104 research outputs found

    Eosinophil Cationic Protein Shows Survival Effect on H9c2 Cardiac Myoblast Cells with Enhanced Phosphorylation of ERK and Akt/GSK-3β under Oxidative Stress

    Get PDF
    Eosinophil cationic protein (ECP) is well known as a cationic protein contained in the basic granules of activated eosinophils. Recent studies have reported that ECP exhibits novel activities on various types of cells, including rat neonatal cardiomyocytes. Here we evaluated the effects of ECP on rat cardiac myoblast H9c2 cells. Our results showed that ECP enhanced the survival of the cells, in part by promoting the ERK and Akt/GSK-3β signaling pathways. ECP attenuated the cytotoxic effects of H2O2 on H9c2 cells as well as the production of reactive oxygen species, the number of apoptotic cells and caspase 3/7 activity in the cells. In conclusion, ECP activated the ERK and Akt/GSK-3β pathways, resulting in anti-oxidative effects on H9c2 cells that attenuated apoptosis

    Efficient Drug Delivery of Paclitaxel Glycoside: A Novel Solubility Gradient Encapsulation into Liposomes Coupled with Immunoliposomes Preparation

    Get PDF
    Although the encapsulation of paclitaxel into liposomes has been extensively studied, its significant hydrophobic and uncharged character has generated substantial difficulties concerning its efficient encapsulation into the inner water core of liposomes. We found that a more hydrophilic paclitaxel molecule, 7-glucosyloxyacetylpaclitaxel, retained tubulin polymerization stabilization activity. The hydrophilic nature of 7-glucosyloxyacetylpaclitaxel allowed its efficient encapsulation into the inner water core of liposomes, which was successfully accomplished using a remote loading method with a solubility gradient between 40% ethylene glycol and Cremophor EL/ethanol in PBS. Trastuzumab was then conjugated onto the surface of liposomes as immunoliposomes to selectively target human epidermal growth factor receptor-2 (HER2)-overexpressing cancer cells. In vitro cytotoxicity assays revealed that the immunoliposomes enhanced the toxicity of 7-glucosyloxyacetylpaclitaxel in HER2-overexpressing cancer cells and showed more rapid suppression of cell growth. The immunoliposomes strongly inhibited the tumor growth of HT-29 cells xenografted in nude mice. Notably, mice survived when treated with the immunoliposomes formulation, even when administered at a lethal dose of 7-glucosyloxyacetylpaclitaxel in vivo. This data successfully demonstrates immunoliposomes as a promising candidate for the efficient delivery of paclitaxel glycoside

    The biosynthetic pathway of potato solanidanes diverged from that of spirosolanes due to evolution of a dioxygenase

    Get PDF
    ジャガイモの毒α-ソラニンはトマトの苦味成分から分岐進化したことを解明. 京都大学プレスリリース. 2021-03-03.Potato (Solanum tuberosum), a worldwide major food crop, produces the toxic, bitter tasting solanidane glycoalkaloids α-solanine and α-chaconine. Controlling levels of glycoalkaloids is an important focus on potato breeding. Tomato (Solanum lycopersicum) contains a bitter spirosolane glycoalkaloid, α-tomatine. These glycoalkaloids are biosynthesized from cholesterol via a partly common pathway, although the mechanisms giving rise to the structural differences between solanidane and spirosolane remained elusive. Here we identify a 2-oxoglutarate dependent dioxygenase, designated as DPS (Dioxygenase for Potato Solanidane synthesis), that is a key enzyme for solanidane glycoalkaloid biosynthesis in potato. DPS catalyzes the ring-rearrangement from spirosolane to solanidane via C-16 hydroxylation. Evolutionary divergence of spirosolane-metabolizing dioxygenases contributes to the emergence of toxic solanidane glycoalkaloids in potato and the chemical diversity in Solanaceae

    Stabilization of Pseudomonas aeruginosa Cytochrome c551 by Systematic Amino Acid Substitutions Based on the Structure of Thermophilic Hydrogenobacter thermophilus Cytochrome c552

    Get PDF
    A heterologous overexpression system for mesophilic Pseudomonas aeruginosa holocytochrome c551 (PA c551) was established using Escherichia coli as a host organism. Amino acid residues were systematically substituted in three regions of PA c551 with the corresponding residues from thermophilic Hydrogenobacter thermophilus cytochrome c552 (HT c552), which has similar main chain folding to PA c551, but is more stable to heat. Thermodynamic properties of PA c551 with one of three single mutations (Phe-7 to Ala, Phe-34 to Tyr, or Val-78 to Ile) showed that these mutants had increased thermostability compared with that of the wild-type. Ala-7 and Ile-78 may contribute to the thermostability by tighter hydrophobic packing, which is indicated by the three dimensional structure comparison of PA c551 with HT c552. In the Phe-34 to Tyr mutant, the hydroxyl group of the Tyr residue and the guanidyl base of Arg-47 formed a hydrogen bond, which did not exist between the corresponding residues in HT c552. We also found that stability of mutant proteins to denaturation by guanidine hydrochloride correlated with that against the thermal denaturation. These results and others described here suggest that significant stabilization of PA c551 can be achieved through a few amino acid substitutions determined by molecular modeling with reference to the structure of HT c552. The higher stability of HT c552 may in part be attributed to some of these substitutions.This work was supported in part by grants from the Japanese Ministry of Education, Science and Culture

