193 research outputs found

    Biomimetic tactile target acquisition, tracking and capture

    Get PDF
    Good performance in unstructured/uncertain environments is an ongoing problem in robotics; in biology, it is an everyday observation. Here, we model a particular biological system - hunting in the Etruscan shrew - as a case study in biomimetic robot design. These shrews strike rapidly and accurately after gathering very limited sensory information from their whiskers; we attempt to mimic this performance by using model-based simultaneous discrimination and localisation of a 'prey' robot (i.e. by using strong priors to make sense of limited sensory data), building on our existing low-level models of attention and appetitive behaviour in small mammals. We report performance that is comparable, given the spatial and temporal scale differences, to shrew performance, and discuss what this study reveals about biomimetic robot design in general. © 2013 Elsevier B.V. All rights reserved

    Do Black, Asian and Minority Ethnic nurses and midwives experience a career delay? A cross-sectional survey investigating career progression barriers

    Get PDF
    Background Black, Asian and Minority Ethnic nurses and midwives are under-represented in higher and managerial roles. Aims This study explored the presence and nature of career progression delays for Black, Asian and Minority Ethnic nurses and midwives and investigated where the barriers to progression were. Design A secondary analysis of data from a wider cross-sectional survey investigating workplace experiences, burnout and patient safety in nurses and midwives. Methods 538 nurses and midwives were recruited from four UK hospitals between February and March 2017. A career progression delay was viewed as being present if Black, Asian and Minority Ethnic nurses and midwives had spent longer on the entry level nursing grade and less time on higher grades in the previous 10 years. The analysis included items pertaining to: receipt of professional training, perceived managerial support for progression, likelihood of submitting applications and application success rates. Data were analysed using linear regression, odds ratios and t-tests. Results were reported using the STROBE Checklist. Results Black, Asian and Minority Ethnic nurses and midwives (n = 104; 19.4%) had spent more months working at the entry-level grade (M = 75.75, SD = 44.90) than White nurses and midwives (n = 428; 79.7%; M = 41.85, SD = 44.02, p < 0.001) and fewer months at higher grades (M = 15.29, SD = 30.94 v 29.33, SD = 39.78, p = 0.006 at Band 6; M = 6.54, SD = 22.59 v M = 19.68, SD = 37.83, p = 0.001 at Band 7) over the previous 10 years. Black, Asian and Minority Ethnic nurses and midwives were less likely to have received professional training in the previous year (N = 53; 53.0% v N = 274; 66.0%, p = 0.015) and had to apply for significantly more posts than White nurses and midwives before gaining their first post on their current band (M = 1.22, SD = 1.51 v M = 0.81, SD = 1.55, p = 0.026). Conclusions Interventions are needed to improve racial equality regarding career progression in nurses and midwives. Increasing access to professional training and reducing discriminatory practice in job recruitment procedures may be beneficial

    Storage capacity of a constructive learning algorithm

    Full text link
    Upper and lower bounds for the typical storage capacity of a constructive algorithm, the Tilinglike Learning Algorithm for the Parity Machine [M. Biehl and M. Opper, Phys. Rev. A {\bf 44} 6888 (1991)], are determined in the asymptotic limit of large training set sizes. The properties of a perceptron with threshold, learning a training set of patterns having a biased distribution of targets, needed as an intermediate step in the capacity calculation, are determined analytically. The lower bound for the capacity, determined with a cavity method, is proportional to the number of hidden units. The upper bound, obtained with the hypothesis of replica symmetry, is close to the one predicted by Mitchinson and Durbin [Biol. Cyber. {\bf 60} 345 (1989)].Comment: 13 pages, 1 figur

    Microscopy techniques for determining water-cement (w/c) ratio in hardened concrete: A round-robin assessment

    Get PDF
    Water to cement (w/c) ratio is usually the most important parameter specified in concrete design and is sometimes the subject of dispute when a shortfall in concrete strength or durability is an issue. However, determination of w/c ratio in hardened concrete by testing is very difficult once the concrete has set. This paper presents the results from an inter-laboratory round-robin study organised by the Applied Petrography Group to evaluate and compare microscopy methods for measuring w/c ratio in hardened concrete. Five concrete prisms with w/c ratios ranging from 0.35 to 0.55, but otherwise identical in mix design were prepared independently and distributed to 11 participating petrographic laboratories across Europe. Participants used a range of methods routine to their laboratory and these are broadly divided into visual assessment, measurement of fluorescent intensity and quantitative backscattered electron microscopy. Some participants determined w/c ratio using more than one method or operator. Consequently, 100 individual w/c ratio determinations were collected, representing the largest study of its type ever undertaken. The majority (81%) of the results are accurate to within ± 0.1 of the target mix w/c ratios, 58% come to within ± 0.05 and 37% are within ± 0.025. The study shows that microscopy-based methods are more accurate and reliable compared to the BS 1881-124 physicochemical method for determining w/c ratio. The practical significance, potential sources of errors and limitations are discussed with the view to inform future applications

    The co-evolution of the genome and epigenome in colorectal cancer.

