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Abstract

Although the encapsulation of paclitaxel into liposomes has been extensively studied, its significant hydrophobic and
uncharged character has generated substantial difficulties concerning its efficient encapsulation into the inner water core of
liposomes. We found that a more hydrophilic paclitaxel molecule, 7-glucosyloxyacetylpaclitaxel, retained tubulin
polymerization stabilization activity. The hydrophilic nature of 7-glucosyloxyacetylpaclitaxel allowed its efficient
encapsulation into the inner water core of liposomes, which was successfully accomplished using a remote loading
method with a solubility gradient between 40% ethylene glycol and Cremophor EL/ethanol in PBS. Trastuzumab was then
conjugated onto the surface of liposomes as immunoliposomes to selectively target human epidermal growth factor
receptor-2 (HER2)-overexpressing cancer cells. In vitro cytotoxicity assays revealed that the immunoliposomes enhanced the
toxicity of 7-glucosyloxyacetylpaclitaxel in HER2-overexpressing cancer cells and showed more rapid suppression of cell
growth. The immunoliposomes strongly inhibited the tumor growth of HT-29 cells xenografted in nude mice. Notably, mice
survived when treated with the immunoliposomes formulation, even when administered at a lethal dose of 7-
glucosyloxyacetylpaclitaxel in vivo. This data successfully demonstrates immunoliposomes as a promising candidate for the
efficient delivery of paclitaxel glycoside.
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Introduction

Taxanes, such as paclitaxel (PTX) and docetaxel, comprise one

of the most effective classes of anticancer drugs that function by

stabilizing microtubules and inhibiting the cell cycle [1,2]. PTX

has been used for the treatment of breast, ovarian, colon, brain,

and non-small cell lung cancers. Because of the significant

hydrophobicity of PTX, the commercial formulation, Taxol,

contains the surfactant Cremophor EL and ethanol [1]. Since the

solvent is considered as the cause of the reported side effects of

Taxol [3], an alternative PTX formulation without the solvent has

been sought. Nanoparticles such as liposomes and micelles are

thought useful for producing PTX formulations that do not cause

the side effects associated with Cremophor EL and ethanol [1,4].

Liposomal drug delivery has been used to improve the

therapeutic effect of drugs in tumor cells by preventing significant

side effects in normal cells. Liposomes of particle size ranging from

100 to 200 nm can accumulate in solid tumors by enhanced

permeability and retention (EPR) effects because of the presence of

abnormal and leaky blood vessels and impaired lymphatic drainage

associated with solid tumors [5]. Compared with non-targeting

liposomes, active-targeting liposomes that involve the use of

attached specific ligands more effectively enhance the anticancer
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activity of the encapsulated drug, as ligand-mediated endocytosis

helps facilitate the uptake of the actively delivered drug [6]. Human

epidermal growth factor receptor-2 (HER2) is a 185 kDa type I

receptor tyrosine kinase glycoprotein that is often overexpressed in

breast, ovarian, colon, and lung cancer tissues [7]. HER2

overexpression in human breast cancer cells increases their

metastatic potential and is associated with a poor prognosis.

Therefore, HER2 has been considered as a target for cancer

therapy [8]. Liposomal drug delivery targeting HER2 has been well

studied, and immunoliposomes displaying anti-HER2 antibodies

such as trastuzumab exhibit greater anticancer activity than non-

targeting liposomes by specifically targeting HER2-overexpressing

cancer cells [9–12].

Several attempts are currently underway to encapsulate PTX

into liposomes. PTX is too hydrophobic to be encapsulated into

the inner water core of liposomes and in previous studies PTX has

been inserted into the hydrophobic space of a lipid bilayer to

generate active liposomes constructs [13–17]. However, to prepare

stable liposomes with significant amounts of drug, PTX should be

encapsulated into the inner water core of liposomes instead of

inserted into the lipid bilayer. In the case of Doxil, doxorubicin is

encapsulated into the inner water core of liposomes using a unique

procedure of remote loading with an ammonium sulfate gradient

[18]. A similar remote loading approach could be applied to

achieve efficient encapsulation of PTX into the inner water core of

liposomes.

In this paper, we demonstrate that glycosylated PTX (7-

glucosyloxyacetylpaclitaxel; gPTX), which is a more hydrophilic

PTX derivative with a glucose moiety coupled at 7-OH of PTX

[19], is more efficiently encapsulated into the inner water core of

liposomes than PTX. We also report encapsulation of sufficient

amounts of gPTX using a novel remote loading method with a

solubility gradient allowing high efficiency. Furthermore, targeted

drug delivery was evaluated by constructing immunoliposomes

with trastuzumab.

Materials and Methods

Materials
Dipalmitoylphosphatidylcholine (DPPC), 1,2-distearoyl-sn-glycer-

ol-3-phosphoethanolamine-N-[methoxy (polyethylene glycol)-2000]

(mPEG–DSPE), and 1,2-distearoyl-sn-glycerol-3-phosphoethanola-

mine-N-[maleimide (polyethylene glycol)-2000] (Mal–PEG–DSPE)

were obtained from NOF Co. (Tokyo, Japan). Cholesterol (Chol)

was purchased from Kanto Chemical Co., Inc. (Tokyo, Japan).

Thiazolyl blue tetrazolium bromide (MTT), RPMI 1640 medium

and DMEM were obtained from Sigma-Aldrich (St Louis, MO,

USA). Trastuzumab was a generous gift from Chugai Pharmaceu-

tical. CO., LTD. (Tokyo, Japan). gPTX was synthesized as

previously described [19].

Cell culture
The human colon cancer cell line HT-29 (ATCC, Manassas,

VA, USA) and the human breast cancer cell line SK-BR-3

(ATCC) were cultured in RPMI 1640 medium supplemented with

10% fetal bovine serum (FBS) and 100 mg/mL kanamycin. The

human breast cancer cell line MDA-MB-231 (ATCC) was

cultured in DMEM supplemented with 10% FBS and 100 mg/

mL kanamycin. Cells were maintained at 37uC in an atmosphere

of 5% CO2.

