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The co-evolution of the genome and 
epigenome in colorectal cancer
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Colorectal malignancies are a leading cause of cancer-related death1 and have 
undergone extensive genomic study2,3. However, DNA mutations alone do not fully 
explain malignant transformation4–7. Here we investigate the co-evolution of the 
genome and epigenome of colorectal tumours at single-clone resolution using spatial 
multi-omic profiling of individual glands. We collected 1,370 samples from 30 primary 
cancers and 8 concomitant adenomas and generated 1,207 chromatin accessibility 
profiles, 527 whole genomes and 297 whole transcriptomes. We found positive 
selection for DNA mutations in chromatin modifier genes and recurrent somatic 
chromatin accessibility alterations, including in regulatory regions of cancer driver 
genes that were otherwise devoid of genetic mutations. Genome-wide alterations in 
accessibility for transcription factor binding involved CTCF, downregulation of 
interferon and increased accessibility for SOX and HOX transcription factor families, 
suggesting the involvement of developmental genes during tumourigenesis. Somatic 
chromatin accessibility alterations were heritable and distinguished adenomas from 
cancers. Mutational signature analysis showed that the epigenome in turn influences 
the accumulation of DNA mutations. This study provides a map of genetic and 
epigenetic tumour heterogeneity, with fundamental implications for understanding 
colorectal cancer biology.

Clonal evolution, fuelled by intra-tumour heterogeneity, drives 
tumour initiation, progression and treatment resistance8,9. Much is 
known about the genetic evolution and intra-tumour heterogeneity 
of colorectal malignancies2,3,10. Although genetic heterogeneity is 
widespread11, epigenetic changes are also responsible for phenotypic 
variation between cancer cells4–7. Epigenetic profiling of chromatin 
accessibility in colon cancer has been performed in seminal studies in 
cell lines12 and human samples13,14. However, current investigations are 
limited to single-bulk samples and some also lack normal controls14. 
Moreover, how cancer genomes and epigenomes concomitantly evolve 
and shape intra-tumour genetic and epigenetic heterogeneity remains 
unexplored.

Measuring genome–epigenome co-evolution in a quantitative manner 
is possible by multi-omic profiling at single-clone resolution and accu-
rate spatial sampling of human neoplasms, as well as matched normal 
tissue. Colorectal cancers (CRCs) are organized into glandular structures, 
reminiscent of the crypts in the normal intestinal epithelium15. Normal 

crypts are tube-like invaginations where cell proliferation is driven by a 
relatively small number of stem cells at the base16–19, and cancer glands 
are thought to have the same architecture20. This implies that all cells 
within a gland share a recent common ancestor and are a few cell divi-
sions apart: thus, glands are largely clonal populations that, through cell 
proliferation, copy DNA with relatively high fidelity. Ultimately, the gland 
can be thought of as a natural whole-genome amplification machine 
that can be exploited to perform multi-omics at single-clone resolution. 
Indeed, single-crypt and single-gland genomic profiling has long been 
used to study clonal dynamics in both normal21–23 and cancer cells10,24–29. 
We developed a method to concomitantly profile single nucleotide vari-
ants (SNVs), copy-number alterations (CNAs), chromatin accessibility 
with transposase-accessible chromatin sequencing (ATAC-seq)30 and full 
transcriptomes with RNA sequencing (RNA-seq) from the same individual 
gland or crypt. Here we present the results of multi-region single-gland 
multi-omics of 1,370 samples from 38 lesions arising in 30 patients, with 
21–55 tumour samples per patient (median = 42).
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Single-gland multi-omics
We prospectively collected fresh resection specimens from 30 stage 
I–III primary CRCs and 8 concomitant adenomas from 30 patients 
referred for surgery at the University College London Hospital (Fig. 1a, 
Methods, Supplementary Fig. 1 and Supplementary Table 1 for clinical 
information). Single-gland isolation was performed on normal and 
neoplastic tissue (Fig. 1b and Methods), followed by separation of nuclei 
from cytosol (Fig. 1c). Leftover fragments that remained after gland 
isolation were retained to assess how representative glands are of the 
bulk they originated from. We will refer to those samples, consisting 
of a few tens of glands, as minibulks. We used the nuclei to perform 
whole-genome sequencing (WGS) and chromatin accessibility profiling 
with ATAC-seq, and the cytosol to perform full transcriptome RNA-seq 

(Fig. 1d and Methods). We verified that cytosolic RNA expression in 
our normal colon tissue controls was highly correlated with whole-cell 
RNA expression from the The Cancer Genome Atlas cohort2 (Supple-
mentary Fig. 2).

Our strategy of spatially sampling tumour tissue was designed to 
measure clonal evolution at multiple scales. We first sampled four 
spatially distant regions of a given cancer (regions A, B, C and D) located 
close to the tumour edge, one distant region of normal epithelium 
(region E) and concomitant adenomas if present (regions F, G and H).  
A bulk sample was collected from each region and was spatially annotated  
in the original resection specimen (Fig. 1e and Supplementary Fig. 1). 
Each piece was cut into four subregions (for example, A1–A4 and B1–B4) 
as shown in the inset of Fig. 1e. We then collected and profiled 12–40 
(median = 37) individual glands and 2–17 (median = 4) minibulks from 
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Fig. 1 | Spatial single-gland multi-omics. a, Fresh colectomy specimens from 
30 patients with stage I–III CRC were used to collect tissue from 30 cancers and 
8 adenomas. b, Single glands and small bulks (minibulks) were isolated from 
normal and neoplastic samples. c, We performed cell lysis followed by nuclei 
pelleting on each sample. d, Cytosolic fractions were used for RNA-seq whereas 
nuclei were used for WGS and ATAC-seq. e, We identified separate regions of 
the specimen: carcinoma (A, B, C and D), a distant normal sample (E) and 

adenomas if present (F, G and H). Each sample was split into 4 fragments (inset). 
Scale bar, 1 cm. f, From each fragment, we collected individual glands (labelled 
as _G) as well as minibulks (agglomerates of a few dozen crypts, labelled as _B). 
g, We performed multi-omics using WGS, ATAC-seq and RNA-seq on the same 
sample, achieving a good level of overlap between assays. h, For each assay, we 
had representative samples from normal, adenoma and cancer regions. 
Graphics in b–d were created with BioRender.com.
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the tumours of each patient (Fig. 1f and additional figures at https://
doi.org/10.6084/m9.figshare.19848199). Blood or, when unavailable, 
large adjacent normal tissue samples were used as normal reference.

ATAC-seq was performed in 18–59 samples per patient (median = 42; 
Methods and Supplementary Table 2), deep WGS (median depth 35×) 
was performed in 3–15 samples per patient (median = 8), and low-pass 
WGS (median depth 1.2×) was performed in 1–22 samples per patient 
(median = 8; Methods and Supplementary Table 3). For a proportion 
of tumour samples (n = 370/1,370), both WGS and ATAC-seq data were 
available (Fig. 1g). We also generated a total of 600 whole transcrip-
tomes, of which 297 were of sufficient quality to be used for analysis 
(1–40 samples in 27 patients, median = 7; Methods and Supplementary 
Table 4) with many also overlapping the WGS dataset, the ATAC-seq 
dataset or both (Fig. 1h). In addition, we ran methylation arrays on 8 
samples (Methods). We identified CNAs, somatic SNVs, short insertions 
and deletions (indels) and ATAC-seq peaks for all samples (Methods).

Somatic mutations affecting the epigenome
We first assessed the landscape of genetic alterations in our cohort. Six 
cases were characterized by microsatellite instability (MSI; Methods), 
as reported in Fig. 2a, leading to substantially higher SNV and indel 
burdens (Fig. 2b). CNAs recapitulated previous datasets2,3, with micro-
satellite stable (MSS) cases exhibiting high aneuploidy and MSI cases 
being largely diploid (Supplementary Fig. 3). As previously described3, 
adenoma samples showed a lower degree of aneuploidy than MSS car-
cinomas, except for two outliers (Extended Data Fig. 1). Recurrent copy 
loss of canonical tumour suppressor genes, such as APC, PTEN, TP53 and 
SMAD4, was confirmed. Focal amplifications were found in FGFR1 (two 
cases) and MYC (one case). Recurrent cancer driver mutation events 
in CRCs were recapitulated in this dataset, with stereotypical muta-
tions in APC, KRAS and TP53 (Fig. 2c and additional figures at https://
doi.org/10.6084/m9.figshare.19849138). Except for a two cases (C522 
and C539), mutations in these three genes were invariably clonal. The 
mutational profiles of the adenomas were consistent with an earlier 
study31 for both APC (4/8 versus 73/135, P value = 1, Fisher’s exact test) 
and KRAS (2/8 versus 13/135, P value = 0.20, Fisher’s exact test) mutation 
frequencies. We observed a slightly larger incidence of TP53 muta-
tions in our study (2/8 versus 4/135, P value = 0.037, Fisher’s exact test). 
Adenoma mutation frequencies were similar to another previous study3 
(TP53, P value = 1; KRAS, P value = 0.33; APC, P value = 0.029; PIK3CA,  
P value = 1; Fisher’s exact test).

