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Eosinophil cationic protein (ECP) is well known as a cationic protein contained in the basic granules of 
activated eosinophils.  Recent studies have reported that ECP exhibits novel activities on various types 
of cells,  including rat neonatal cardiomyocytes.  Here we evaluated the effects of ECP on rat cardiac 
myoblast H9c2 cells.  Our results showed that ECP enhanced the survival of the cells,  in part by pro-
moting the ERK and Akt/GSK-3β signaling pathways.  ECP attenuated the cytotoxic effects of H2O2 on 
H9c2 cells as well as the production of reactive oxygen species,  the number of apoptotic cells and 
caspase 3/7 activity in the cells.  In conclusion,  ECP activated the ERK and Akt/GSK-3β pathways,  
resulting in anti-oxidative effects on H9c2 cells that attenuated apoptosis.
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osinophil cationic protein (ECP) is one of the 
cationic proteins present within the basic gran-

ules of activated eosinophils,  which play important 
roles in allergic diseases such as bronchial asthma 
[1].  Since activated eosinophils have been shown to 
degranulate ECP in bronchial asthma,  ECP has been 
considered a biomarker for this condition [2].  The 
relationship between the diversity and the role of ECP 
has been described at the molecular level [3-6].  
Based on these earlier studies,  ECP was considered 
to function as an RNase because of the structural 
similarity between the 2 molecules.  Thus,  it has been 
considered that ECP is toxic only to cells.  However,  

more recent reports have demonstrated that ECP has 
different effects on different cells types.  For instance,  
ECP has been shown to induce the formation of stress 
fibers in BALB/c 3T3 fibroblasts and to increase the 
rate of autonomic pulsation in mouse-derived neonatal 
myocytes.  In addition,  ECP enhances the differentia-
tion of the embryonal carcinoma cell line,  P19CL6 
cells,  to cardiomyocytes.  Recombinant ECP was 
shown to increase an atrial natriuretic factor (ANF) 
expression in rat neonatal cardiomyocytes.  These 
findings suggest that ECP might play important mul-
tiple roles in myocytes/myoblasts.
　 Cardiovascular disease (CVD) is a major cause of 
death worldwide.  Many novel therapeutic techniques 
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have been developed and used to treat patients with 
CVD.  However,  an important issue in treating this 
disease is the ischemia/reperfusion injury caused by 
reperfusion therapy.  Ischemia/reperfusion injury is 
caused by the production of oxidative molecules,  
including reactive oxygen species (ROS) [7-8].  Since 
ROS can damage myocytes and worsen the prognosis 
of patients with CVD [9],  suppression of ROS pro-
duction should be important to prevent ischemia/rep-
erfusion injury,  including acute myocardial infarction 
[10-12].  Accordingly,  we examined the effect of ECP 
on H9c2 cells,  a line of rat myoblasts,  under an oxi-
dative stress condition.

Materials and Methods

　 Reagents and cell culture. Recombinant human 
ECP was expressed in Escherichia coli and prepared 
as previously described [3].  The rat myoblast H9c2 
cells were purchased from the American Type Culture 
Collection (ATCC,  CRL-1446) (Manassas,  VA,  USA).  
H9c2 cells (between 5 to 15 passages) were cultured 
in Dulbeccoʼs modified Eagle medium (DMEM; high 
glucose) with 10ｵ fetal bovine serum (FBS),  100 
units/ml penicillin,  and 100µg/ml streptomycin [13-
15].  Cells were cultured at 37℃ under 5ｵ CO2 and 
20ｵ O2 in a humidified chamber.  LY294002,  a phos-
phatidylinositol 3-kinase inhibitor,  was purchased 
from Cell Signaling (Danvers,  MA,  USA),  and API-
2,  an Akt inhibitor,  also known as Triciribine,  was 
purchased from Calbiochem (La Jolla,  CA,  USA).  
These were then dissolved in DMSO,  and used at the 
final concentrations previously reported [14,  16].  All 
other reagents were purchased from Sigma unless 
otherwise specified.
　 Cell viability assay. The viability of H9c2 
cells was determined using a standard 3-(4, 5-dimeth-
ylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)2-(4-
sulfophenyl)-2H-tetrazolium (MTS) viability test 
(CellTiter AQueous One Solution cell proliferation 
assay kit; Promega,  Madison,  WI,  USA) according 
to the manufacturerʼs instructions [13,  17].
　 In the initial experiment,  H9c2 cells at 2×103/
well were cultured on 96-well plates and allowed to 
recover for 24h.  The cells were then stimulated with 
ECP in the range of 0.2 to 2µM for 72h.  Then 20µL 
of the MTS assay reagent was added to each well and 
further incubated for 1h.  The number of surviving 