Evaluation of gPTX solubility
The difference in hydrophilicity between gPTX and PTX was

evaluated using a C18 reverse-phase HPLC column (GL Sciences

Inc., Tokyo, Japan) under isocratic elution with 55% (v/v)

methanol at a flow rate of 1 mL/min. PTX or gPTX at 5 mg/

mL was injected at a volume of 10 mL and detected at 227 nm.

The maximum solubility of PTX and gPTX in 40% (v/v)

ethylene glycol (EG) was determined as follows. First, 2 mg of

PTX or gPTX were dissolved in 1 mL of 40% EG followed by

three rounds of sonication for 10 min. The solution was then

centrifuged at 12,0006g for 20 min and the supernatant was

analyzed for the concentration by reverse-phase HPLC under

isocratic elution with 60% (v/v) methanol at a flow rate of 1 mL/

min.

The maximum solubility of PTX or gPTX in Cremophor EL/

ethanol/PBS (12:12:76 volume ratio) (CEP) was determined by

gelation after adding different amounts of PTX or gPTX in 1 mL

of CEP.

Tubulin polymerization assay
The stability of tubulin polymerization was evaluated using the

Tubulin Polymerization Assay Kit (Cytoskeleton Inc., Denver,

USA) according to the manufacturer’s instructions. In brief, 2 mg/

mL porcine tubulin in tubulin polymerization buffer containing

80 mM PIPES pH 6.9, 2.0 mM MgCl2, 0.5 mM EDTA, 1.0 mM

GTP, and 10 mM fluorescent reporter was prepared. Then tubulin

solution was transferred to a prewarmed 96-well plate that

contained 3 mM PTX or gPTX. The polymerization of tubulin

was monitored as fluorescence at 37uC for 60 min, and the

reading speed was programmed at 1 cycle/min with excitation

and emission wavelengths of 360 and 420 nm, respectively, using

the MTP-800 microplate reader (Corona Electric, Ibaraki, Japan).

The stability of polymerization was judged by the differences of

fluorescence intensities in the presence or absence of PTX or

gPTX. The experiment was independently performed in triplicate

and the mean and standard deviation (S.D.) of the fluorescent

intensities were calculated.

Preparation of liposomes containing PTX/gPTX
Liposomes composed of DPPC and Chol with 5 mol% mPEG–

DSPE were prepared by the thin-film hydration method. In brief,

DPPC and Chol with 5 mol% mPEG–DSPE were dissolved in an

organic solvent of chloroform/methanol (9:1 v/v) in an egg flask.

The flask was connected to a rotary evaporator, which was

maintained at 45uC under aspirator vacuum. The resulting lipid

film was left overnight under vacuum to remove remaining

organic solvent. The completely dehydrated lipid film was

suspended in CEP by vortexing at 60uC, resulting in the formation

of multilamellar vesicles (MLVs). MLVs were sonicated twice by

the Sonicator 3000 (Misonix, NY, USA) equipped with 3.2 mm

micro tip for 5 min at 60uC to form small lamellar vesicles (SLVs).

The outer solvent of the liposomes was replaced CEP with PBS by

ultrafiltration with a 100K-membrane filter (Merck Millipore Ltd.,

Billerica, USA) at 12,0006g for 20 min for five times. Then, PTX

(0.1 mg/mL) or gPTX (1 mg/mL) in 40% EG was added into the

solution of liposome encapsulating CEP (CEP-L) at 60uC. Thus,

PTX- or gPTX-containing liposomes (PTX- or gPTX-L) were

prepared under the solubility gradient, which is a remote loading

method. The initial ratio of the PTX or gPTX to initial lipids/

Chol at the remote loading was 0.005 or 0.05 (w/w). PTX- or

gPTX-L was then concentrated to the volume before added drug

by ultrafiltration. This encapsulation process was conducted three

times. Finally, residual PTX or gPTX was removed by washing

the liposomes with PBS followed by ultrafiltration at 12,0006g for

20 min for five times.

For the direct encapsulation, the lipid film was suspended in

CEP-dissolved PTX or gPTX at a concentration of 0.3 or 3 mg/
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mL with the initial ratio of PTX or gPTX to initial lipids/Chol

0.016 or 0.16 (w/w) as described above for the preparation of

CEP-L. The drug-encapsulating MLVs were further sonicated to

prepare SLVs, and the residual drug was removed by washing the

liposomes with PBS as described above.

Evaluation of the influence of lipid compositions and
incubation time for encapsulation

The influence of different molar ratios of DPPC to Chol of 3:1,

3:2, and 3:3 was evaluated in the solubility gradient method. To

encapsulate the drug, 1 mg/mL gPTX in 40% EG and CEP-L

were incubated for 30 min at 60uC. The encapsulation efficiency

(EE) was assessed by HPLC. The stability of gPTX-L in different

lipid compositions was evaluated in RPMI 1640 medium

supplemented with 10% FBS at 37uC. Drug retention according

to the time course was assessed by HPLC. The influence of the

incubation time was evaluated when the molar ratio of DPPC to

Chol was 3:1.

Preparation of immunoliposomes containing gPTX
To prepare HER2-targeting immunoliposomes containing

gPTX (gPTX-IL), gPTX-L displaying trastuzumab on the surface

of the liposome was prepared. CEP-L composed of DPPC and

Chol with 4 mol% mPEG–DSPE were incubated with 1 mol%

Mal–PEG–DSPE at 50uC for 10 min to introduce maleimide

functional groups to conjugate antibodies [20]. Then, gPTX was

encapsulated using the solubility gradient method described above.