To investigate the influence of genetic mutations on the epigenome, 
we examined somatic mutations in chromatin modifier genes (Supple-
mentary Table 5), such as members of the lysine demethylase (KDM), 
lysine acetyltransferase (KAT), lysine methyltransferase (KMT) and  
SWI/SNF (ARID1A) families (see Fig. 2d for MSS cases, and Supple-
mentary Fig. 4 for all). Evolutionary selection on chromatin modifier 
genes was assessed by dn/dS (refs. 32,33 and Methods). Clonal truncating 
mutations (occurring in all samples of a tumour) in chromatin modi-
fier genes of MSS cases showed clear signs of positive selection, with 
dn/dS significantly >1 (Fig. 2e, arrow). Subclonal chromatin modifier 
mutations were present, but positive selection was not detected, with 
dn/dS ≈ 1 (Fig. 2e). No evidence of positive selection for chromatin 
modifier gene mutations was detected in MSI cancers, although their 
high mutational burden may limit the power of detection. Overall, 
clonal truncating mutations in chromatin modifiers were found in 
6/24 MSS cases (25%) and all MSI cases, with few recurrently mutated 
genes, suggesting a convergent pattern of selection for inactivation 
of chromatin modifiers in CRC.

Recurrent chromatin changes are largely clonal
Recurrent genetic events in cancer driver genes clearly demonstrate 
the role of somatic alterations in cancer evolution, but is is unclear 

how common epigenetic changes of chromatin accessibility in CRC 
are. We examined the landscape of somatic chromatin accessibility 
alterations (SCAAs) in our cohort. We identified peaks in the ATAC-seq 
data for each region of a cancer using MACS2 (ref. 34) and compared 
each peak size in the tumour versus a pool of normal samples, while 
normalizing for the effect of CNAs (see figures at https://doi.org/ 
10.6084/m9.figshare.19849789), to identify significant SCAAs (Fig. 3a 
and Methods). We found highly recurrent SCAAs in both promoters 
(Extended Data Fig. 2A) and putative enhancers (Extended Data Fig. 2B) 
of several genes of interest, including many previously associated with 
cancer. We note that these levels of recurrence are as high if not higher 
than for many genetic driver mutations (Fig. 2c).

Recurrent SCAAs were found in known cancer driver genes previously 
identified by genetic studies (Fig. 3b and list in Supplementary Table 5; 
shown are events occurring in ≥4 individuals). Many of these genes 
were devoid of genetic mutations in our cohort (marked with purple 
stars in Fig. 3b), confirming that SCAAs are an alternative modality for 
driver gene (in)activation. We also found recurrent SCAAs in genes 
that were not previously associated with tumorigenesis by means of 
genetic mutation (Fig. 3c, shown are the 25 most recurrent loci per 
group excluding those in Fig. 3b, example in Fig. 3d.

We then leveraged our spatial multi-region profiling strategy to 
assess intra-tumour SCAA heterogeneity. The signal from ATAC peaks 
is difficult to compare between samples because it is confounded by 
variability in purity and transcription start site enrichment. We used our 
matched WGS to identify clonal (truncal) DNA mutations present in all 
samples of the tumour and assessed the frequency of these variants in 
the reads from ATAC-seq to obtain accurate estimates of sample purity 
(Methods and Supplementary Table 2). Samples from each region were 
treated as pseudo-‘biological replicates’, and each of the signals for the 
different cancer regions was compared with that of the corresponding 
normal tissue while accounting for purity (Methods). A total of 24/30 
cancers and 10/10 adenomas had sufficient samples with enough purity 
for the analysis. We focused on the 25 most recurrently altered loci per 
category (promoter or enhancer, gained or lost), as well as those associ-
ated with CRC driver genes found in ≥4 cases (Supplementary Table 6). 
We found that for most of these events (5,688/5,824, 97.7%), we had no 
evidence that they were subclonal, suggesting that most SCAAs are 
clonal epigenetic changes in the malignancy (Fig. 3b,c, see shading).

Among the recurrently altered and almost invariably clonal epige-
netic changes, we found a JAK3 promoter gain of accessibility in 11/24 
cancers (Fig. 3d), as well as loss of chromatin accessibility in the CRC 
tumour suppressor gene CCDC6. This was the case for both the pro-
moter (12/24 cancers) and an associated enhancer region (3/24 can-
cers); see, for example, case C524 in Supplementary Fig. 5A. Notably, 
mutations in CCDC6 are infrequent in CRC (3/30 cases in our cohort, 
annotated as a purple star in Fig. 3b). Furthermore, ARID1A enhancer 
loss was observed in four cancers and one adenoma, with only two of 
those cases also bearing a mutation in this gene. Alterations in other 
putative CRC drivers were also found, such as SMAD3 and SMAD4 pro-
moter loss, and NCOR2 enhancer gain. NFATC2 and LIFR cancer driver 
genes that were not reported in CRC were found to be epigenetically 
altered in our cohort, and in the absence of DNA mutations. Of inter-
est, we found typically clonal promoter SCAAs in FOXQ1 in 11/24 cases,  
a known oncogene reported to be involved in CRC tumorigenicity35, 
angiogenesis and macrophage recruitment during progression36. 
Although most recurrent SCAAs were clonal in the cancer, a proportion of 
SCAAs were found to be subclonal and confined to one or more regions. 
This was exemplified by a FOXL1 enhancer gain (12/24 cases, 50%) in 
Supplementary Fig. 5B occurring only in regions C and D of cancer C524.

We note that ATAC peaks called in our dataset overlapped with peaks 
from the The Cancer Genome Atlas dataset that was composed of single 
CRC bulks14 and the ENCODE normal colon tissue dataset37. Moreover, 
the average peak sizes correlated strongly when reanalysed with our 
pipeline (Supplementary Fig. 6). Owing to unmatched normal controls 
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however, in these orthogonal bulk-sample datasets it is complicated to 
distinguish chromatin changes that occurred in the cancer versus those 
present in the normal colon (for example, to determine the somatically 
changed status of the peak), and indeed most of the signal of chromatin 
accessibility comes from the tissue of origin of the sample14.

Chromatin changes in adenomas and cancers
We then sought to determine the role of SCAAs in the adenoma–car-
cinoma transition, while not discarding the possibility that some of 
these changes may be a product of normal tissue ageing. We examined 
the stage of tumour development when SCAAs occurred. Out of the 
665 recurrent SCAAs found in cancers (≥6 cases) with available con-
comitant adenomas, only 113 (17.0%) were also detected in the matched 
adenoma, suggesting that most SCAAs probably occurred at the onset 
of malignant transformation, hence after neoplastic growth initiation 
but before subclonal diversification (as they were also largely clonal). 

Such events are exemplified by the gain of accessibility of a NXPH1 
enhancer (4/24 patients, 17%) in C561, which was present in each region 
of the cancer but not in any of the concomitant two adenomas (Sup-
plementary Fig. 5C and additional figures at for all events). Indeed, 
the lower SCAA burden of adenomas compared to that of cancers was 
not dependent on purity or read depth (Supplementary Fig. 7A,B). 
By explicitly normalizing for coverage (Supplementary Fig. 7C), we 
found a significantly lower burden of recurrent gain-of-accessibility 
SCAAs (>10 patients) between adenomas and carcinomas (Fig. 3e). 
No difference was found in the burden of loss of accessibility (Fig. 3f). 
We note that the only advanced adenoma in our cohort that was found 
co-locating with the cancer (C516; see Supplementary Fig. 1) indeed 
showed the SCAA gain burden of a carcinoma (Fig. 3e). It was previ-
ously noted that there were limited differences between adenomas 
and carcinomas in CRC at the level of point mutations in driver genes, 
and instead major differences at the level of chromosomal instability3. 
Here we additionally found differences in epigenetic rewiring between 
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adenomas and cancers. Moreover, the higher burden of SCAA gains in 
cancers supports the idea that carcinogenesis involves an increased 
genome-wide chromatin accessibility.