cells was measured using a plate-reading luminometer 
(Powerscan; DS Pharma Biomedical,  Osaka,  Japan) 
at 490nm/650nm as previously described [18].
　 Next,  H9c2 cells at 5×103/well were cultured on 
96-well plates and allowed to recover for 24h.  The 
cells were then stimulated with 1µM of ECP and H2O2 
in the range of 0 to 600µM.  The media were changed 
after 6h and the MTS assay reagent was added.  The 
number of surviving cells was measured as previously 
described.  All samples were read in triplicate.
　 Protein extraction, Western blot analysis, and 
antibodies. To extract proteins,  the cells were 
washed once with PBS and then scraped from the 
plates.  The cells were then lysed in 150µL of 
CelLyticTM M with a protease inhibitor (complete 
mini; Roche,  Mannheim,  Germany) and phosphatase 
inhibitor (phosphatase inhibitor cocktail; Sigma).  
After a gentle shaking incubation at 4℃ for 15min,  
the samples were collected using a cell scraper and 
centrifuged to collect the supernatants.  The protein 
concentration of the cell extracts was determined 
using a protein assay kit (Bio-Rad Japan,  Tokyo,  
Japan).  Sixty-five micrograms of total protein was 
used for the Western blot analysis,  as described 
previously [19].  Briefly,  each sample was mixed 
with 6× sample buffer and subjected to SDS-PAGE 
using a 10ｵ separating gel.  After SDS-PAGE,  the 
proteins were transferred to PVDF membranes (Bio-
Rad Japan),  left overnight at 4℃,  and then blocked 
for 1h in 5ｵ nonfat dried skim milk in TBS contain-
ing 0.05ｵ Tween 20 (TBS-T).  The membranes were 
hybridized at 4℃ overnight with an anti-p44/42 
MAPK (Erk1/2) antibody (used at 1 : 1,000 dilution;  
Cell Signaling),  anti-phospho-p44/42 MAPK (Erk1/2) 
(Thr202/Tyr204) antibody (used at 1 : 1,000 dilution;  
Cell Signaling),  anti-Akt antibody (used at 1 : 1,000 
dilution; Cell Signaling),  anti-phospho-Akt (Ser473) 
(D9E) XP® antibody (used at 1 : 2,000 dilution; Cell 
Signaling),  anti-glycogen synthase kinase 3β (GSK-3β) 
(27C10) antibody (used at 1 : 1,000 dilution; Cell 
Signaling),  and anti-phospho-GSK-3β (Ser9) (5B3) 
antibody (used at 1 : 1,000 dilution; Cell Signaling),  
respectively.  After 3 stringent washes with TBS-T 
for 10min each at room temperature,  the membranes 
were incubated with the peroxidase-conjugated goat 
anti-rabbit secondary antibody (used at 1 : 2,500 
dilution; MP Biomedicals,  Aurora,  OH,  USA).  
Following 3 successive washes with TBS-T,  the 
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immunoreactive bands were visualized using an 
enhanced chemiluminescence system (ECL plus; GE 
Healthcare).  Signals were detected with an LAS1000 
Imager System (Fuji Film,  Tokyo,  Japan) and the 
densitometry was performed with Image J software 
(W. Rasband,  Research Services Branch,  National 
Institute of Mental Health,  Bethesda,  MD,  USA) and 
normalized to the signal intensity of the control anti-
body of each sample in each experiment [13].
　 ROS production. The production of ROS was 
measured using the cell-permeable fluorogenic probe 
2ʼ,  7ʼ-dichlorodihydrofluorescin diacetate (DCFH-DA) 
based on the ROS-dependent oxidation of DCFH to 
DCF,  according to the manufacturerʼs protocol 
(OxiSelectTM ROS Assay Kit; Cell Biolabs Inc.,  San 
Diego,  CA,  USA).  In brief,  H9c2 cells (1×104 
cells/well) were cultured in a black 96-well plate.  
The medium was changed to serum-free medium,  and 
then,  after 24h,  the serum-free medium was removed 
and replaced with 100µL of 1×DCFH-DA solution.  
The cells were incubated at 37℃ for 60min.  The 
DCFH-DA solution was removed,  and the cells were 
washed with PBS twice and then exposed with H2O2 in 
the range of 100 to 600µM and 1µM of ECP for 6h.  
Fluorescence was measured using a plate-reading 
luminometer at 480nm/530nm.
　 Terminal deoxynucleotidyl transferase dUTP 
nick-end labeling (TUNEL) assay. H9c2 cells 
(5×104) were plated on a chamber slide and the 
serum-free medium was replaced after 48h.  1µM of 
ECP was added and cells were exposed to 200µM of 
H2O2 at 37℃ for 10min.  The cells were washed with 
PBS and fixed with 4ｵ paraformaldehyde (PFA) at 
RT for 1h.  The cells were then washed with PBS 
twice,  supplemented with 0.1ｵ sodium citrate and  
0.1ｵ TritonX-100,  and incubated at 4℃ for 5min.  
After washing with PBS twice,  a TUNEL reaction 
solution was added and the cells were incubated at  
37℃ for 1h.  Finally,  the cells were washed with 
PBS three times and fluorescent signals were exam-
ined under a fluorescent microscope (BioZero; Keyence,  
Osaka,  Japan) [15].  The number of TUNEL-positive 
cells was counted in 10 high power fields.  All samples 
were read in triplicate.
　 Caspase 3/7 assay. Caspase 3/7 activity lev-
els were measured using an assay kit (Caspase-Glo 
3/7 Assay; Promega) according to the manufacturerʼs 
instructions.  Briefly,  H9c2 cells (1×104) were plated 