To immobilize antibody on the surface of the liposomes, SH

groups were introduced into trastuzumab by treatment with 2-

iminothiolane at a molar ratio of 1:50 in 25 mM HEPES, pH 8.0

containing 140 mM NaCl. The mixture was subsequently

incubated for 1 h at room temperature in the dark [20,21]. After

purification by gel chromatography with a G25 PD-10 column

(GE Healthcare, Tokyo, Japan), trastuzumab was incubated with

liposomes containing Mal–PEG–DSPE overnight at 4uC. Free

trastuzumab was removed by ultrafiltration with a 300K-

membrane filter (Sartorius Stedim Biotech GmbH, Gottingen,

Germany) at 60006g for 20 min.

Evaluation of Encapsulation efficiency (EE) and loading
efficiency (LE)

EE was calculated as the ratio of the amount of PTX/gPTX

encapsulated into liposomes to the initial amount of the drug. LE

was calculated as the molar ratio of the drug encapsulated into

liposomes to the total of lipids and Chol. The amount of

encapsulated drug was evaluated by C18 reverse-phase HPLC

under an isocratic condition of 60% (v/v) methanol at a flow rate

of 1 mL/min. Ten mL of each sample were injected and the drug

was detected at 227 nm.

Particle size and zeta potential
The particle size and zeta potential of liposomes were

determined by dynamic light scattering and electrophoretic light

scattering with an ELS-8000 microscope (Otsuka Electronics,

Osaka, Japan).

Transmission electron microscope (TEM) image of PTX-L
and gPTX-L

The liposome samples were negatively stained with tungsten

phosphate, and observed with a TEM (H-7600, Hitachi, Tokyo,

Japan) at an accelerating voltage of 100 kV. The TEM study was

conducted by Hanaichi Ultra-Structure Research Institute (Aichi,

Japan).

Evaluation of concentration-dependent cytotoxic effects
In vitro cytotoxicity was evaluated by the MTT assay after 72 h

of drug exposure. HT-29, SK-BR-3 and MDA-MB-231 cells were

seeded in a 96-well plate at 5.06103 cells/well. After incubation at

37uC in 5% CO2 for 24 h, different concentrations of PTX or

gPTX were added to each well. After incubation for 72 h, 5 mg/

mL MTT solution was added at a final concentration of 0.6 mg/

mL in each well and the plate was incubated for 4 h. Formed

formazan crystals were dissolved in 10% (w/v) SDS with 0.02 N

HCl and incubated overnight. Finally, the absorbance of each well

was measured at 570 nm using an MTP-800 microplate reader.

The experiment was independently performed in triplicate. The

concentrations at which cell growth was inhibited by 50% (IC50)

and 100% (IC100) were estimated from the survival curve.

Evaluation of time-dependent cytotoxic effects
Time-dependent cellular cytotoxicity was evaluated by the

MTT assay with drugs at IC100. HT-29, SK-BR-3 and MDA-MB-

231 cells were seeded in a 96-well plate at 5.06103 cells/well.

After incubation at 37uC in 5% CO2 for 24 h, drugs at their IC100

were added to each well and incubated for 1, 2, 6, 12, 24, 48, and

72 h. After each round of drug exposure, the medium was

replaced with fresh medium without drugs and the incubation was

continued for an additional 72 h after the drugs were added. Cell

viability was determined by MTT assay. The time required for

50% growth inhibition (IT50) was estimated from the survival

curve.

Animal experiments
Animal experimental protocols were reviewed and approved by

the ethics committee for animal experiments of Okayama

University under the IDs OKU-2012203 and OKU-2014156.

Evaluation of acute toxicities of drugs in vivo
The acute toxicities of the drugs were evaluated with female

BALB/c mice (Charles River, Kanagawa, Japan). Mice were bred

at 23uC and fed with sterilized food and water. Naked gPTX.

gPTX-L and gPTX-IL at the dose of 150 mg/kg gPTX were

intravenously injected into 6-week-old mice via tail vein twice in

3 h. As a control, the equivalent amount of CEP contained naked

gPTX and the equivalent amount of PBS contained in gPTX-IL

was injected into mice. The body weights were monitored for 2

weeks. Mice with more than 20% body weight loss were sacrificed

for humane reasons.

Evaluation of the antitumor effects of drugs in vivo
To prepare tumor-bearing mice, 36106 HT-29 cells were

subcutaneously injected into 5-week-old female BALB/c-nu/nu

mice (Charles River, Kanagawa, Japan). Mice were bred at 23uC
and fed with sterilized food and water. When tumor volumes

reached 50–200 mm3, mice were randomly divided into several

groups, with three or four mice in each group. Naked gPTX,

gPTX-L, gPTX-IL, mixture of gPTX-L and trastuzumab,

trastuzumab only, CEP only, immunoliposomes encapsulating

CEP only (CEP-IL), or PBS was intravenously injected via the tail

vein twice in 3 h. The total injected dose of naked gPTX was

100 mg/kg. gPTX-L was injected at the gPTX-equivalent dose of

150 mg/kg. gPTX-IL was injected at the gPTX-equivalent dose of

10 to 150 mg/kg. As the control, the equivalent amount of CEP

contained in the naked gPTX at the dose of 100 mg/kg was

injected into mice. CEP-IL was also injected as the control at a

concentration at which the amount of lipid equivalent to that

contained in gPTX-IL at the gPTX-equivalent dose of 150 mg/
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kg. Trastuzumab (150 mg/kg) was injected at the same concen-

tration of trastuzumab conjugated to gPTX-IL at the gPTX-

equivalent dose of 150 mg/kg. Tumor volumes and body weights

were measured at 3-day intervals. The tumor volume was

calculated using the formula 0.56 width2 6 length, in which

width is the smallest diameter and length is the longest diameter.

The mice were sacrificed at day 30 and the tumors were weighed.

The antitumor effect by repeated administration was evaluated

in HT-29 cell-bearing BALB/c-nu/nu mice. Mice were randomly

divided into several groups, with for mice in each group. The mice

treated with gPTX-L, gPTX-IL, mixture of gPTX-L and

trastuzumab, CEP-L, CEP-IL, trastuzumab, or PBS were intra-

venously injected via the tail vein 3 times at day 0, 10 and 20 with

the gPTX-equivalent dose of 150 mg/kg at each time. Tumor

volumes and body weights were measured at 3 or 4-day intervals.