To gain more insight on the origins of SCAAs, we investigated chro-
matin changes in the normal colon by comparing each normal crypt 

against the pool of normals from the other patients. We found very few 
SCAAs in individual normal crypts, supporting the idea that the SCAAs 
we observed in the tumours were indeed somatic alterations originated 
during tumourigenesis, rather than during the normal process of epi-
genetic ageing of colon crypts. A small subset of SCAAs was detected 
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Fig. 3 | SCAAs in cancers and adenomas. a, Example of SCAAs detected in 
cancer C530 versus normal. Significantly altered peaks are shown in red. MS, 
microsatellite. b, SCAAs affecting known cancer driver genes occurring in ≥4 
cases. Stars indicate DNA mutations found in the gene. c, Summary of the 25 
most recurrent SCAAs in promoter and putative enhancers of genes not 
previously associated with cancer through DNA mutation. Subclonal changes 
are marked in shaded squares. d, Clonal somatic peak gained at the JAK3 
promoter in cancer C551. The plot shows the normalised peak coverage of 
glands from different regions (see colour legend). The coloured lines on top of 
the plot show called peaks and the grey line shows the interval of the reference 
peak. e,f, SCAA burden of adenomas versus carcinomas for gain (e) versus loss 
(f) of accessibility. The number of gains, but not losses, of accessibility differed 

significantly (two-sided t-test) between adenomas (n = 8) and cancers (n = 24) 
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highlighted as a red dot. rec., recurrent. g, Example of a promoter for which  
we confirmed changes in gene expression. The gene expression between the 
groups of cancers with matched RNA-seq that showed evidence of accessibility 
gain (n = 18) and those that did not (n = 5) was compared using the DESeq2 
contrast function.
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in multiple crypts of the same patient (Supplementary Figure 8A), but 
SCAAs in normal crypts were not recurrent (Supplementary Figure 8B) 
and did not overlap with SCAAs observed in tumours (Supplementary 
Figure 8C). Plausibly germline genetic variation could cause some of 
the chromatin accessibility alterations in normal tissue we observe.

Impact of SCAAs on gene expression
We assessed the impact of SCAAs on gene expression using matched 
RNA-seq (for example, Fig. 3g). More than 10.8% of promoters (41/379) 
and 13.5% of enhancers (10/74) with recurrent SCAAs (≥6 patients) 
showed signs of altering the expression of associated genes (false dis-
covery rate (FDR) < 0.01, Methods, Supplementary Table 7 and figures 
at https://doi.org/10.6084/m9.figshare.19857274). We note that chro-
matin accessibility measures the potential for transcription, indicating 
priming for future expression or a remnant ‘scar’ of past transcription. 
Therefore, more chromatin changes than those that correlate with 
expression in our analysis may actually be important for tumour evo-
lution. Moreover, the power to detect expression changes was limited 
by the recurrence of a given SCAA in the cohort, incomplete matched 
RNA data and the lack of information about other factors influencing 
transcription such as methylation, post-translational modifications or 
trans regulation. To further probe the impact of somatic mutations on 
SCAAs, we analysed SNVs that we found were associated with changes 
in cis gene expression in our associated article38 and found that some 
of these SNVs co-occurred with a change in chromatin accessibility at 
the locus (figures at https://doi.org/10.6084/m9.figshare.19857274).

Transcription factor signals indicate epigenetic 
reprogramming
We extended our analysis beyond focal changes in chromatin acces-
sibility in promoters and enhancers, investigating whether chromatin 
architecture could have a genome-wide influence on transcriptional 
control. To examine this, we analysed the genome-wide accessibility 
of transcription factor (TF) binding sites for 870 TFs37 using publicly 
available data for TF motifs and for chromatin immunoprecipitation 
followed by sequencing (ChIP–seq; Methods). We piled up the ATAC 
reads for all binding sites of a given TF across the genome and plotted 
read count versus the distance from the centre of the TF motif and the 
length of each read, producing a characteristic signature of TF acces-
sibility for a given sample, which also encodes the footprint of the TF 
complex itself, in the cancer (Extended Data Fig. 3A and additional 
figures at https://doi.org/10.6084/m9.figshare.19857391) and normal 
(Extended Data Fig. 3B) regions. The normalized difference of the TF 
signal between tumour and normal glands indicated somatic changes 
in accessibility (Extended Data Fig. 3C). These analyses suggested per-
vasive genome-wide rewiring of TF chromatin accessibility in CRCs 
(Fig. 4a, see Methods for details). As many TFs bind to similar loci, we 
considered only largely non-overlapping TF annotations to ensure 
that a single locus could not drive the signal of several TFs (figures at 
https://doi.org/10.6084/m9.figshare.19857391).

Unsupervised clustering of somatic TF binding signatures produced 
three main clusters. The first main cluster (green cluster, Fig. 4a) seemed  
to be associated with downregulation of interferon signalling through 
loss of chromatin accessibility in loci putatively bound by TFs from 
the interferon-regulatory factor family, suggesting suppression of 
immune signalling. Reactome and Gene Ontology analysis (Fig. 4b) 
indicated that the signal was significantly enriched for downregula-
tion of interferon-γ (FDR = 0.003) and interferon-α/β (FDR = 0.00075). 
This signal was stronger in MSI cancers, which are heavily infiltrated 
by immune cells (P = 0.012, Fisher’s exact test).

The second main cluster (blue cluster, Fig. 4a) contained two distinct 
subgroups of patients with differential chromatin accessibility for 
CTCF. The CCCTC-binding factor (CTCF) is a key player in chromatin 

insulation, determining looping and formation of the topological asso-
ciating domain. Most cases were characterized by loss of accessibility 
of the CTCF-binding site, particularly in MSI cancers. A smaller group 
showed increased CTCF accessibility. CTCF chromatin accessibility 
alterations were previously noted in single-bulk cancer samples39. CTCF 
somatic mutations can occur in CRC40, and indeed a mouse model of 
chronic CTCF hemizygosity led to higher cancer incidence and dys-
regulation of oncogenic pathways41.

The third main cluster (red cluster, Fig. 4a) showed increased chro-
matin accessibility for TFs involved in development, such as the HOX, 
FOX and SOX families (UniProt: ‘homeobox’, FDR = 0.00069). The 
chromatin accessibility of this cluster of TFs was higher in cancer in 
most cases, suggesting possible reactivation of developmental genes 
in CRC tumorigenesis (Fig. 4c). The expression of the TFs involved in 
this cluster is reported in Supplementary Fig. 9.

Notably, matched RNA-seq data showed that gene expression of 
human leukocyte antigen (HLA) genes was significantly reduced in both 
MSS and MSI cancers with respect to normal samples (Fig. 4d) consist-
ent with the downregulation of interferon signalling as highlighted by 
the signal in the green cluster.

We also noted a small cluster characterized by increased accessi-
bility at the TF-binding sites of SNAI1 and SNAI2, two TFs involved in 
epithelial-to-mesenchymal transition42. This cluster was significantly 
enriched in cases showing truncating mutations in chromatin modi-
fier genes (P = 0.047, Fisher’s exact test), consistent with previously 
reported regulation of epithelial-to-mesenchymal transition by chro-
matin modulators43. We cannot exclude that there could be further 
subgroups of patients with distinct TF accessibility patterns beyond 
the CTCF subgroup (blue cluster); further studies with more patients 
are needed.

Demethylation of developmental TF-binding sites
We further attempted to corroborate the increased accessibility to TF 
involved in development. Changes in chromatin accessibility can be 
accompanied by changes in DNA methylation, with heterochromatin 
regions often being methylated and vice versa for open chromatin 
regions. This is particularly the case for regions that are permanently 
silenced after development44. We tested whether SCAAs identified at 
TF-binding sites (Fig. 4a) were reflected in the methylation of the same 
loci. We performed methylation profiling on a subset of 8 samples using 
Illumina EPIC 850k methylation arrays (one sample from C516, two 
samples from C518, two samples from C560 and three samples from 
C561; see Methods for details). First, we report that C518 is probably a 
CpG island methylator phenotype case according to established mark-
ers45 (Supplementary Fig. 10). Comparing the methylation of TF bind-
ing annotations in cluster 3 (Fig. 4c), methylation in these regions was 
found to be significantly lower than that in normal tissue, supporting 
the finding that these sites were accessible (Supplementary Fig. 11a). 
This was particularly clear for TF-binding sites of DLX5, HOXA4, HOXB4, 
ISL1, SOX5 and SOX6 (Supplementary Fig. 11b), suggesting stable reacti-
vation of regulatory regions involved in developmental genes. We note 
that this was not due to a general pattern of global hypomethylation, 
as methylation in genes that are usually normally highly methylated in 
normal were also high in cancer (Supplementary Fig. 12).