    Get PDF
    Colorectal malignancies are a leading cause of cancer-related death1 and have undergone extensive genomic study2,3. However, DNA mutations alone do not fully explain malignant transformation4-7. Here we investigate the co-evolution of the genome and epigenome of colorectal tumours at single-clone resolution using spatial multi-omic profiling of individual glands. We collected 1,370 samples from 30 primary cancers and 8 concomitant adenomas and generated 1,207 chromatin accessibility profiles, 527 whole genomes and 297 whole transcriptomes. We found positive selection for DNA mutations in chromatin modifier genes and recurrent somatic chromatin accessibility alterations, including in regulatory regions of cancer driver genes that were otherwise devoid of genetic mutations. Genome-wide alterations in accessibility for transcription factor binding involved CTCF, downregulation of interferon and increased accessibility for SOX and HOX transcription factor families, suggesting the involvement of developmental genes during tumourigenesis. Somatic chromatin accessibility alterations were heritable and distinguished adenomas from cancers. Mutational signature analysis showed that the epigenome in turn influences the accumulation of DNA mutations. This study provides a map of genetic and epigenetic tumour heterogeneity, with fundamental implications for understanding colorectal cancer biology

    Phenotypic plasticity and genetic control in colorectal cancer evolution.

    Get PDF
    Genetic and epigenetic variation, together with transcriptional plasticity, contribute to intratumour heterogeneity1. The interplay of these biological processes and their respective contributions to tumour evolution remain unknown. Here we show that intratumour genetic ancestry only infrequently affects gene expression traits and subclonal evolution in colorectal cancer (CRC). Using spatially resolved paired whole-genome and transcriptome sequencing, we find that the majority of intratumour variation in gene expression is not strongly heritable but rather 'plastic'. Somatic expression quantitative trait loci analysis identified a number of putative genetic controls of expression by cis-acting coding and non-coding mutations, the majority of which were clonal within a tumour, alongside frequent structural alterations. Consistently, computational inference on the spatial patterning of tumour phylogenies finds that a considerable proportion of CRCs did not show evidence of subclonal selection, with only a subset of putative genetic drivers associated with subclone expansions. Spatial intermixing of clones is common, with some tumours growing exponentially and others only at the periphery. Together, our data suggest that most genetic intratumour variation in CRC has no major phenotypic consequence and that transcriptional plasticity is, instead, widespread within a tumour

    Whisker Movements Reveal Spatial Attention: A Unified Computational Model of Active Sensing Control in the Rat

    Get PDF
    Spatial attention is most often investigated in the visual modality through measurement of eye movements, with primates, including humans, a widely-studied model. Its study in laboratory rodents, such as mice and rats, requires different techniques, owing to the lack of a visual fovea and the particular ethological relevance of orienting movements of the snout and the whiskers in these animals. In recent years, several reliable relationships have been observed between environmental and behavioural variables and movements of the whiskers, but the function of these responses, as well as how they integrate, remains unclear. Here, we propose a unifying abstract model of whisker movement control that has as its key variable the region of space that is the animal's current focus of attention, and demonstrate, using computer-simulated behavioral experiments, that the model is consistent with a broad range of experimental observations. A core hypothesis is that the rat explicitly decodes the location in space of whisker contacts and that this representation is used to regulate whisker drive signals. This proposition stands in contrast to earlier proposals that the modulation of whisker movement during exploration is mediated primarily by reflex loops. We go on to argue that the superior colliculus is a candidate neural substrate for the siting of a head-centred map guiding whisker movement, in analogy to current models of visual attention. The proposed model has the potential to offer a more complete understanding of whisker control as well as to highlight the potential of the rodent and its whiskers as a tool for the study of mammalian attention

    Catalytic Intermolecular Hetero-Dehydro-Diels–Alder Cycloadditions: Regio- and Diasteroselective Synthesis of 5,6-Dihydropyridin-2-ones

    Get PDF
    A novel catalyzed intermolecular heterodehydro-Diels–Alder reaction between push–pull 1,3-dien-5-ynes and aldimines or silylaldimines is reported. The sequence is promoted both by gold(I) or silver(I) catalysts and leads to the diastereo- and regioselective formation of 5,6-dihydropyridin-2-onesMICINN (Spain) (grants CTQ2009-09949, CTQ2010-16790, PTA2008-1524-P contract to J.M.F.-G. and Ramon y Cajal postdoctoral contract to M.A.F.-R.) and FICYT (project IB08-088)This document is the Accepted Manuscript version of a Published Work that appeared in final form in Organic letters, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://pubs.acs.org/page/policy/articlesonrequest/index.htm

    Neural Computation via Neural Geometry: A Place Code for Inter-whisker Timing in the Barrel Cortex?

    Get PDF
    The place theory proposed by Jeffress (1948) is still the dominant model of how the brain represents the movement of sensory stimuli between sensory receptors. According to the place theory, delays in signalling between neurons, dependent on the distances between them, compensate for time differences in the stimulation of sensory receptors. Hence the location of neurons, activated by the coincident arrival of multiple signals, reports the stimulus movement velocity. Despite its generality, most evidence for the place theory has been provided by studies of the auditory system of auditory specialists like the barn owl, but in the study of mammalian auditory systems the evidence is inconclusive. We ask to what extent the somatosensory systems of tactile specialists like rats and mice use distance dependent delays between neurons to compute the motion of tactile stimuli between the facial whiskers (or ‘vibrissae’). We present a model in which synaptic inputs evoked by whisker deflections arrive at neurons in layer 2/3 (L2/3) somatosensory ‘barrel’ cortex at different times. The timing of synaptic inputs to each neuron depends on its location relative to sources of input in layer 4 (L4) that represent stimulation of each whisker. Constrained by the geometry and timing of projections from L4 to L2/3, the model can account for a range of experimentally measured responses to two-whisker stimuli. Consistent with that data, responses of model neurons located between the barrels to paired stimulation of two whiskers are greater than the sum of the responses to either whisker input alone. The model predicts that for neurons located closer to either barrel these supralinear responses are tuned for longer inter-whisker stimulation intervals, yielding a topographic map for the inter-whisker deflection interval across the surface of L2/3. This map constitutes a neural place code for the relative timing of sensory stimuli
    corecore