Mice with more than 20% body weight loss or tumors larger than

2,500 mm3 were sacrificed for humane reasons.

Statistical analysis
The results are presented as the mean 6 S.D. where necessary.

Statistical analyses were performed using Student’s t-test. P,0.05

was considered statistically significant.

Results

Characterization of gPTX
The hydrophilicity of gPTX was evaluated by C18 reverse-phase

HPLC (Fig. 1A). The retention time of gPTX was 33.3 min

whereas that of PTX was 35.9 min, indicating that gPTX was

more hydrophilic than PTX. The hydrophilicity was further

assessed by evaluating solubility in 40% EG and CEP. The

maximal solubility of gPTX was 1.10 mg/mL in 40% EG and

20.0 mg/mL in CEP, whereas that of PTX was 0.12 mg/mL in

40% EG and 2.0 mg/mL in CEP. These results indicate that

gPTX had a 10-fold higher solubility than PTX in these solvents.

These data are summarized in Table 1.

Since the mechanism of PTX anticancer activity is based on the

inhibition of tubulin depolymerization, gPTX tubulin stabilization

activity was compared with that of PTX (Fig. 1B). gPTX induced

slower polymerization than PTX and the maximal tubulin

polymerization mediated by gPTX was 89.964.1% of that

induced by PTX. This result suggests that gPTX exhibits almost

equivalent inhibition of tubulin depolymerization, although the

affinity of gPTX for b-tubulin may be lower than that of PTX

because of the glucose moiety.

Preparation and characterization of gPTX-L and gPTX-IL
To encapsulate large amounts of gPTX into the inner water

core of liposomes, we first attempted a direct encapsulation

approach. In this method, the thin-film lipid layer was rehydrated

with the solvent-dissolved gPTX at the maximal concentration.

Since observed EE and LE were less than 1% and 0.1%,

respectively, gPTX at the maximal concentration in 40% EG

(1 mg/mL) was found inadequate for effective encapsulation

(Table S1). In contrast, we found CEP more useful as the solvent

for gPTX encapsulation than 40% EG. CEP-dissolved gPTX at

the maximal concentration (20 mg/mL) showed 17.6% of EE and

13.7% of LE. However, the EE obtained by direct encapsulation

with CEP is still less than 20%, and an EE of more than 60% is

required for clinical application.

To achieve more efficient encapsulation, we evaluated a remote

loading strategy with a solubility gradient between 40% EG and

CEP (Fig. 2). To optimize the lipid composition for gPTX-L,

different DPPC/Chol ratios were assessed by remote loading

under the solubility gradient. DPPC:Chol at a molar ratio of 3:1

appeared suitable in regards to EE and retention rate in 10% FBS

at 37uC (Fig. 3A, B). We next evaluated various incubation times

at 60uC for the encapsulation of gPTX under these parameters,

and found that 15 min of incubation achieved the highest EE

(Fig. 3C). Thus, liposomes composed of DPPC and Chol at a

molar ratio 3:1 with 5 mol% mPEG–DSPE and an incubation

period of 15 min for drug encapsulation were used for the

subsequent experiments.

Encapsulation of gPTX under these conditions by remote

loading showed 70.8% of EE and 8.0% of LE, whereas direct

encapsulation in CEP showed 44.6% of EE and 5.0% of LE

(Fig. 4A, B). The observed diameter of gPTX-L was almost

equivalent in both encapsulation methods, at approximately 140

to 150 nm (Fig. 4C). The EE of PTX by the solubility gradient

method was almost equivalent to that of gPTX. They exhibited

liposomal formulations in TEM images (Fig. 4E). However, the

LE of gPTX-L was 8-fold higher than that of PTX-L because of

the higher solubility of gPTX compared to that of PTX.

Furthermore, PTX-L was unstable in PBS at 4uC, exhibiting a

retention rate of drug as low as 44.4% in 4 days, whereas gPTX-L

was stable during the same period after the preparation of

liposomes (Fig. 4D). In addition, gPTX-L was stable enough to

Figure 1. Characterizations of gPTX. A, The hydrophobicity of PTX
and gPTX was evaluated by reverse-phase HPLC using a C18 column at a
flow rate of 1 mL/min with 55% (v/v) methanol under an isocratic
condition. B, The ability of 3 mM PTX (open circle) and gPTX (open
triangle) to stabilize porcine tubulin polymerization was evaluated
using a Tubulin Polymerization Assay Kit (Cytoskeleton). The fluorescent
reporter was detected with excitation at 360 nm and emission at
420 nm. Each dot represents the mean 6 S.D. (n = 3).
doi:10.1371/journal.pone.0107976.g001
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exhibit a retention rate of 97.6% without significant change in

particle size (65.3 nm) after 4 weeks of incubation in PBS at 4uC.

To confer gPTX-L with active targeting potential, trastuzumab

was conjugated onto the surface of liposomes to prepare gPTX-IL.

The mean particle size of gPTX-IL was approximately 150 nm,

which is the optimal size for solid tumor targeting based on EPR

effects. The zeta potentials of gPTX-L and gPTX-IL were 2

3.462.9 mV and 23.761.3 mV, respectively. The liposomal

formulation of gPTX-IL was also observed in TEM image (Fig.

S1).

Cytotoxicity of gPTX, gPTX-L and gPTX-IL in vitro
We next evaluated the cytotoxicity of different formulations of

gPTX in two HER2-overexpressing cancer cell lines, HT-29 and

SK-BR-3, and in the HER2 low-expressing cancer cell line MDA-

MB-231 by the MTT assay [7,22]. IC50 and IC100 were evaluated

after 72 h of exposure to the drugs (Fig. 5A and Table S2). gPTX-

L and gPTX-IL exhibited enhanced IC50 compared to gPTX,

while gPTX-IL exhibited a similar IC50 as gPTX-L independent

of HER2 expression (Fig. 5A). When IT50 was evaluated at IC100,

the shortest IT50 of gPTX-IL was observed following the

treatment of HER2-overexpressing HT-29 and SK-BR-3 cells,

whereas IT50 was not different between gPTX-L and gPTX-IL in

the treatment of HER2 low-expressing MDA-MB-231 cells

(Fig. 5B and Table S2). These results suggested that gPTX-IL

targeted HER2-expressing cells more efficiently than gPTX-L

together with the feasible cytotoxicity mediated by the liposomal

formulation.

