37 research outputs found

    Syncope and loss of consciousness after implantation of a cardioverter-defibrillator in patients with Brugada syndrome: Prevalence and characteristics in long-term follow-up

    Get PDF
    Background Syncope is a significant prognostic factor in patients with Brugada syndrome (BrS). However, the risk of ventricular arrhythmia in patients with nonarrhythmic loss of consciousness (LOC) is similar to that in asymptomatic patients. LOC events after implantable cardioverter-defibrillator (ICD) implantation may provide insights into underlying causes of the initial LOC episode. Objective The purpose of this study was to examine LOC characteristics following ICD implantation. Methods We retrospectively analyzed 112 patients with BrS (mean age 47 years; 111 men) who were treated with an ICD. The patients were classified into 3 groups based on symptoms at implantation: asymptomatic (35 patients); LOC (46 patients); and ventricular tachyarrhythmia (VTA) (31 patients). We evaluated the incidence and cause of LOC during long-term follow-up after ICD implantation. Results During mean follow-up of 12.2 years, 41 patients (37%) experienced LOC after ICD implantation. Arrhythmic LOC occurred in 5 asymptomatic patients, 14 LOC patients, and 16 patients with VTA. Nonarrhythmic LOC, similar to the initial episode, occurred after ICD implantation in 6 patients with prior LOC (2 with neurally mediated syncope and 4 with epilepsy). Most epileptic patients experienced LOC during rest or sleeping, and did not show an abnormal encephalogram during initial evaluation of the LOC episodes. Conclusion After ICD implantation, 13% of patients had nonarrhythmic LOC similar to the initial episode. Accurate classification of LOC based on a detailed medical history is important for risk stratification, although distinguishing arrhythmic LOC from epilepsy-related LOC episodes can be challenging depending on the circumstances and characteristics of the LOC event

    Usefulness of right ventriculography compared with computed tomography for ruling out the possibility of lead perforation before lead extraction

    Get PDF
    Purpose High-risk patients can be identified by preprocedural computed tomography (CT) before lead extraction. However, CT evaluation may be difficult especially for lead tip identification due to artifacts in the leads. Selective right ventriculography (RVG) may enable preprocedural evaluation of lead perforation. We investigated the efficacy of RVG for identifying right ventricular (RV) lead perforation compared with CT in patients who underwent lead extraction. Methods Ninety-five consecutive patients who were examined by thin-section non-ECG-gated multi-detector CT and RVG before lead extraction were investigated retrospectively. Newly recognized pericardial effusion after lead extraction was used as a reference standard for lead perforation. We analyzed the prevalence of RV lead perforation diagnosed by each method. The difference in the detection rates of lead perforation by RVG and CT was evaluated. Results Of the 115 RV leads in the 95 patients, lead perforation was diagnosed for 35 leads using CT, but the leads for 29 (83%) of those 35 leads diagnosed as lead perforation by CT were shown to be within the right ventricle by RVG. Three patients with 5 leads could not be evaluated by CT due to motion artifacts. The diagnostic accuracies of RVG and CT were significantly different (p < 0.001). There was no complication of pericardial effusion caused by RV lead extraction. Conclusion RVG for identification of RV lead perforation leads to fewer false-positives compared to non-ECG-gated CT. However, even in cases in which lead perforation is diagnosed, most leads may be safely extracted by transvenous lead extraction

    Significance of Exercise-Related Ventricular Arrhythmias in Patients With Brugada Syndrome

    Get PDF
    Background Sinus tachycardia during exercise attenuates ST‐segment elevation in patients with Brugada syndrome, whereas ST‐segment augmentation after an exercise test is a high‐risk sign. Some patients have premature ventricular contractions (PVCs) related to exercise, but the significance of exercise‐related PVCs in patients with Brugada syndrome is still unknown. The objective of this study was to determine the significance of exercise‐related PVCs for predicting occurrence of ventricular fibrillation (VF) in patients with Brugada syndrome. Methods and Results The subjects were 307 patients with Brugada syndrome who performed a treadmill exercise test. We evaluated the occurrence of PVCs at rest, during exercise and at the peak of exercise, and during recovery after exercise (0–5 minutes). We followed the patients for 92±68 months and evaluated the occurrence of VF. PVCs occurred in 82 patients (27%) at the time of treadmill exercise test: PVCs appeared at rest in 14 patients (4%), during exercise in 60 patients (20%), immediately after exercise (0–1.5 minutes) in 28 patients (9%), early after exercise (1.5–3 minutes) in 18 patients (6%), and late after exercise (3–5 minutes) in 12 patients (4%). Thirty patients experienced VF during follow‐up. Multivariable analysis including symptoms, spontaneous type 1 ECG, and PVCs in the early recovery phase showed that these factors were independently associated with VF events during follow‐up. Conclusions PVCs early after an exercise test are associated with future occurrence of VF events. Rebound of vagal nerve activity at the early recovery phase would promote ST‐segment augmentation and PVCs in high‐risk patients with Brugada syndrome

    Significant Delayed Activation on the Right Ventricular Outflow Tract Represents Complete Right Bundle-Branch Block Pattern in Brugada Syndrome