Chromatin changes are stable and heritable
Epigenetic alterations, and in particular chromatin modifications, 
are responsible for cell identity in all tissues, but it remains unclear 
whether epigenetic changes in cancer are stable during tumour evolu-
tion. Seminal studies have begun unravelling epigenetic heritability in 
blood cancers46,47, and suggest that stable SCAAs could provide a herit-
able substrate for Darwinian selection to operate. For most detected 
SCAAs, if the peak was differentially accessible in one region of the 

https://doi.org/10.6084/m9.figshare.19857274
https://doi.org/10.6084/m9.figshare.19857274
https://doi.org/10.6084/m9.figshare.19857391
https://doi.org/10.6084/m9.figshare.19857391
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tumour, it was also differentially accessible in other distant regions. 
As we sampled opposing tumour sides (Fig. 1e,f), two sampled regions 
likely have early common ancestors, diverging by a large number of 
cell divisions. Hence, we argue that most SCAAs we detect are prob-
ably clonal or have high ‘clonality’ (that is, they are shared by large 
proportions of cancer cells). This can occur either through conver-
gence of different lineages to the same SCAAs, or through evolution by  
common descent. Given the number of putatively clonal SCAAs, as 
well as the distance and the probable difference in microenvironment 
between the distinct regions of each cancer, we argue that the most 

parsimonious explanation is, as for species evolution, evolution by 
common descent, rather than convergence of many different lineages 
to the same overall epigenetic pattern.

To further test the heritability of epigenetic alterations, we specifi-
cally compared SCAAs within versus between tumour regions (Sup-
plementary Fig. 13A). In most patients (23/29), analysis of variance 
controlling for transcription start site enrichment and total read count 
showed that samples from the same region were significantly less 
divergent in terms of SCAAs than samples from different regions (Sup-
plementary Fig. 13B). Moreover, a direct correlation between genetic 
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distance and epigenetic distance was found in 8/29 cases (the power of 
this analysis is limited by small sample numbers), after controlling for 
purity (see the example in Supplementary Fig. 13C). This was not the 
case for all patients, either because of lack of a correlation or not enough 
data (see the example in Supplementary Fig. 13D). Thus, chromatin 
profiles were heritable and followed, at least in part, genetic divergence 
(Supplementary Fig. 13B; see coefficients of the analysis of variance per  
region in Supplementary Fig. 14), thus providing further evidence that 
common descent, not convergence, is the reason for SCAAs common  
to several samples of the same tumour. Genome-wide TF SCAAs (Fig. 4) 
showed similar evidence of heritability (figures at https://doi.org/ 
10.6084/m9.figshare.19857391), suggesting that such rewiring of the 
chromatin existed in a common ancestor of all the samples and was 
inherited during tumour growth. There were however some interesting 
exceptions in which different regions showed distinct SCAA profiles. 
For example, whereas C548 showed homogeneous loss of accessi-
bility to CTCF-binding sites at loop loci, in C543 both promoter- and 
loop-binding sites of CTCF were altered and in a heterogeneous man-
ner, with regions exhibiting differential organization of the chromatin 
(figures at https://doi.org/10.6084/m9.figshare.19857391).

Mutational signatures affecting the epigenome
There is a growing appreciation of the multidimensional nature of 
mutation signatures beyond the 96-channel representation and across 
different regions of the genome, especially in relation to replication 
time and three-dimensional genome organization48. However, the rela-
tion between mutational signatures and epigenetic features remains 
poorly studied owing to lack of matched data. Here we examined the 
feedback between epigenome and transcription status and mutational 
processes49,50 through tumour evolution. We performed de novo signa-
ture discovery using a methodology robust to overfitting51, detecting 
six mutational signatures across our cohort (Supplementary Figs. 15A 
and 16): SparseSignature1, corresponding to COSMIC signature 1 of 
C>T deamination at methylated CpG sites; SparseSignature2, corre-
sponding to COSMIC signatures 2 and 13 caused by APOBEC enzymes; 
SparseSignature3, corresponding to COSMIC clock-like signature 5; 
SparseSignature4, corresponding to COSMIC signatures 17a and 17b 
of unknown aetiology; SparseSignature5, corresponding to COSMIC 
signatures 9 and 41, also of unknown aetiology; SparseSignature6, 
corresponding to COSMIC signature 44 caused by mismatch repair 
deficiency.

Genome-wide signature activity divided the cohort into five distinct 
clusters of patients (Supplementary Fig. 15B,C). The two main clusters 
consisted of MSS (cluster 1) and MSI cases (cluster 2). Cluster 3 con-
tained only case C549, which was strongly enriched with the APOBEC 
signature. Cluster 4 with cases C561 and C539 had high activity of 
SparseSignature4 and SparseSignature5 of unknown aetiology. Cluster 
5 with cases C518 and C548 had higher SparseSignature3 (clock-like sig-
nature). We assessed changes in mutational process activity over time 
by comparing inferred activity between clonal and subclonal mutations 
(Fig. 5a). SparseSignature1 (deamination) was dominant in MSS cases 
throughout tumour evolution, and in MSI cancers SparseSignature6 
(mismatch repair) was also dominant throughout. SparseSignature2 
(APOBEC), SparseSignature4 and SparseSignature5 (unknown) were 
enriched at the subclonal level in cases in which they were active, dem-
onstrating activity late in tumour evolution.

Mutations in chromatin modifier genes, or alterations in TF-binding 
sites, can determine the characteristics of the epigenome. Conversely, 
chromatin architecture determines how the cancer genome accu-
mulates mutations owing to its effect on different mutational pro-
cesses and activity of DNA repair genes52,53. To examine the impact of 
the epigenome on the accumulation of mutations further, we com-
pared mutational signature burdens between epigenetic regulatory 
regions identified with the ATAC-seq data (active and inactive promoter, 

active and inactive enhancer, intergenic, and coding), as well as typi-
cally expressed and not expressed genes identified with the RNA-seq 
data.

SparseSignature1 (cytosine deamination) was 2–4-fold higher in 
closed chromatin regions of the genome (inactive promoters and 
enhancers) for both clonal and subclonal mutations, consistent with the 
need for methyl cytosine (enriched in inactivated regulatory regions) 
to be present for it to become deaminated and produce the associated 
mutational signature (Fig. 5b). Analogous differences were observed in 
the coding regions of the genome between genes expressed versus not 
expressed genes in the normal: specifically, genes that were ‘switched 
on’ in tumour after being off in normal carried an intermediate load of 
C>T deamination mutations that were probably accumulated in the 
normal tissue before carcinogenesis when the locus had inaccessible 
chromatin, before the mutation rate was reduced when the chromatin 
opened and gene expression was induced (Fig. 5b). Similar dynamics 
were observed for SparseSignature4 (Fig. 5c) and SparseSignature5 
(Fig. 5d; ref. 54). The activity of the mismatch repair signature in MSI 
cases was more uniformly distributed across the genome (Supple-
mentary Fig. 17).

We reasoned that different mutational processes may also differ-
entially alter the affinity of the TF-binding site, as an example mecha-
nism of how mutational processes can directly influence the cancer 
epigenome. It has previously been documented that point mutations 
can disrupt CTCF-binding sites40. We selected CTCF sites with somatic 
mutations that were predicted by deltaSVM55 to cause significant loss 
or gain of binding and assessed the relative contribution of each muta-
tional signature to these mutations in the CTCF-binding site across the 
five mutational signature clusters. In MSS cancers (cluster 1), mutations 
predicted to cause loss of binding had a signature that was consist-
ent with the background mutational signature acting on the genome 
(cosine similarity = 0.977; Supplementary Fig. 18A), and the same was 
true for gains (cosine similarity = 0.919; Supplementary Fig. 18B). In 
MSI cancers (cluster 2), SparseSignature6 (mismatch repair; Supple-
mentary Fig. 18C) was consistent with causing gain of CTCF binding 
affinity (cosine similarity = 0.925). In C549, the only case with high 
levels of SparseSignature4 (COSMIC signature 17; Supplementary 
Fig. 18D), this signature was also a source of mutations causing gain 
of affinity (cosine similarity = 0.977). These results suggest that CpG 
deamination causes the largest proportion of mutations altering CTCF 
binding in MSS cancers, with a higher tendency of generating loss of 
binding (Fig. 5e). In MSI cases, the mismatch repair signature is also 
a dominant factor in causing altered binding of CTCF, with a prefer-
ence for generating increased affinity (Fig. 5e). When considering the 
abundance of any given mutational signature in the genome, we found 
that 4% and 8% of SparseSignature1 mutations cause, respectively, 
gain and loss of CTCF binding, whereas 5% and 8% of SparseSignature6 
mutations cause, respectively, gain and loss of CTCF binding (see all 
in Supplementary Fig. 19).