Acute toxicity of gPTX, gPTX-L and gPTX-IL in vivo
Acute toxicity and the lethal dose of gPTX were next evaluated in

BALB/c mice (Fig. 6 and S2). The lethal dose of naked gPTX was

150 mg/kg, with a survival rate of 25 to 50%. The survival rate of

mice treated with the amount of CEP required to dissolve the lethal

dose of gPTX was 50 to 75%. However, 150 mg/kg of gPTX in the

liposomal formulation did not exhibit any toxicity, even when

gPTX dissolved in CEP was encapsulated into liposomes. Naked

gPTX induced a significant loss of body weight for more than a

week after injection, whereas gPTX-L and gPTX-IL did not

significantly affect body weight.

Table 1. Solubility of PTX and gPTX in different solvents.

Solvent Max. solubility (mg/mL)

PTX gPTX

*H2O 0.461023 2361023

40% EG 0.12 1.10

**CEP 2.0 20.0

* Solubility of H2O was referred as described previously [19].
** CEP consists of Cremophor EL and ethanol in PBS (12:12:76 volume %).
doi:10.1371/journal.pone.0107976.t001

Figure 2. Schematic illustration of remote loading with a
solubility gradient. CEP-encapsulated liposomes (CEP-L) and gPTX
dissolved in 40% EG were mixed and incubated. gPTX was encapsulated
into liposomes under a solubility gradient.
doi:10.1371/journal.pone.0107976.g002

Figure 3. Influence of the lipid composition and incubation
time for drug encapsulation by the solubility gradient method.
A, The encapsulation efficiency (EE) of gPTX-L with various lipid
compositions was evaluated after 30 min of incubation for gPTX
encapsulation. B, The drug retention of gPTX-L with different lipid
compositions was evaluated in medium supplied with 10% FBS at 37uC.
C, The efficiency of drug encapsulation under different durations of
incubation was evaluated with a DPPC to Chol ratio of 3:1.
doi:10.1371/journal.pone.0107976.g003
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Figure 4. Comparison of the encapsulation efficiency (EE), loading efficiency (LE), and particle size. A, EE. B, LE. C, particle size. #Control
indicated that gPTX-L was prepared with liposomes encapsulating 40% EG in 1 mg/mL gPTX. Comparison of stability at 4uC in PBS with PTX-L and
gPTX-L prepared by the solubility gradient method. D, The retention rates of PTX-L (open circle) and gPTX-L (open triangle) were evaluated by HPLC.
E, TEM images of PTX-L and gPTX-L. Each formulation was observed after 4 days of incubation. Each data point is presented as the mean 6 S.D.
(n = 3). *, P,0.05.
doi:10.1371/journal.pone.0107976.g004

Figure 5. Cytotoxicity of different gPTX formulations by the MTT assay. A, The IC50 values after drug exposure for 72 h are shown. B, The
IT50 values at IC100 are shown. The data are presented as the mean 6 S.D. for three independent experiments. *, P,0.05. **, P,0.01. ***, P,0.005.
****, P,0.001. NSD, no significant difference.
doi:10.1371/journal.pone.0107976.g005
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Suppression of tumor growth by gPTX-IL in vivo
The in vivo antitumor effects of different gPTX formulations

were evaluated in tumor-bearing mice that had been transplanted

with HT-29 cells. Although a single administration of gPTX-L

with/without trastuzumab at a gPTX-equivalent dose of 150 mg/

kg did not suppress tumor growth, gPTX-IL decreased tumor

weight in a dose-dependent manner and the gPTX-equivalent

doses of both 100 and 150 mg/kg of gPTX-IL significantly

suppressed tumor growth without affecting body weight (Fig. 7).

We further evaluated the antitumor effect of repeated adminis-

tration of the total dose of 450 mg/kg (Fig. 8). gPTX-IL showed

the most effective suppression of tumor growth without significant

loss of body weight. The mice treated with gPTX-IL exhibited the

longest 50% survival period more than 90 days after the first

administration.

Discussion

In this study, the ability of gPTX to stabilize tubulin

polymerization was 90% of that of PTX (Fig. 1). Although this

level of activity should be sufficient to inhibit cell growth and

proliferation, the IC50 of gPTX was 3–10-fold higher than that of

PTX (Fig. 5A). This apparent discrepancy between the tubulin

stabilization activity and the observed inhibition of cell growth

could be due to the hydrophilicity of gPTX, since the efficiency of

penetration into the lipid bilayer of the cell membrane depends on

hydrophobicity. As a result, gPTX exhibited weaker cytotoxicity

than PTX. In this context, gPTX may be safer than PTX with

respect to the potential for side effects when administered in vivo.

A suitable formulation of gPTX to efficiently penetrate the cell

membrane should enhance the availability as an anticancer drug

more effectively than PTX. It appears that the immunoliposome

formulation should be applicable to confer gPTX with penetra-

bility. Since we found that gPTX was soluble in 40% EG and

CEP, we first attempted direct encapsulation of gPTX into

liposomes in these solvents, but the EE was not practical to

prepare enough gPTX-L for clinical application (Table S1).

