-construction and stabilization of facts and historical discussions revolving around the epistemic goals of this area of the life sciences. We then critically examine the purported structure of the EES—published by Laland and collaborators in 2015—in light of our own network-based proposal. Finally, we consider which epistemic units of Evo-Devo are present or still missing from the EES, in preparation for further analyses of the topic of explanatory integration in this conceptual framework
Sex, War, and Disease: The Role of Parasite Infection on Weapon Development and Mating Success in a Horned Beetle (Gnatocerus cornutus)
While parasites and immunity are widely believed to play important roles in the evolution of male ornaments, their potential influence on systems where male weaponry is the object of sexual selection is poorly understood. We experimentally infect larval broad-horned flour beetles with a tapeworm and study the consequent effects on: 1) adult male morphology 2) male-male contests for mating opportunities, and 3) induction of the innate immune system. We find that infection significantly reduces adult male size in ways that are expected to reduce mating opportunities in nature. The sum of our morphological, competition, and immunological data indicate that during a life history stage where no new resources are acquired, males allocate their finite resources in a way that increases future mating potential
Evolution of Sex-Specific Traits through Changes in HOX-Dependent doublesex Expression
Analysis in Drosophila suggests that evolutionary changes in the spatial regulation of the transcription factor doublesex play a key role in the origin, diversification, and loss of sex-specific structures
Intraspecific Body Size Frequency Distributions of Insects
Although interspecific body size frequency distributions are well documented for many taxa, including the insects, intraspecific body size frequency distributions (IaBSFDs) are more poorly known, and their variation among mass-based and linear estimates of size has not been widely explored. Here we provide IaBSFDs for 16 species of insects based on both mass and linear estimates and large sample sizes (n≥100). In addition, we review the published IaBSFDs for insects, though doing so is complicated by their under-emphasis in the literature. The form of IaBSFDs can differ substantially between mass-based and linear measures. Nonetheless, in non-social insects they tend to be normally distributed (18 of 27 species) or in fewer instances positively skewed. Negatively skewed distributions are infrequently reported and log transformation readily removes the positive skew. Sexual size dimorphism does not generally cause bimodality in IaBSFDs. The available information on IaBSFDs in the social insects suggests that these distributions are usually positively skewed or bimodal (24 of 30 species). However, only c. 15% of ant genera are polymorphic, suggesting that normal distributions are probably more common, but less frequently investigated. Although only 57 species, representing seven of the 29 orders of insects, have been considered here, it appears that whilst IaBSFDs are usually normal, other distribution shapes can be found in several species, though most notably among the social insects. By contrast, the interspecific body size frequency distribution is typically right-skewed in insects and in most other taxa
Endocrine regulation of predator-induced phenotypic plasticity
Elucidating the developmental and genetic control of phenotypic plasticity remains a central agenda in evolutionary ecology. Here, we investigate the physiological regulation of phenotypic plasticity induced by another organism, specifically predator-induced phenotypic plasticity in the model ecological and evolutionary organism Daphnia pulex. Our research centres on using molecular tools to test among alternative mechanisms of developmental control tied to hormone titres, receptors and their timing in the life cycle. First, we synthesize detail about predator-induced defenses and the physiological regulation of arthropod somatic growth and morphology, leading to a clear prediction that morphological defences are regulated by juvenile hormone and life-history plasticity by ecdysone and juvenile hormone. We then show how a small network of genes can differentiate phenotype expression between the two primary developmental control pathways in arthropods: juvenoid and ecdysteroid hormone signalling. Then, by applying an experimental gradient of predation risk, we show dose-dependent gene expression linking predator-induced plasticity to the juvenoid hormone pathway. Our data support three conclusions: (1) the juvenoid signalling pathway regulates predator-induced phenotypic plasticity; (2) the hormone titre (ligand), rather than receptor, regulates predator-induced developmental plasticity; (3) evolution has favoured the harnessing of a major, highly conserved endocrine pathway in arthropod development to regulate the response to cues about changing environments (risk) from another organism (predator)
- …