    Direct conversion of carlactonoic acid to orobanchol by cytochrome P450 CYP722C in strigolactone biosynthesis

    Get PDF
    Strigolactones (SLs) are carotenoid-derived phytohormones and rhizosphere signaling molecules for arbuscular mycorrhizal fungi and root parasitic weeds. Why and how plants produce diverse SLs are unknown. Here, cytochrome P450 CYP722C is identified as a key enzyme that catalyzes the reaction of BC-ring closure leading to orobanchol, the most prevalent canonical SL. The direct conversion of carlactonoic acid to orobanchol without passing through 4-deoxyorobanchol is catalyzed by the recombinant enzyme. By knocking out the gene in tomato plants, orobanchol was undetectable in the root exudates, whereas the architecture of the knockout and wild-type plants was comparable. These findings add to our understanding of the function of the diverse SLs in plants and suggest the potential of these compounds to generate crops with greater resistance to infection by noxious root parasitic weeds

    A Model of Cancer Stem Cells Derived from Mouse Induced Pluripotent Stem Cells

    Get PDF
    Cancer stem cells (CSCs) are capable of continuous proliferation and self-renewal and are proposed to play significant roles in oncogenesis, tumor growth, metastasis and cancer recurrence. CSCs are considered derived from normal stem cells affected by the tumor microenvironment although the mechanism of development is not clear yet. In 2007, Yamanaka's group succeeded in generating Nanog mouse induced pluripotent stem (miPS) cells, in which green fluorescent protein (GFP) has been inserted into the 5′-untranslated region of the Nanog gene. Usually, iPS cells, just like embryonic stem cells, are considered to be induced into progenitor cells, which differentiate into various normal phenotypes depending on the normal niche. We hypothesized that CSCs could be derived from Nanog miPS cells in the conditioned culture medium of cancer cell lines, which is a mimic of carcinoma microenvironment. As a result, the Nanog miPS cells treated with the conditioned medium of mouse Lewis lung carcinoma acquired characteristics of CSCs, in that they formed spheroids expressing GFP in suspension culture, and had a high tumorigenicity in Balb/c nude mice exhibiting angiogenesis in vivo. In addition, these iPS-derived CSCs had a capacity of self-renewal and expressed the marker genes, Nanog, Rex1, Eras, Esg1 and Cripto, associated with stem cell properties and an undifferentiated state. Thus we concluded that a model of CSCs was originally developed from miPS cells and proposed the conditioned culture medium of cancer cell lines might perform as niche for producing CSCs. The model of CSCs and the procedure of their establishment will help study the genetic alterations and the secreted factors in the tumor microenvironment which convert miPS cells to CSCs. Furthermore, the identification of potentially bona fide markers of CSCs, which will help the development of novel anti-cancer therapies, might be possible though the CSC model

    Identification of novel canonical strigolactones produced by tomato

    Get PDF
    Canonical strigolactones (SLs), such as orobanchol, consist of a tricyclic lactone ring (ABC-ring) connected to a methylbutenolide (D-ring). Tomato plants have been reported to produce not only orobanchol but also various canonical SLs related to the orobanchol structure, including orobanchyl acetate, 7-hydroxyorobanchol isomers, 7-oxoorobanchol, and solanacol. In addition to these, structurally unidentified SL-like compounds known as didehydroorobanchol isomers (DDHs), whose molecular mass is 2 Da smaller than that of orobanchol, have been found. Although the SL biosynthetic pathway in tomato is partially characterized, structural elucidation of DDHs is required for a better understanding of the entire biosynthetic pathway. In this study, three novel canonical SLs with the same molecular mass as DDHs were identified in tomato root exudates. The first was 6,7-didehydroorobanchol, while the other two were not in the DDH category. These two SLs were designated phelipanchol and epiphelipanchol because they induced the germination of Phelipanche ramosa, a noxious root parasitic weed of tomato. We also proposed a putative biosynthetic pathway incorporating these novel SLs from orobanchol to solanacol

    Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome.

    Get PDF
    The evolution of land flora transformed the terrestrial environment. Land plants evolved from an ancestral charophycean alga from which they inherited developmental, biochemical, and cell biological attributes. Additional biochemical and physiological adaptations to land, and a life cycle with an alternation between multicellular haploid and diploid generations that facilitated efficient dispersal of desiccation tolerant spores, evolved in the ancestral land plant. We analyzed the genome of the liverwort Marchantia polymorpha, a member of a basal land plant lineage. Relative to charophycean algae, land plant genomes are characterized by genes encoding novel biochemical pathways, new phytohormone signaling pathways (notably auxin), expanded repertoires of signaling pathways, and increased diversity in some transcription factor families. Compared with other sequenced land plants, M. polymorpha exhibits low genetic redundancy in most regulatory pathways, with this portion of its genome resembling that predicted for the ancestral land plant. PAPERCLIP

    高等植物におけるチトクロムP450モノオキシゲナーゼ系の多様性とストレス応答に関する研究

    Get PDF
    京都大学0048新制・論文博士博士(農学)乙第9698号論農博第2165号新制||農||752(附属図書館)学位論文||H9||N3098 [所蔵なし](農学部図書室)UT51-97-W257(主査)教授 關谷 次郎, 教授 岩村 俶, 教授 大山 莞爾学位規則第4条第2項該当Doctor of Agricultural ScienceKyoto UniversityDFA
    corecore