The remote loading method is a typical method to facilitate

efficient encapsulation of drugs into the inner water core of

liposomes. PEGylated liposome-encapsulated doxorubicin, known

as Doxil, is prepared by the ammonium sulfate gradient remote

loading method [18]. The application of a pH gradient method

was developed for the encapsulation of a derivative of docetaxel

modified with a weak base group [23]. However, this method is

not considered suitable for the encapsulation of uncharged drugs

such as taxanes. Hence, we developed an approach to use the

different solubilities of gPTX in solvents in the remote loading

procedure. We developed a novel remote loading method using a

solubility gradient between 40% EG and CEP to achieve efficient

Figure 6. Acute toxicity of the drugs in vivo. gPTX (open circle),
gPTX-L (open triangle) or gPTX-IL (open diamond) at a concentration of
150 mg/kg, CEP (open square), or PBS (cross) was intravenously injected
into 6-week old female BALB/c mice. A, Changes in body weight. B,
Survival rate. Data are presented as the mean 6 S.D. (n = 4). gPTX is not
shown S.D. after day 3. NSD, no significant difference.
doi:10.1371/journal.pone.0107976.g006

Figure 7. Anticancer efficacy of different gPTX formulations
with single administration in HT-29 cells tumor-bearing mice.
When the tumor volume reached 50–200 mm3, gPTX-IL at the dose of
150 (open circle with solid line), 100 (open circle with broken line), 50
(brown circle with solid line), or 10 mg/kg (brown circle with broken
line), gPTX-L at the dose of 150 mg/kg (open triangle), gPTX-L at the
dose of 150 mg/kg with 150 mg/kg trastuzumab (gPTX-L + Tras, open
square), naked gPTX at the dose of 100 mg/kg (open diamond),
trastuzumab (Tras, closed square), CEP-IL (closed circle), or PBS (cross)
was intravenously injected. A, Tumor weights at day 30. B, Changes in
body weight. Data are presented as the mean 6 S.D. *, P,0.05
compared with PBS.
doi:10.1371/journal.pone.0107976.g007
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encapsulation of gPTX and PTX into liposomes (Fig. 4A–C).

When gPTX dissolved in 40% EG was added to 40% EG-

encapsulated liposomes, EE was ,10%. This result suggested that

the solubility gradient acted as a driving force for active

encapsulation. This is the first report of an efficient method for

encapsulating uncharged molecules such as PTX and its derivative

into liposomes by a remote loading method.

PTX-L was labile even when maintained at 4uC, and TEM

image revealed that it existed as a nonliposomal formulation after

4 days of incubation at 4uC. This is likely because sufficient

amounts of PTX accumulated in the hydrophobic space in the

lipid bilayer, resulting in the breakdown of the liposomes and

subsequent release of free PTX. This might be the reason why the

amounts of PTX encapsulated into liposomes is limited, although

liposome encapsulated-PTX in which PTX is inserted into the

lipid bilayer has been demonstrated [17]. In contrast, gPTX-L

prepared by remote loading displayed almost 100% retention rate

during 4 weeks of incubation at 4uC. These results suggested that

most gPTX is efficiently encapsulated into the inner water core of

liposomes by the solubility gradient method. The hydrophilic

character of gPTX compared to PTX could explain the good

retention of gPTX in the inner water core of liposomes.

Although Cremophor EL and ethanol are toxic, the commercial

formulation of PTX, Taxol, contains both as the solvent. Thus, the

development of liposomal PTX has been an important issue for

the use of this drug as an effective anticancer agent to avoid the

toxicity of the solvent and improve the efficacy of Taxol. In the

solubility gradient method, the solvent is directly encapsulated into

the liposomes. CEP-L should have fewer side effects than free CEP

because the compounds should be simultaneously delivered to

tumor tissues. This hypothesis was confirmed in the in vivo
experiment (Figs. 8 and S4). CEP-L did not cause serious side

effects such as loss of body weight in vivo, whereas free CEP was

toxic in the assessment for acute toxicity (Fig. S2).

To enhance the therapeutic effect of gPTX-L, we designed

immunoliposomes to target HER2 by displaying trastuzumab on

the surface of the liposomes. An in vitro cytotoxic assay after 72 h

of drug exposure revealed that gPTX-L exhibited enhanced

cytotoxicity compared with gPTX. This result suggests that large

amounts of gPTX simultaneously internalize into the cells with the

liposomal formulation. The IC50 of gPTX-IL was almost similar to

that of gPTX-L, even in HER2-overexpressing cancer cells.

However, gPTX-IL effectively suppressed the growth of HER2-

overexpressing cancer cells at the shortest IT50 among the

formulations. Thus, these results suggest that gPTX-IL efficiently

targets and internalizes into HER2-overexpressing cancer cells via

HER2-mediated endocytosis [14,24].

Liposomal formulation of PTX decreased the side effects of

naked PTX because PTX is not bioavailable until PTX is released

from liposomes [16,25]. We also demonstrated that liposomal

formulation of gPTX decreased the side effects of naked gPTX

(Fig. S2). The naked gPTX at the dose of 150 mg/kg was lethal to

mice and at both doses of 100 and 150 mg/kg gPTX showed

significant loss of body weights. However, the mice treated with

gPTX-L at the same doses of naked gPTX dramatically alleviated

the acute toxicity. gPTX-IL at the dose of 150 mg/kg also

Figure 8. Anticancer efficacy of different gPTX formulations with repeated administration in HT-29 cells tumor-bearing mice. gPTX-
IL (open circle with line), gPTX-L (open triangle), gPTX-L with trastuzumab (open square), trastuzumab (closed square), CEP-IL (closed circle), CEP-L
(closed triangle), or PBS (cross) was intravenously injected at day 0, 10, and 20. The dose of each administration was 150 mg/kg gPTX. A and B,
Changes in tumor volume. C, Changes in body weight. D, Survival curves. Data are presented as the mean 6 S.D. The changes of tumor volume and
body weight in the mice administered with gPTX-L do not show S.D. after day 10. The P value shown compared with gPTX-IL and gPTX-L with
trastuzumab treated group at day 43 (n = 4). *, P,0.05.
doi:10.1371/journal.pone.0107976.g008
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decreased the side effects of gPTX such as significant loss of body