Discussion
The contribution of epigenetic events to cancer evolution is recognized 
as highly significant7,56, but has remained understudied5. Recently, a 
pan-cancer analysis revealed the chromatin accessibility profile of 
several cancer types, but the lack of an appropriate matched normal 
control precluded proper identification of cancer-specific events, with 
tissue-specific and ‘cell of origin’ chromatin profiles remaining the 
dominant signal in the data14. Studies with normal tissue references have 
identified complex patterns of SCAAs in CRCs12,13, but have not been 
able to assess the evolutionary dynamics that led to these chromatin 
changes. Here we show that genetic and epigenetic modification of 
cancer-associated genes occurs independently but recurrently in CRCs, 
and that epigenome alterations probably control important tumour 
cell phenotypes, including escape from immune surveillance. Further, 

https://doi.org/10.6084/m9.figshare.19857391
https://doi.org/10.6084/m9.figshare.19857391
https://doi.org/10.6084/m9.figshare.19857391
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we find that chromatin alterations are stable and heritable, providing a 
substrate for Darwinian selection to act, and interrelatedly, chromatin 
alterations influence the accumulation of somatic genetic alterations 
that can also drive evolution57,58. At present, genomics detects driver 
alterations or mutational processes that inform on drug sensitivity 
but is blind to potentially clinically actionable biology governed by the 
epigenome. The observation that epigenetic changes occur in regula-
tory regions of known cancer driver genes in the absence of somatic 
mutations argues for the importance of epigenomics for genomic 
medicine. Certainly, the interaction between somatic mutations and 

SCAAs remains challenging to unravel. Although several studies have 
investigated the effects of somatic mutations in chromatin modifier 
genes (for instance, linking mutations with increased transcriptional 
heterogeneity59), identifying the direct (cis) functional effects on the 
chromatin caused by DNA variants remains difficult. Our multi-omic 
dataset provides some clear examples of a genome–epigenome rela-
tionship: we observed somatic mutations associated with both changed 
cis gene expression and changed chromatin accessibility. Follow-up 
work is required to explore the functional impact of epigenetic altera-
tions in cancer driver genes and other loci.
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Fig. 5 | DNA mutational signatures and the epigenome. a, Clonal and 
subclonal mutational signature composition for each case. CpG demethyl., 
CpG demethylation. b, The epigenome influences accumulation of 
deamination signature 1 in distinct regions, both for clonal and subclonal 
mutations. c, Signature SparseSignature4, mostly present subclonally, is also 

influenced by the epigenome status. d, Signature SparseSignature5, 
particularly at the subclonal level, is again depleted in active regions as 
SparseSignature1. e, The proportion of each signature for every cluster 
responsible for generating loss or gain of CTCF binding affinity in our cohort.
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We also observed that the epigenomes of adenomas and carcinomas 

are distinct. The lower prevalence of SCAAs in adenomas and, at the 
same time, the clonality of most SCAAs in carcinomas suggest that 
many cancer SCAAs may occur at the onset of malignant transforma-
tion. This is important because, besides broad CNAs, mostly non-focal 
chromosomal arm gains or losses of unknown significance, there is little 
difference in driver alterations between benign adenomas and malig-
nant carcinomas3. Moreover, there is no validated prognostic genetic 
alteration that predicts recurrence in CRC. Others have shown that 
chromatin topology changes over time in ageing colon tissue, including 
in transformed tissues, and that a link between altered chromatin pat-
terns and patient outcomes exists60. This is consistent with our finding 
of a decisive role for SCAAs in cancer biology. We acknowledge that our 
multi-omic analysis was based on the analysis of tumour glands, and it 
possible that the biology could differ in the rare CRCs that completely 
lack glands.

One of the most intriguing results was the evidence of reactivation 
of developmental genes during tumorigenesis. Those genes are usually 
silenced in somatic tissue, and the reactivation of the genes in these 
families and their involvement in tumorigenesis has been postulated 
before in the context of glioblastoma tumorigenesis54 as an enabler 
of growth and adaption. We identified a group of TFs with decreased 
accessibility that were related to interferon signalling. On the other 
hand, we also found a group of TFs that had increased accessibility 
and was enriched with homeobox genes (for example, SOX5 and SOX6) 
that are directly involved in early development. We speculate that we 
may detect biological processes that aim at reprogramming cell fate 
through reactivation of developmental genes. Further functional work 
is warranted.

Overall, our spatially resolved multi-omic analysis of primary colo-
rectal cancers shows non-genetic determinants of cancer cell biology 
and clonal evolution.
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Methods

Sample collection
Primary tumour tissue and matched blood samples were prospectively 
collected from patients undergoing curatively intentioned surgery at 
University College London Hospital (UCLH). All patients gave informed 
consent for collection of their materials to the UCLH Cancer Biobank 
(Research Ethics Committee approval 15/YH/0311). Four regions of 
each primary cancer were sampled by punch biopsy or scalpel dissec-
tion, at notionally 12, 3, 6 and 9 o’clock positions around the tumour 
periphery. Each region was further cut into four pieces and slow-frozen 
to −80 °C, using a Mr Frosty Freezing Container (Thermo Fisher), in 1 ml 
of a buffered medium (MEM supplemented with 5% FBS and 0.5% 5 mM 
HEPES buffer, diluted with 10% dimethylsulfoxide) in a 1.8-ml Nunc 
Cryotube (Sigma-Aldrich), and immersed in isopropanol to preserve 
chromatin structure. All investigators were blinded to patient data 
related to outcome, gender and other clinicopathological information.

Gland isolation
A clean glass slide was placed into a 10-cm Petri dish and 500 μl PBS 
supplemented with RNAse and protease inhibitors was pipetted on 
top of the slide. The Petri dish was then transferred to the stage of 
a dissecting microscope. Tissue pieces were manually dissociated 
under the microscope using two 16G needles, with individual glands 
being pulled away from the tissue mass. For every specimen, a further 
epithelial minibulk sample that comprised a total of approximately 
10–20 crypts or glands was collected. Each gland was transferred to 
a 1.5-ml Eppendorf tube containing a total volume of 50 µl cell lysis 
buffer (10 mM Tris-HCl pH 7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% IGEPAL  
CA-630 supplemented with protease inhibitors (1 tablet in 50 ml dH2O 
as directed by the manufacturer (cOmplete Protease Inhibitor Cocktail, 
Sigma-Aldrich) and RNASE inhibitor 1 U µl−1 (Protector RNase Inhibi-
tor, Sigma-Aldrich) and incubated on ice for 10–45 min. Bulk samples 
were collected in a final volume of 100 µl cell lysis buffer. We found that 
longer or warmer incubations decreased the RNA quality and yields 
and negatively affected chromatin structure. In selecting the 30 cases 
included in our study, we rejected only a single further case owing 
to being unable to isolate any glands, confirming that retention of  
glandular structures is pervasive in CRC.

Chromatin, DNA and RNA separation
Each tube containing an individual gland or bulk was lightly vortexed, 
transferred to a pre-chilled centrifuge and spun at 500g for 10 min 
holding the temperature at 4 °C. This produced a pellet of cell nuclei 
at the bottom of the tube, with the cytosolic fraction present within 
the supernatant. For RNA extraction, 45 µl (glands) or 90μl (bulks) of 
the supernatant was transferred into a new tube containing 300 µl of 
TRIzol (taking care not to disturb the pellet). TRIzol lysates were stored 
at −20 °C if not processed immediately or at −80 °C for long-term stor-
age. For extraction of nuclear material, the pellet of nuclei was resus-
pended in residual cell lysis buffer. A 2.5 µl volume of suspension was 
transferred into another tube for subsequent DNA extraction, which 
was frozen if required. The remaining suspension was immediately 
used for preparation of ATAC-seq libraries, as we found subsequent 
handling or storage compromised library quality.

Preparation of ATAC-seq libraries
Tubes containing the suspension of nuclei (2.5 µl for glands and 7.5 µl 
for minibulks) were kept on wet ice. A 2.5 µl volume of 2× TD buffer and 
0.25 µl of Tn5 transposes (Illumina) was added to each gland tube and 
25 µl 2x TD buffer, 2.5 µl Tn5 transposes and 15 µl of DNAseq/RNase 
free water was added to each minibulk tube before incubation at 37 °C 
for 30 min. Purification was performed using AMpure XP SPRI beads 
(Beckman Coulter); 10 µl (2× sample volume) of room-temperature 
beads was added to each tube and mixed by pipetting 10 times, before 

incubation at room temperature for 1 min. The tube was placed on a 
magnetic plate, and beads were allowed to settle for 3 min. Once clear 
the supernatant was discarded. With the tube still on the magnetic 
plate, 200 μl of 80% ethanol was added and incubated at room tem-
perature for 30 s, the ethanol supernatant was discarded. The tube was 
removed from the magnetic plate and 10 µl of 10 mM Tris buffer was 
added to each tube and mixed. The tubes were placed on a magnetic 
plate, and the beads were allowed to settle for 3 min. Once clear, 10 µl 
of supernatant containing purified transposed DNA fragments was 
transferred to a fresh tube for immediate library preparation or stored 
at −20 °C for later use.