into 96-well plates in 100µL DMEM with 10ｵ FBS.  
H9c2 cells were exposed to H2O2 in the range of 100 
to 200µM at the indicated concentrations and incu-
bated with 1µM of ECP or without ECP for 2h.  
Caspase 3/7 activities were measured using a plate-
reading luminometer [18].  All samples were read in 
quadruplicate.
　 Statistical analysis. All the data are shown as 
the mean±S.D.  Between-group variations were 
assessed by the two-tailed unpaired t-test.  For multi-
ple comparisons,  analysis of variance (ANOVA) was 
performed and post-hoc analysis with Bonferroniʼs test 
was employed.  P values＜0.05 were considered sig-
nificant.

Results

　 We first examined the effects of ECP on H9c2 
cells by MTS assay.  ECP in the range of 0.2 to 2µM 
slightly enhanced the proliferation of H9c2 cells (Fig.  
1).  We then examined the phosphorylation of ERK and 
Akt/GSK-3β by ECP in H9c2 cells (Fig.  2).  ECP 
enhanced the phosphorylation of ERK,  Akt and 
GSK-3β in a dose-dependent manner suggesting acti-
vation of both the ERK and PI3K/Akt/GSK-3β sig-
naling pathways.
　 To elucidate the role of ECP in the survival effect 
of H9c2 cells,  we investigated the response of H9c2 
cells under oxidative stress in the presence of ECP.  
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Fig. 1　 ECP enhanced the proliferation of H9c2 cells.  H9c2 cells 
were incubated with various concentrations of ECP and cell viabil-
ity was measured by an MTS assay.  The number of cells without 
ECP was indicated as 100%.  An asterisk indicates a significant 
difference from the cells without ECP at the p＜0.05 level.  All 
samples were read in triplicate.
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Fig. 2　 ECP augmented the phosphorylation of ERK and Akt/GSK-3β.  (A) The effects of ECP on the phosphorylation of ERK (A),  Akt 
(B) and GSK-3β (C) were evaluated by Western blotting.  The results of densitometric analysis for the quantification of the phosphorylation 
of each blotting are aligned at the bottom of the figure.  An asterisk indicates a significant difference from the control at the p＜0.05 level.
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Fig. 3　 ECP attenuated the cell death and the production of ROS.  H9c2 cells were incubated with 1µM of ECP (closed boxes) and 
without ECP (open boxes).  (A) The viability of H9c2 cells exposed to various concentrations of H2O2 was measured by an MTS assay.  All 
samples were read in triplicate.  (B) The production of ROS in H9c2 cells exposed to various concentrations of H2O2 was measured by a 
DCFH-DA assay.  All samples were read in quadruplicate.  An asterisk indicates a significant difference from the cells without ECP at the 
p＜0.05 level and double asterisk indicates a significant difference from the cells without ECP at the p＜0.01 level.
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Fig. 5　 ECP augmented the cell signaling pathway in H9c2 cells exposed to H2O2.  H9c2 cells exposed to H2O2 were treated with various 
concentrations of ECP and the phosphorylation of ERK (A),  Akt (B) and GSK-3β (C) was examined by Western blotting.  The results of 
densitometric analysis for the quantification of the phosphorylation of each blotting are aligned at the bottom of the figure.  The phosphory-
lation level in H9c2 cells incubated without H2O2 and ECP was taken as 1.0.  An asterisk indicates a significant difference from the H9c2 
cells incubated without H2O2 and ECP at the p＜0.05 level.