weight and lethality just as gPTX-L did (Fig. 6). PTX encapsu-

lated into liposomes have showed large amounts of PTX

accumulate into the liver of the mice [13,26,27]. Reticuloendo-

thelial system such as the liver is a major mechanism for clearance

of the liposomes [28]. Drugs encapsulated into liposomes should

be excreted via liver tissue together with bile acids. Once PTX is

excreted into intestine it will not be reabsorbed due to P-

glycoprotein as well as the enzymatic degradation [29]. Since PTX

itself is considered to be metabolized predominantly in the liver

with cytochrome P450 [30]. Cytochrome P450 enzymatically

detoxifies PTX while highly excess dose of PTX should still be

lethally toxic. Taking these into consideration, gPTX in liposomes

should be excreted into intestine where P-glycoproteins prevent

reabsorption. On the other hand, naked gPTX is metabolized by

cytochrome P450 in the liver while the excess amount of gPTX

would affect the whole of the body. Therefore, it is conceivable

that liposomal formulation of gPTX alleviates the side effects of

gPTX.

Finally, we evaluated the antitumor effects of gPTX-L and

gPTX-IL in vivo. While treatment of mice with naked gPTX at

the dose of 100 mg/kg significantly decreased body weight,

treatment with gPTX-L and gPTX-IL did not significantly affect

body weight even when the gPTX-equivalent dose was 150 mg/

kg, which was lethal when gPTX dissolved in CEP was directly

injected into the mice. Although gPTX-L at the gPTX-equivalent

dose of 150 mg/kg did not suppress tumor growth, gPTX-IL at

the equivalent dose decreased tumor volume and effectively

suppressed tumor growth in HT-29 tumor-bearing BALB/c-nu/

nu and ICR-nu/nu mice in single administration experiments

(Figs. 7 and S4). We further evaluated antitumor efficiency with

repeated administration at the total dose of 450 mg/kg gPTX.

Both gPTX-L and -IL effectively inhibited tumor growth.

Furthermore, gPTX-IL exhibited the most effective antitumor

activity without side effects, such as a loss of body weight (Fig. 8).

We confirmed that liposomes accumulated at the tumor site in

HT-29 tumor-bearing mice via EPR effects, and trastuzumab-

displaying immunoliposomes exhibited a longer retention time at

the tumor site than non-targeting liposomes (Fig. S3). Immuno-

liposomes efficiently internalize into cancer cells at the tumor site

while non-targeting liposomes localize in the stroma of tumor

tissue [31]. In this regard, gPTX-IL effectively internalized into

the tumor cells and strongly inhibited tumor growth. On the other

hand, gPTX-L did not exhibit same antitumor activity as gPTX-

IL because non-targeting liposomes did not have a sufficient

retention time to affect tumor growth.

Nanoparticle-based PTX formulations, Abraxane (albumin-

bound PTX) and Lipusu (liposome-encapsulated PTX), have been

commercially and clinically available. The 50% lethal dose (LD50)

of each drug in mice was reported at the PTX-equivalent dose of

47 and 70 mg/kg, respectively [32,33]. The LD50 of our gPTX-L

was more than 150 mg/kg of gPTX. Taking into account the

molecular weights and tubulin polymerization assay results, the

dose of 150 mg/kg of gPTX is equivalent to the dose of 100 mg/

kg of PTX. Furthermore, gPTX-IL was also injected at the gPTX-

equivalent dose of 150 mg/kg in single administration experi-

ments. Yang et al. previously reported trastuzumab-displaying and

PTX encapsulating liposomes [12,14]. The antitumor activity of

their PTX-immunoliposomes was evaluated at the PTX-equiva-

lent total dose of 22.5 mg/kg (three administrations of PTX

equivalent of 7.5 mg/kg with a 4-day interval) [12]. The PTX-

equivalent dose of our gPTX-IL in antitumor effect of the repeated

administration was estimated to be 13-fold higher than that of

their PTX-immunoliposomes. Our gPTX-IL thus could be used

for drug formulations to enable administration with high effective

anticancer activity in patients with HER2 overexpressing cancer

cells.

Together our results show that gPTX was efficiently encapsu-

lated into liposomes via the novel encapsulation strategy including

a solubility gradient. Immunoliposomes encapsulated gPTX

successfully exhibited efficient anticancer activity against HER2-

overexpressing cancer cells in vitro and in vivo. Thus, we propose

gPTX-IL should be an excellent candidate as a targeted drug

delivery system.

Conclusions

gPTX generated by coupling a glucose moiety at the 7-OH

residue of PTX allowed encapsulation of the drug into liposomes

with high efficiency without a significant decrease in its ability to

stabilize tubulin polymerization. The cytotoxic activity of gPTX

was significantly less than that of PTX, suggesting that the

hydrophilic character of gPTX could prevent the molecule from

permeating through the lipid bilayer of cells. Encapsulation of

gPTX into liposomes with high efficiency was successfully

achieved by the novel remote loading strategy under a solubility

gradient between CEP and 40% EG. This strategy should enable

the preparation of sufficient quantities of both gPTX-L and

gPTX-IL for practical therapy. Notably, the cytotoxicity of gPTX-

IL was dependent on the exposure time, suggesting that the

potential of immunoliposomes should be high in targeting cell

surface antigens. As expected, gPTX-IL strongly inhibited tumor

growth of HER2-overexpressing cancer cells with less side effects

in vivo. Taken together, the immunoliposomes containing

effective amounts of gPTX should be a promising formulation of

anticancer drugs for targeted drug delivery systems with gPTX.

Supporting Information

Figure S1 TEM image of gPTX-IL. The formulation was

observed with TEM.

(TIF)

Figure S2 Acute toxicity of gPTX and gPTX-L in vivo.
gPTX (open circle) or gPTX-L (closed circle) at a concentration of

150 mg/kg, gPTX (open triangle) or gPTX-L (closed triangle) at a

concentration of 100 mg/kg, CEP (open square), or PBS (cross)

was intravenously injected into 6-week old female BALB/c mice.