For library preparation, the transposed sample was supplemented 
with 1 µl of 10 µM Nextera i7 PCR primer, 1 µl of 10 µM Nextera i5 PCR 
primer (Illumina) and 12.5 µl of NEBNext Q5 High-Fidelity 2× PCR Master 
Mix (New England Biolabs). PCR amplification was performed, with 
initial elongation at 72 °C for 5 min, then initial denaturation at 98 °C 
for 30 s, and then 14 cycles (for glands) or 10 cycles (for bulks) of the 
following: 10 s of denaturation at 98 °C, annealing step at 63 °C for  
30 s followed by 72 °C for 1 min.

Following amplification, samples were purified with 2× SPRI beads 
and eluted in 20–30 µl of 10 mM Tris buffer, pH 8. Samples were 
screened using the Agilent Tapestation 4200 and HSD1000 screen-
tapes. Only those that showed a fragment size distribution with peaks 
at multiples of about 147 base pairs (bp), indicating intact nucleosomal 
structure within the nuclei, were sent for sequencing.

Preparation of WGS libraries
DNA fractions were extracted using the Zymo QuickDNA Microprep 
plus kit according to the manufacturer’s instructions. Only samples with 
a total DNA yield higher than 10 ng were taken forwards for WGS library 
preparation. Libraries were prepared using the NEBNext Ultra II FS kit 
according to the manufacturer’s instructions. A short enzymatic frag-
mentation step of 5 min was performed, and five PCR cycles were used 
for library enrichment. After purification, libraries were quantified by 
Qubit and run on the Agilent Tapestation using HSD1000 screentapes. 
Samples with sufficient library DNA yield and characteristic fragment 
size distribution (about 200–500 bp) were further subjected to either 
low-pass (about 1× coverage) or deep (about 35× coverage) WGS.

RNA library preparation
The cytoplasmic fractions of each sample in the form of TRIzol lysates 
were used for RNA extraction using the Directzol kit (Zymo R2052). 
Modifications to the manufacturer’s protocol were introduced to 
increase the total RNA yields. First, we passed the initial TRIzol and 
ethanol mix twice through the spin column. Second, we eluted the RNA 
using two 25 µl volumes of water instead of just one 50 µl elution. The 
optional DNase step was used.

Agilent Tapestation quality control showed low RNA integrity num-
ber scores (<3) for most samples and so was not used to exclude samples 
for library preparation. Libraries were prepared using the Illumina 
TruSeq RNA Exome kit (compatible with low-quality input material) 
according to the manufacturer’s instructions.

Methylation arrays
DNA methylation array analyses were carried out on selected bulk sam-
ples with sufficient DNA yield. Genomic DNA was bisulfite-converted 
using the Zymo EZ DNA Methylation kit. A 50-µl reaction containing 
2.5–100 ng of DNA was incubated in the dark using a modified conver-
sion protocol: 95 °C for 30 s and then 50 °C for 60 min, for 16 cycles 
and then holding at 4 °C. The full 8 µl eluate of converted DNA was 
repaired using the Infinium HD FFPE Restore Kit (Illumina). All 8 µl 
of the bisulfite-converted DNA for each sample was analysed on the 
lllumina Human MethylationEPIC BeadChip (Illumina). Processing was 
carried out by the University College London Genomics Core Facility 
according to a standard protocol.



Sequencing
Sequence libraries were multiplexed and sequenced on an Illumina 
NovaSeq, typically using S2 flow cells. Read length and depth were 
varied as required by library composition. Sequencing was performed 
by the Institute of Cancer Research Tumour Profiling Unit.

Alignment for WGS
Contaminating adapter sequences were removed using Skewer 
v0.2.2 (ref. 62). Adapter sequences were 5′-AGATCGGAAGAGC-3′ and  
5′-ACGCTCTTCCGATCT-3′, with a maximum error rate of 0.1, a mini-
mum mean quality value of 10 and a minimum read length of 35 after 
trimming using the options -l 35 -r 0.1 -Q 10 -n. The trimmed and  
filtered reads from each sequencing run and library were separately 
aligned to the GRCh38 reference assembly of the human genome63 
using the BWA-MEM algorithm v0.7.17 (ref. 64). Following the GATK 
best practices and the associated set of tools v4.1.4.1 (refs. 65–67), reads 
were sorted by coordinates (GATK SortSam), independent sequenc-
ing runs or libraries generated from the same tissue sample were 
merged and duplicate reads were marked using GATK’s MarkDupli-
cates. The structure of the final bam files was verified using GATK’s 
ValidateSamFile.

Alignment for ATAC-seq
Adapter sequences were removed with Skewer v0.2.2 (ref. 62) using the  
following full-length adapter sequences with the option ‘-m any’:  
5′-CTGTCTCTTATACACATCTCCGAGCCCACGAGACNNNNNNNNATCT 
CGTATGCCGTCTTCTGCTTG-3′ 5′-CTGTCTCTTATACACATCTGA 
CGCTGCCGACGANNNNGTGTAGATCTCGGTGGTCGCCGTATCATT-3′.

The reads of each sequencing run and library were aligned to the  
GRCh38 reference genome using Bowtie2 v2.3.4.3 (ref. 68) with 
the options ‘--very-sensitive -X 2000’ set. After sorting the reads  
with SAMtools v1.9 (ref. 69), those mapping to non-canonical chro-
mosomes and mitochondria (chrM) were removed (GATK PrintReads 
followed by RevertSam and SortSam). After merging independent 
libraries for each sample, we removed duplicate reads using GATK’s 
MarkDuplicates and removed all reads mapping to several locations 
(multi-mappers). The final bam files were validated with GATK’s  
ValidateSamFile.

Detection of germline variants
HaplotypeCaller v4.1.4.1 with the GATK package70 was used to identify 
germline variants from the reference normal samples in each patient 
(buffy coats or adjacent normal tissue) using known germline variant 
annotations from build 146 of the dbSNP database71 separately for 
each chromosome. Resulting VCF files were then merged with GATK 
MergeVcfs. Variant recalibration was performed with GATK’s VariantRe-
calibrator with options set according to GATK best practices71–74 and 
applied to VCF files using GATK ApplyVQSR with the options ‘-mode SNP 
-ts-filter-level 99.0’ and ‘-mode INDEL -ts-filter-level 99.0’, respectively. 
All germline variant calls marked as PASS were retained.

Verification of sample–patient matches
For all samples, we excluded the possibility of sample mismatch by com-
paring germline variants identified in normal tissue to neoplasia sam-
ples of a given patient. The reads of each read group were extracted with 
SAMtools view using the options ‘-bh {input_bam} -r {read_group_id}’, 
and GATK’s CheckFingerprint tool was applied to extract statistics on 
sample–patient matches75. For virtually all high-purity samples with-
out extensive loss of heterozygosity, we were able to confirm that the 
samples were obtained from the expected patient. A few samples with 
high amount of LOH and high purity fingerprinting did not confirm the 
sample-patient match; for these we instead inspected copy-number 
profiles (see below) to confirm that these matched the remaining sam-
ples of the corresponding patient.

Copy-number analysis
Deep WGS. Coverage values for genomic loci relative to matched 
normal tissue samples (buffy coats or adjacent normal tissues) were 
extracted with methods provided in the Sequenza v2.1.2 package for 
R (ref. 76) and binned in non-overlapping windows of 106 bp. B-allele 
frequencies of germline mutations determined with the GATK Hap-
lotypeCaller (see above) for each patient were added to these binned 
files. Joint segmentation on B-allele frequencies and depth ratios 
across all samples from a given tumour were used to determine a set 
of breakpoints to use for the subsequent analysis. Specifically, GC 
content bias correction was applied using the gc.norm method from 
Sequenza v2.1.2, and positions with non-unique mappability (that is, 
<1), as determined by the approach of QDNAseq v3.8 (ref. 77), in win-
dows of 50 bp were removed. Piecewise constant curves were fitted 
for each chromosome arm using the multipcf function (gamma = 80) 
from the copynumber v1.22.0 package for R (ref. 78). The per-patient 
set of breakpoints, binned depth ratio and B-allele frequency data 
were then inputted into the Sequenza algorithm (v2.1.2) to determine 
allele-specific copy numbers, ploidy Ψ and purity ρ estimates76. The 
initial parameter space searched was restricted to {ρ | 0.1 ≤ ρ ≤ 1}  and 
{Ψ | 1 ≤ Ψ ≤ 7}. On manual review of the results, we identified several sam-
ples with unreasonable fits (cases in which calls suggested extremely 
variable ploidy values across samples). For these samples, we manually 
identified alternative solutions consistent with the other samples and 
somatic variant calls.