    Get PDF
    Background: The appearance of complete right bundle-branch block (CRBBB) in Brugada syndrome (BrS) is associated with an increased risk of ventricular fibrillation. The pathophysiological mechanism of CRBBB in patients with BrS has not been well established. We aimed to clarify the significance of a conduction delay zone associated with arrhythmias on CRBBB using body surface mapping in patients with BrS. Methods and Results: Body surface mapping was recorded in 11 patients with BrS and 8 control patients both with CRBBB. CRBBB in control patients was transiently exhibited by unintentional catheter manipulation (proximal RBBB). Ventricular activation time maps were constructed for both of the groups. We divided the anterior chest into 4 areas (inferolateral right ventricle [RV], RV outflow tract [RVOT], intraventricular septum, and left ventricle) and compared activation patterns between the 2 groups. Excitation propagated to the RV from the left ventricle through the intraventricular septum with activation delay in the entire RV in the control group (proximal RBBB pattern). In 7 patients with BrS, excitation propagated from the inferolateral RV to the RVOT with significant regional activation delay. The remaining 4 patients with BrS showed a proximal RBBB pattern with the RVOT activation delay. The ventricular activation time in the inferolateral RV was significantly shorter in patients with BrS without a proximal RBBB pattern than in control patients. Conclusions: The CRBBB morphology in patients with BrS consisted of 2 mechanisms: (1) significantly delayed conduction in the RVOT and (2) proximal RBBB with RVOT conduction delay. Significant RVOT conduction delay without proximal RBBB resulted in CRBBB morphology in patients with BrS

    NaPi-IIc induces vacuole formation in OK cells

    Get PDF
    NaPi-IIc/SLC34A3 is a sodium-dependent inorganic phosphate (Pi) transporter in the renal proximal tubules and its mutations cause hereditary hypophosphatemic rickets with hypercalciuria (HHRH). In the present study, we created a specific antibody for opossum SLC34A3, NaPi-IIc (oNaPi-IIc), and analyzed its localization and regulation in opossum kidney cells (a tissue culture model of proximal tubular cells). Immunoreactive oNaPi-IIc protein levels increased during the proliferative phase and decreased during differentiation. Moreover, stimulating cell growth upregulated oNaPi-IIc protein levels, whereas suppressing cell proliferation downregulated oNaPi-IIc protein levels. Immunocytochemistry revealed that endogenous and exogenous oNaPi-IIc proteins localized at the protrusion of the plasma membrane, which is a phosphatidylinositol 4,5-bisphosphate (PIP2) rich-membrane, and at the intracellular vacuolar membrane. Exogenous NaPi-IIc also induced cellular vacuoles and localized in the plasma membrane. The ability to form vacuoles is specific to electroneutral NaPi-IIc, and not electrogenic NaPi-IIa or NaPi-IIb. In addition, mutations of NaPi-IIc (S138F and R468W) in HHRH did not cause cellular PIP2-rich vacuoles. In conclusion, our data anticipate that NaPi-IIc may regulate PIP2 production at the plasma membrane and cellular vesicle formation

    Cerebral small vessel disease genomics and its implications across the lifespan

    Get PDF
    White matter hyperintensities (WMH) are the most common brain-imaging feature of cerebral small vessel disease (SVD), hypertension being the main known risk factor. Here, we identify 27 genome-wide loci for WMH-volume in a cohort of 50,970 older individuals, accounting for modification/confounding by hypertension. Aggregated WMH risk variants were associated with altered white matter integrity (p = 2.5×10-7) in brain images from 1,738 young healthy adults, providing insight into the lifetime impact of SVD genetic risk. Mendelian randomization suggested causal association of increasing WMH-volume with stroke, Alzheimer-type dementia, and of increasing blood pressure (BP) with larger WMH-volume, notably also in persons without clinical hypertension. Transcriptome-wide colocalization analyses showed association of WMH-volume with expression of 39 genes, of which four encode known drug targets. Finally, we provide insight into BP-independent biological pathways underlying SVD and suggest potential for genetic stratification of high-risk individuals and for genetically-informed prioritization of drug targets for prevention trials.Peer reviewe

    Cerebral small vessel disease genomics and its implications across the lifespan

    Get PDF
    White matter hyperintensities (WMH) are the most common brain-imaging feature of cerebral small vessel disease (SVD), hypertension being the main known risk factor. Here, we identify 27 genome-wide loci for WMH-volume in a cohort of 50,970 older individuals, accounting for modification/confounding by hypertension. Aggregated WMH risk variants were associated with altered white matter integrity (p = 2.5×10-7) in brain images from 1,738 young healthy adults, providing insight into the lifetime impact of SVD genetic risk. Mendelian randomization suggested causal association of increasing WMH-volume with stroke, Alzheimer-type dementia, and of increasing blood pressure (BP) with larger WMH-volume, notably also in persons without clinical hypertension. Transcriptome-wide colocalization analyses showed association of WMH-volume with expression of 39 genes, of which four encode known drug targets. Finally, we provide insight into BP-independent biological pathways underlying SVD and suggest potential for genetic stratification of high-risk individuals and for genetically-informed prioritization of drug targets for prevention trials.</p
    corecore