A, Changes in body weight. B, Survival rate. Data are presented as

the mean 6 S.D. (n = 4). gPTX at the concentration of 150 mg/kg

and CEP are not shown S.D. after day 1.

(TIF)

Figure S3 Distribution of HSA-Cy5.5 in tumor-bearing
ICR-nu/nu mice transplanted with HT29 cells. When the

tumor volume reached 100–200 mm3, HSA-Cy5.5-IL, HSA-

Cy5.5-L, free HSA-Cy5.5, and HSA as a control were

intravenously injected into mice. Cy5.5 fluorescence was detected

2, 4, 6, 12, 24, and 48 h after injection. Each arrow indicates the

location of tumor tissue.

(TIF)

Figure S4 Anticancer efficacy of different gPTX formu-
lations in tumor-bearing ICR-nu/nu mice transplanted
with HT-29 cells. When the tumor volume reached 50–

200 mm3, gPTX-IL (open circle), gPTX-L (open triangle), CEP-

IL (closed circle), CEP-L (closed triangle), trastuzumab (closed

square), or PBS as a control (cross) was intravenously injected at a

dose of 150 mg/kg gPTX on day 0. A and B, Changes in tumor

volume. C, Changes in body weight. Data are presented as the
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mean 6 S.D. (n = 4). *, P,0.05 at day 30 for gPTX-IL compared

with the other treatments.

(TIF)

Table S1 Encapsulation efficiency (EE) and loading
efficiency (LE) of PTX-L or gPTX-L in a direct encapsu-
lation method with 40% EG and CEP at the maximal
concentration.
(DOCX)

Table S2 Cytotoxicity of different PTX formulations in
HER2-overexpressing cancer cells (HT-29 and SK-BR-3)
and HER2 low-expressing cancer cells (MDA-MB-231).
(DOCX)

Methods S1 (DOCX)
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17. Koudelka S, Turánek J (2012) Liposomal paclitaxel formulations. J Control

Release 163: 322–334.
18. Barenholz Y (2012) Doxil–the first FDA-approved nano-drug: lessons learned.

J Control Release 160: 117–134.

19. Mandai T, Okumoto H, Oshitari T, Nakanishi K, Mikuni K, et al. (2001)

Synthesis and biological evaluation of water soluble taxoids bearing sugar

moieties. Heterocycles 54: 561–566.

20. Gao J, Liu W, Xia Y, Li W, Sun J, et al. (2011) The promotion of siRNA

delivery to breast cancer overexpressing epidermal growth factor receptor

through anti-EGFR antibody conjugation by immunoliposomes. Biomaterials

32: 3459–3470.

21. Steinhauser I, Spänkuch B, Strebhardt K, Langer K (2006) Trastuzumab-

modified nanoparticles: optimisation of preparation and uptake in cancer cells.

Biomaterials 27: 4975–4983.

22. Xu H, Yu Y, Marciniak D, Rishi AK, Sarkar FH, et al. (2005) Epidermal growth

factor receptor (EGFR)-related protein inhibits multiple members of the EGFR

family in colon and breast cancer cells. Mol Cancer Ther 4: 435–442.

23. Zhigaltsev IV, Winters G, Srinivasulu M, Crawford J, Wong M, et al. (2010)

Development of a weak-base docetaxel derivative that can be loaded into lipid

nanoparticles. J Control Release 144: 332–340.

24. Vaidyanath A, Hashizume T, Nagaoka T, Takeyasu N, Satoh H, et al. (2011)

Enhanced internalization of ErbB2 in SK-BR-3 cells with multivalent forms of

an artificial ligand. J Cell Mol Med 15: 2525–2538.

25. Sharma A, Mayhew E, Bolcsak L, Cavanaugh C, Harmon P, et al. (1997)

Activity of paclitaxel liposome formulations against human ovarian tumor

xenografts. Int J Cancer 71: 103–107.

26. Yoshizawa Y, Kono Y, Ogawara K, Kimura T, Higaki K (2011) PEG

liposomalization of paclitaxel improved its in vivo disposition and anti-tumor

efficacy. Int J Pharm 412: 132–141.

27. Yang T, Cui FD, Choi MK, Cho JW, Chung SJ, et al. (2007) Enhanced

solubility and stability of PEGylated liposomal paclitaxel: in vitro and in vivo

evaluation. Int J Pharm 338: 317–326.

28. Fetterly GJ, Straubinger RM (2003) Pharmacokinetics of paclitaxel-containing

liposomes in rats. AAPS PharmSci 5: E32.

29. Sparreboom A, van Asperen J, Mayer U, Schinkel AH, Smit JW, et al. (1997)

Limited oral bioavailability and active epithelial excretion of paclitaxel (Taxol)

caused by P-glycoprotein in the intestine. Proc Natl Acad Sci U S A 94: 2031–

2035.

30. Spratlin J, Sawyer MB (2007) Pharmacogenetics of paclitaxel metabolism. Crit

Rev Oncol Hematol 61: 222–229.

31. Kirpotin DB, Drummond DC, Shao Y, Shalaby MR, Hong K, et al. (2006)

Antibody targeting of long-circulating lipidic nanoparticles does not increase

tumor localization but does increase internalization in animal models. Cancer

Res 66: 6732–6740.

32. Desai N, Trieu V, Yao Z, Louie L, Ci S, et al. (2006) Increased antitumor

activity, intratumor paclitaxel concentrations, and endothelial cell transport of

cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremo-

phor-based paclitaxel. Clin Cancer Res 12: 1317–1324.

33. Wang H, Cheng G, Du Y, Ye L, Chen W, et al. (2013) Hypersensitivity reaction

studies of a polyethoxylated castor oil-free, liposome-based alternative paclitaxel

formulation. Mol Med Rep 7: 947–952.

Paclitaxel Glycoside Encapsulating Immunoliposomes

PLOS ONE | www.plosone.org 10 September 2014 | Volume 9 | Issue 9 | e107976