Low-pass WGS. Low-pass WGS bam files were processed using  
QDNAseq77 to count reads in 500-kilobase (kb) bins across the auto-
somes of hg38 and convert read counts into log2-ratios. Data normali-
zation was performed in accordance with the QDNAseq workflow, 
except for outlier smoothing (smoothOutlierBins function), which 
was seen to artificially depress the signal from highly amplified bins. 
Bins for hg38 were also generated according to QDNAseq instruc-
tions. log2[ratio] values in each bin were normalized by subtracting the  
median log2[ratio] from all log2[ratio] values per sample. Samples from 
a patient were segmented jointly using the multipcf function in the R 
package copynumber (gamma = 10)78, and the mean segment log2[ratio] 
was calculated across the bins.

Absolute copy-number status was calculated using the approach 
taken by ASCAT79. Using the ASCAT equation to describe log2[R ratio] 
values, we took an integer ploidy value Ψt in the tumour t as determined 
by paired deep WGS in each case and searched a range of purities from 
0.1 to 1 (and assumed gamma was 1 as is the case in sequencing data). 
For each purity (ρ) value, we calculated the continuous copy-number 
status of each bin and calculated the sum of squared differences of these 
values to the nearest positive integer of the modulus. Purity estimates 
were given by local minima (goodness of fit to integer copy-number 
values, measured as the sum of squared differences) across the purity 
range considered. The absolute copy-number state for each bin was 
taken as the closest integer value calculated using this purity. If no local 
minimum was found the purity was assumed to be 1. If the best solution 
produced negative copy-number states at some loci, these were set to 
have a copy number of zero to avoid impossible copy-number states. In 
two patients, per sample ploidies were determined by manual adjust-
ment owing to integer ploidy values producing poor fits.

SNV detection
Somatic mutations were first called for each tumour sample separately 
against matched blood derived buffycoats or adjacent normal tissue 
samples with Mutect2 (v4.1.4.1) using the options ‘--af-of-alleles-not-in 
resource 0.0000025 --germline-resource af-onlygnomad.hg38.vcf.gz’  
(refs. 70,80). Variants detected in any tumour sample (marked PASS, 
coverage AD 10 in both normal and tumour, at least 3 variant reads in 
the tumour, 0 variant reads in the normal, reference genotype in normal 
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and non-reference genotype in cancer) were merged into a single list of 
candidate mutations. The multi-sample caller Platypus v0.8.1.1 (ref. 81) 
was then used to recall variants at each candidate mutation position 
in all samples of the patient. In practice, this meant that the pipeline 
leveraged information across samples to improve the sensitivity of vari-
ant calling. The Platypus output of joint variant calls was then filtered 
to keep only high-quality variants with the flags PASS, alleleBias, QD 
or Q20, in canonical chromosomes (that is, not in decoy), a minimum 
number of reads NR > 5 in all samples, a genotyping quality GQ > 10 
in all samples, a reference genotype (that is, 0/0) in the normal refer-
ence and a non-reference genotype (that is, 0/1 or 1/1) in at least one 
tumour sample.

To alleviate concerns of false-negative calls of mutations in impor-
tant driver alterations, we generated a second set of variant calls 
for the identification of known driver mutations and dn/dS analysis  
(see details below) to which we did not apply the second step of filtering.

SNV annotation
Somatic variants were annotated and candidate driver genes of CRCs 
reported by ref. 3 and IntOGen82 as well as pan-cancer driver genes 
reported by refs. 33,83 were filtered with the Variant Effect Predictor 
v93.2 (ref. 84).

MSI status detection
The identification of MSI CRCs was performed with MSIsensor v0.2 
(ref. 85). We first determined the position of microsatellite sites by apply-
ing the MSIsensor scan method to the GRCh38 reference assembly and 
subsetting the identified microsatellites to those located on the first 
chromosome. In a second step, we identified the fraction of mutated 
microsatellites in each sample using the MSIsensor msi method with 
default options. Generally, in known MSI cases (for example, those 
identified by mutation burden and mutational signature), more than 
30% of microsatellites were mutated, and we used this as a critical value 
to classify cases as MSS and MSI. One exception was C562, in which the 
low purity of the samples led to a low MSIsensor score. However, this 
case was clinically classified as MSI by pathological reports, and it had 
a relatively high indel burden leading to the conclusion that it was MSI.

Extraction of reads supporting variants
Using the VCF files from both somatic and germline variant calling, we 
extracted the number of reads supporting the reference and alterna-
tive alleles as well as the total number of reads covering the sites from 
WGS, low-pass WGS and ATAC-seq samples using Python and the Pysam 
library69, Pysam v0.15.2, SAMtools v1.9.

dn/dS analysis
The dndscv package for R (ref. 33) was used for dn/dS analysis. 
Per-patient variant calls were obtained from the VCF files86 and lifted 
over to the hg19 reference genome using the rtracklayer package for 
R (ref. 87). Variants were divided into clonal mutations (that is, present 
in all samples) and subclonal mutations (that is, present in a subset of 
samples) present in the cancer and a set of mutations present in any 
of the adenoma samples. MSI and MSS cases were treated separately. 
dndscv was applied separately to each of the four sets (MSI or MSS 
and clonal or subclonal) (using default parameters apart from deacti-
vated removal of cases because of a highe number of variants). Further,  
dn/dS values for a set of 167 chromatin modifier genes were extracted.

ATAC-seq
Extraction of cut sites in ATAC peak-calling analysis. For the detection  
of cut sites (hereafter ‘peaks’ where read density was high), bed files of 
ATAC-seq cut sites were produced. Aligned reads were sorted by read 
name using SAMtools sort -n{bam}, and all proper reads pairs (that is, 
reads mapped to the same chromosome and with correct read orienta-
tion) were isolated using SAMtools view -bf 0x2 and finally converted 

to the bed format using bedtools bamtobed -bedpe -mate1 -i{bam}. 
As in ref. 88, the start site of reads was shifted to obtain the cut sites: 
specifically, forward reads were shifted by −4 bases and reverse reads 
were shifted by +5 bases. ATAC-seq reads spanning nucleosomes have 
an insertion size periodicity of multiples of 200 bp, and reads in regions 
of open chromatin have insertion sizes smaller than 100 bp (ref. 88). 
For this reason, as in previous studies, ATAC-seq reads were divided 
into a set of nucleosome-free reads (insertion size ≤ 100) and a set of 
nucleosome-associated reads (180 ≤ insertion size ≤ 620).

Peak detection in ATAC peak-calling analysis. Peaks were called sepa-
rately for each tumour region using MACS2 v2.21 (ref. 89) using ‘macs2 
callpeak -f BED -g hs --shift --75 --extsize 150 --nomodel --call-summits 
--keep-dup all -p 0.01’ with the concatenated and sorted bed read files of 
nucleosome-free cut sites of all samples as input. A set of normal peaks 
(across patients) was called using the concatenated normal sample 
bed files (that is, region E samples) as input. Per-adenoma peaks were  
called using all adenoma bulk samples as input.

Filtering and concatenation of peaks in ATAC peak-calling analysis. 
Per region peak calls were filtered for those having a q-value < 0.1%, 
enrichment > 4.0, and a maximum of the top 20,000 peaks. Iterative 
merging was then applied, using a method equivalent to that used in 
ref. 11 on per-region peak calls of individual patients (per-tumour peaks 
set) as well as across all cancer samples and pan-patient normal peak 
calls (pan-patient peak set). The iterative merging resulted in a total of 
n= 343,240 peaks, of which n = 67,215 peaks called in >2 tumour regions 
or the panel of normal were retained. The ChIPseeker v2.14.0 package 
for R (ref. 90) was used in combination with the TxDb.Hsapiens.UCSC.
hg38.knownGene package v3.10.0 for R to annotate peaks on the basis 
of their genomic location. For peaks that were not proximal to known 
promoter regions (±3,000 bp), overlaps with known enhancer elements 
reported in the double-elite annotations of the GeneHancer database 
were examined91.

Extraction of cut sites in peaks in ATAC peak-calling analysis. Read 
counts for each peak in the final set were collated using bedtools92 using: 
‘bedtools coverage -a bed peaks -b bed cut sites -split -counts -sorted’.