Fig. 4　 ECP attenuated H2O2-induced apoptosis in H9c2 cells.  
(A) H9c2 cells were exposed to 200µM of H2O2 for 1h with or 
without 1μM of ECP and subjected to a TUNEL assay (Left).  The 
number of TUNEL-positive cells was counted and the percentages 
of TUNEL-positive cells were compared (Right).  The asterisk indi-
cates a statistically significant difference at p＜0.05.  (B) ECP 
attenuated caspase 3/7 activity in H2O2-stimulated H9c2 cells.  
Caspase 3/7 activity was measured by the ELISA assay.  The 
asterisk indicates a statistically significant difference at p＜0.05 
level.



H9c2 cells were incubated in the presence or absence 
of ECP and then stimulated with H2O2.  As previously 
described,  when H9c2 cells were incubated for 72h 
with 1µM ECP without H2O2,  their viability was 
significantly increased.  When H9c2 cells were incu-
bated for 6h with 1µM ECP in the absence of H2O2,  
their viability was slightly decreased,  although this 
change was not statistically significant (Fig.  3A).  
ECP apparently protected H9c2 cells from death by 
oxidation with H2O2.  While the number of surviving 
cells exposed to H2O2 decreased in a dose-dependent 
manner,  ECP significantly enhanced the survival of 
the cells (Fig.  3A).  To clarify the protective role of 
ECP under oxidative stress,  we next examined the 
production of reactive oxygen species by an DCFH-DA 
assay.  The results showed that ECP attenuated the 

production of ROS in H2O2-stimulated H9c2 cells 
(Fig.  3B).
　 In the TUNEL assay,  a significantly smaller num-
ber of TUNEL-positive cells was observed in the 
ECP-treated H9c2 cells than the H9c2 cells not 
treated with ECP (Fig.  4A).  ECP also attenuated 
caspase 3/7 activity in H9c2 cells exposed to 200µM 
of H2O2 (Fig.  4B).
　 To assess the effects of ECP on cellular signaling 
in H2O2-stimulated H9c2 cells,  H9c2 cells were stimu-
lated with 500µM of H2O2 for 1.5h,  then incubated 
with ECP for 2h.  The results showed that ECP 
augmented the phosphorylation of ERK,  Akt and 
GSK-3β in H9c2 cells when stimulated with H2O2 
(Fig.  5).
　 To confirm the effect of ECP on these signaling 
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Fig. 6　 ECP augmented the phosphorylation of Akt/GSK-3β in H2O2-stimulated H9c2 cells.  H2O2-stimulated H9c2 cells were incubated 
with or without API-2 and LY294002,  and the phosphorylation of Akt (A) and GSK-3β (B) was evaluated.  The results of densitometric 
analysis for the quantification of the phosphorylation of each blotting are aligned at the bottom of the figure.  An asterisk indicates a sig-
nificant difference from the H9c2 cells without ECP in the presence of H2O2 and each inhibitor at the p＜0.05 level.



pathways,  we examined the effects of ECP on H2O2-
stimulated H9c2 cells in the presence of 10nM of 
API-2 and 20µM of LY294002.  ECP recovered the 
phosphorylation of both Akt and GSK-3β in H2O2-
stimulated H9c2 cells while API-2 and LY294002 
attenuated the phosphorylation of Akt and GSK-3β 
without ECP (Fig.  6).

