51 research outputs found

    Towards new material biomarkers for fracture risk

    Get PDF
    Osteoporosis is a prevalent bone condition, characterised by low bone mass and increased fracture risk. Currently, the gold standard for identifying osteoporosis and increased fracture risk is through quantification of bone mineral density (BMD) using dual energy X-ray absorption (DEXA). However, the risk of osteoporotic fracture is determined collectively by bone mass, architecture and physicochemistry of the mineral composite building blocks. Thus DEXA scans alone inevitably fail to fully discriminate individuals who will suffer a fragility fracture. This study examines trabecular bone at both ultrastructure and microarchitectural levels to provide a detailed material view of bone, and therefore provides a more comprehensive explanation of osteoporotic fracture risk. Physicochemical characterisation obtained through X-ray diffraction and infrared analysis indicated significant differences in apatite crystal chemistry and nanostructure between fracture and non-fracture groups. Further, this study, through considering the potential correlations between the chemical biomarkers and microarchitectural properties of trabecular bone, has investigated the relationship between bone mechanical properties (e.g. fragility) and physicochemical material features

    Characterisation of the material properties of bone in health and disease

    No full text
    SIGLEAvailable from British Library Document Supply Centre- DSC:DXN059041 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Thermal stability and structure of cancellous bone mineral from the femoral head of patients with osteoarthritis or osteoporosis

    No full text
    Background: Cancellous bone from patients with osteoarthritis (OA) has been reported to be undermineralised and that from patients with osteoporosis (OP) is more liable to fracture. Changes in the mineral component might be implicated in these processes. Objectives: To investigate the thermal stability and the mineral structure of cancellous bone from femoral heads of patients with either OA or OP. Methods: Powdered bone was prepared from femoral heads of patients with either OA or OP and a control group. Composition and thermal stability were determined using a thermogravimetric analyser coupled to a mass spectrometer. Unit cell dimensions and the crystallite size of the mineral were measured using x ray diffraction. Results: Thermal stability of the bone matrix, or of the mineral phase alone, was little altered by disease, though OA bone contained less mineral than OP or control bone. In all three groups, x ray diffraction showed that the mineral unit cell dimensions and crystallite sizes were the same. The mean carbonate content in the mineral from all three groups was between 7.2 and 7.6% and is suggested to be located in both the A site (that is, substituting for hydroxyl groups), and the B site (that is, substituting for phosphate groups). Conclusions: These results confirm that there is a lower mass fraction of mineral in OA bone, and indicate that the nature of the mineral is not a factor in either disease process

    Effect of the proportion of organic material in bone on thermal decomposition of bone mineral: an investigation of a variety of bones from different species using thermogravimetric analysis coupled to mass spectrometry, high-temperature x-ray diffraction and Fourier transform infra-red spectroscopy

    No full text
    Thermogravimetric analysis linked to mass spectrometry (TGA-MS) shows changes in mass and identifies gases evolved when a material is heated. Heating to 600degreesC enabled samples of bone to be classified as having a high (cod clythrum, deer antler, and whale periotic fin bone) or a low (porpoise ear bone, whale tympanic bulla, and whale ear bone) proportion of organic material. At higher temperatures, the mineral phase of the bone decomposed. High temperature X-ray diffraction (HTXRD) showed that the main solids produced by decomposition of mineral (in air or argon at 800degreesC to 1000degreesC) were beta-tricalcium phosphate (TCP) and hydroxyapatite (HAP), in deer antler, and CaO and HAP, in whale tympanic bulla. In carbon dioxide, the decomposition was retarded, indicating that the changes observed in air and argon were a result of the loss of carbonate ions from the mineral. Fourier transform infrared (FTIR) spectroscopy of bones heated to different temperatures, showed that loss of carbon dioxide (as a result of decomposition of carbonate ions) was accompanied by the appearance of hydroxide ions. These results can be explained if the structure of bone mineral is represented by Ca10-x V-x((Ca))[(PO4)(6-x-y)(HPO4)(x)(CO3)(y)] [(OH)(2-x-y)(CO3)(y)V-x((OH))] where V-(Ca) and V-(OH) correspond to vacancies on the calcium and hydroxide sites, respectively, and 2-x-y = 0.4. This general formula is consistent in describing both mature bone mineral (i.e., whale bone), with a high Ca/P molar ratio, lower HPO42- content, and higher CO32- content, and immature bone mineral (i.e., deer antler)., with a low Ca/P ratio, higher HPO42- and lower CO32- content
    • …
    corecore