Discussion

　 The deposition of eosinophil granule proteins in 
cardiac tissues was previously reported in eosinophilic 
myocarditis [20].  However,  none of the previous 
reports have shown a molecular role of ECP in dis-
eases,  but only described the accumulation of eosino-
phils to the local organs with the marked increase of 
ECP level.  Only toxicity has been suggested without 
describing molecular mechanisms.  In recent reports on 
ECP using recombinant ECP,  the effect of ECP on 
the cells was not always cytotoxic; rather,  ECP 
sometimes induced differentiation and strengthened the 
cytoskeleton in various cell types [4-6].  Taking these 
facts into consideration,  we consider that the func-
tional role of ECP should be revisited to confirm the 
biological significance of ECP.  For this purpose,  we 
prepared a recombinant ECP protein [21] and used it 
to confirm the RNase activity and bactericidal activity 
of ECP [3].  In myocytes,  ECP has been shown to 
exert diverse effects.  For instance,  we have reported 
that ECP increased the beating rate of rat neonatal 
cardiomyocytes [5],  and accelerated the differentia-
tion of P19CL6 cells into myocytes by activating ERK 
pathway [6].
　 As previously described,  the intracellular signaling 
pathway plays a central role in the cell survival [22],  
and signaling through GSK-3β is also critical for the 
survival of apoptotic H9c2 cells exposed to H2O2 [23].  
These results suggest that modulation of the signaling 
pathway affects cell survival under oxidative stress 
conditions [24].  In this report we found that ECP 
enhanced the survival of rat cardiac myoblasts of the 
cell line H9c2 under oxidative stress by activating the 
Akt/GSK-3β signaling pathway.  H9c2 cells are widely 
used for in vitro analyses,  including investigations of 
oxidative stress.  Interestingly,  ECP did not show 
toxic effects on H9c2 cells,  but rather exhibited pro-
liferative and protective effects on H9c2 cells.  Our 
results showed that ECP enhanced the phosphoryla-

tion of ERK in H9c2 cells incubated with or without 
H2O2.  This augmentation of ERK phosphorylation may 
be one of the molecular mechanisms of ECP on H9c2 
cells,  as described in P19CL6 cells [5].  ECP was 
previously shown to enhance the phosphorylation of 
ERK via FGFR signaling in P19CL6 cells; therefore,  
the FGFR pathway may be suggested to be involved in 
the effects of ECP on H9c2.
　 Since the PI3K-Akt pathway has been reported to 
protect cells from injury [25],  we examined the effect 
of ECP on Akt-GSK-3β phosphorylation.  Interestingly,  
ECP enhanced the phosphorylation of Akt and the 
phosphorylation of GSK-3β without any stimulation.  
When H9c2 cells were exposed to H2O2,  the phospho-
rylation of Akt and the phosphorylation of GSK-3β 
were attenuated,  and ECP recovered these phospho-
rylations.  These results indicate that ECP enhances 
the Akt-GSK-3β signaling pathway in H9c2 cells.
　 The results of the DCFH-DA assay demonstrated 
that ECP attenuated the production of ROS.  As ROS 
are known to be toxic to cells,  ultimately inducing 
apoptosis,  our data imply that ECP had a protective 
effect on H9c2 cells under an oxidative stress condi-
tion.  ECP was previously reported to induce the 
production of ROS in HL-60 cells and HeLa cells 
[26].  In contrast,  in our study ECP attenuated the 
production of ROS,  and this effect was significant 
when H9c2 cells were stimulated with H2O2 at concen-
trations between 150µM and 600µM.  The difference 
may have been due to the differences in the cell types 
and ECP concentrations between the 2 studies.
　 H2O2 was previously shown to induce apoptosis in 
H9c2 cells by promoting the cleavage of caspase [12,  
27],  and this is the first study to demonstrate the 
anti-apoptotic effects of ECP.  ECP was previously 
considered to be toxic for cells.  For example,  Kato et 
al.  reported that eosinophil granular proteins damaged 
bronchial epithelial cells [28].  However,  this damage 
was mainly induced by the major basic protein and 
eosinophil peroxidase,  but not by ECP.  Chang et al.  
reported that the recombinant ECP protein induced 
apoptosis in BEAS-2B cells [29].  In contrast,  we 
here demonstrated the anti-apoptotic effects of ECP 
in H2O2-stimulated H9c2 cells.  The molecular mecha-
nism underlying cellular injury by oxidative stress has 
been investigated,  and it is now widely accepted that 
intracellular signaling pathways including the PI3K-
Akt pathway are involved in the pathobiology of oxida-
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tive stress [12,  22].  In this report,  ECP enhanced 
the phosphorylation of ERK,  Akt,  and GSK-3β in 
H2O2-stimulated H9c2 cells.  Therefore,  we consider 
that ECP altered the signaling pathway to protect 
against ROS-induced cellular damage.
　 Here we demonstrated that ECP is a potent 
inducer of the phosphorylation of Akt and GSK-3β.  
Because the Akt signaling pathway plays an important 
role in cell survival,  ECP might be involved in the 
mechanism of cell survival protecting H9c2 cells by 
altering the Akt/GSK-3β signaling pathway.
　 In conclusion,  ECP enhances the survival of H9c2 
cells through augmented phosphorylation of ERK and 
the Akt-GSK-3β axis under oxidative stress,  which 
might result in attenuation of the ROS and ROS-
induced apoptosis.
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