Purity estimation for ATAC-seq and accounting for CNAs. Clonal 
variants identified by paired WGS sequencing (clonal variants were 
those present in all samples from the cancer) were used to estimate 
sample-specific ATAC-seq purity. First, variants in intervals with identi-
cal (clonal) copy-number states (that is, A&B-allele states) and regions 
of closed chromatin were identified from WGS data. Copy-number 
values ci and mutation multiplicity mi of each variant site i were ob-
tained from the WGS data. For a mutation at site i covered by ns,i reads 
in sample s, the number of reads ki containing the alternative allele is 
expected to follow a binomial distribution with the pdf
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To account for the influence of CNAs on the read counts, the signal 
observed at a locus should be given by S S= N

ρ πρ
ρ ψρ

2 (1 − ) +
2 (1 − ) +

, in which SN is 
the signal of the reference allele, ρ is the purity of the sample, π is the 
copy number of the locus, and ψ is the ploidy of the tumour. For pooled 
samples, we calculate the average of S weighted by the total number 
of reads across samples. Indeed, CNAs were affecting the read depth 
at the locus (see the figures at https://doi.org/10.6084/m9.figshare. 
19849789 for details).

However, it is important to consider that, in general, CNAs are caus-
ing relatively small changes in the ATAC-seq signals compared to those 
of bona fide SCAAs. This was demonstrated by the strong correlation  
of the recurrence number in the model with copy-number adjust-
ment versus the one without. This approach was most relevant in the  
identification of lost chromatin accessibility in regions with a copy- 
number gain and gained chromatin accessibility in regions with a copy- 
number loss.

Identification of recurrently altered peaks across patients. Analysis 
was restricted to samples with purity ρ > 0.4. Peaks proximal (≤1,000 bp)  
to a transcription start site (TSS; that is, promoters) and those more 
distant to a TSS (that is, putative enhancers) were considered sepa-
rately to account for the possibility of differential dispersion. Whereas 
we relied on proximity for promoters, we used the GeneHancer data-
base for enhancers91. An overdispersed Poisson model was fitted to 
each peak using edgeR v3.30.3 (refs. 93,94), per-sample set normalization 
factors were calculated using the TMMwsp method95, a global disper-
sion estimate was estimated across sets from all cancers and each set 
of pure glands (per patient) was compared against a large pool of nor-
mal tissue ATAC-seq samples. Recurrently altered peaks were identi
fied as those that were significantly altered at a level of P ≤ 0.01 in at  
least 4/26 (that is, 20%) of cases.

Identification of associated changes in gene expression. The ba-
sic processing of matched RNA-seq data is described in the associ-
ated manuscript38. A subset of 27,699 peaks that were either adjacent 
to a known TSS of a gene96 or overlapped a previously characterized  
enhancer element described in the GeneHancer database91 were identi-
fied. Of these 456/27,699 (≈1.65%) were recurrently altered. Changes in 
expression of genes associated with these sites were tested for using 
DESeq2 (ref. 97) to compare coefficients of the fitted β-binomial regres-
sion model (design: ~Patient, with all normal samples as ‘Normal’) with 
the contrast argument being a list of vectors containing the significant 
and non-significant patient sets.

For promoters, a one-tailed hypothesis test was applied by setting 
the altHypothesis argument to ‘less’ (for closed peaks) or ‘greater’ (for 
opened peaks). For enhancers, a two-tailed hypothesis test on all associ-
ated genes was applied by setting the altHypothesis argument to ‘great-
erAbs’. P values from all tests were adjusted for multiple-hypothesis 
testing using FDR method98 associations at FDR < 0.1% where reported. 
For the visualization of gene expression values, the average variance 
stabilised log-transformed gene expression was calculated across sam-
ples of all each cancer and across all normal samples.

Identification of subclonal changes in recurrently altered peaks. 
Subclonality was assessed only for a set of recurrent somatic acces-
sibility changes, comprising recurrent events affecting driver genes 
and the top 25 most recurrent in each of the 4 categories: gained pro-
moter, lost promoter, gained enhancer and lost enhancer (total of 521 
sites assessed).

Our previous analyses recognized that sample purity was highly 
correlated with tumour piece (regions A–D). To distinguish subclonal 
chromatin accessibility alterations from variability in ploidy, regres-
sion to account for purity was performed. Specifically, a log ratio test 
from DESeq2 was used to compare a ‘full model’ ~purity + region to a 
reduced model ~purity. Samples from the same region were used as 

biological replicates. Events were considered putatively subclonal 
when the adjusted P value was below 0.05 and if the direction of log[fold 
change] from analysis of matched bulk tissues was correlated with that 
observed in individual samples. In the case of gained events, subclonal 
events were filtered out if MACS peak-calling (see above) had not called 
a peak within 500 bp of the location of the putative gain event (this 
removed 33 sites). For losses, 5/45 subclonal events were removed as 
the log[fold change] was in the wrong direction.

For visualization of peaks, coverage per region was calculated 1 kb 
upstream and 1 kb downstream from the centre of the peak. Coverage 
was normalized per million reads in peaks and was plotted using func-
tions from GenomicRanges99 and Gviz100.

Prediction of TF-binding sites. The motifmatchr package for R (ref. 101), 
a reimplementation of the C++ library MOODS102,103, was used to iden-
tify binding sites for all human TF motifs defined in a curated ver-
sion of the CIS-BP database104. The list of predicted binding sites was 
filtered using a minimum significance value of P ≤ 10−6, followed by 
removal of binding sites in centromeric regions and non-autosomal 
(that is, sex and non-canonical) chromosomes. After this initial filter-
ing, predicted binding sites were split into six distinct groups on the 
basis of their distance to the next TSS (proximal: d ≤ 2,000 bp; close: 
2,000 bp < d ≤ 10,000 bp; distal: d > 10,000 bp) and whether they over-
lapped with a peak observed in the ATAC-seq data. For a number of TFs, 
homotypic clustering of binding sites in specific intervals was observed; 
to account for this, binding sites that were closer than d ≤ 1,000 bp to 
the next predicted binding site of the same TF were removed.

Extraction of signal values. For each of the TF sets described above, 
the counts of insertions around the centre of the TF-binding site 
(±1,000 bp) as well as the insertion size of the read pair (that is, the 
distance to the second nick) for each sample99 were tabulated.  
The insertion sizes (rows) were binned into intervals of 5 bp and  
divided by the total count of reads with an equivalent size in the entire 
genome. After this, the background signal was estimated to be the 
average number of insertions 1,000 bp–750 bp from the centre of  
the TF-binding site per insertion size and subtracted from the counts. 
The difference between these normalized and background-corrected TF  
signals in each sample and a pool of normal samples was calculated 
and integrated across the central region of the TF-binding sites (inser-
tion size [25;120], distances [−100 bp;100 bp]) as a summary statistic. 
Linear regression analysis was used to identify associations with purity 
estimates, and in this context, signals were found to correlate with TSS 
enrichment (TSSe; for both nucleosome-free and all reads). For this 
reason, a further term was added to the regression model of each  
TF to correct for this effect: signal ≈ tsse*tssenf + purity:patient (where 
‘:’ indicates an interaction between two or more variables in the model 
formula and ‘*’ indicates all the main effects and interactions among 
the variables that it joins), in which tsse and tssenf are the differences 
in TSSe between the sample and the pooled normal samples, and each 
observation was weighted by the square root of the number of reads 
in the sample. A second linear model in which a region-specific effect 
of the purity (signal ≈ tsse*tssenf + purity:region) was considered was 
also fitted to the data. For both models, the statistical significance 
of the purity coefficient was determined. The estimates of the coef-
ficients were also used as a patient-specific summary for subsequent  
analysis.

Cluster analysis. The analysis was focused on the 150 TFs for which a 
significant association with the tumour cell content (that is, the purity) 
and TF signal was most frequently observed. With the aim to identify 
general patterns in these data, a clustering analysis was conducted (hier-
archical clustering with Euclidean distance and complete linkage). This 
method identified three main groups of TFs, each of which was analysed 
with STRINGdb105 to identify significantly overrepresented pathways.

https://doi.org/10.6084/m9.figshare.19849789
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Methylation array analysis. A reference normal methylation array 
dataset was downloaded from ref. 106 that included normal tissue sam-
pled adjacent to CRCs that was profiled using the HumanMethyla-
tion450 BeadChip array (Illumina).

Here, eight bulk samples from four cases (C516, C518, C560 and C561) 
were profiled using the MethylationEPIC BeadChip (Infinium) microar-
ray according to the manufacturer’s instructions.

The ChAMP R package pipeline107 was used to analyse the methylation 
bead array data. Probes that had a detection P > 0.01 and probes with 
<3 beads in at least 5% of samples per probe, probes that were on the 
X or Y chromosome, all probes associated with single nucleotide poly-
morphisms and all multi-hit probes were removed. Subset-within-array 
normalization was used to correct for biases resulting from type 1 and 
type 2 probes on the array. After quality control and normalization, 
β-values were calculated for further comparison.

To compare the methylation patterns between our samples and the 
reference normal dataset, the overlapped probes of all samples located 
distal to the TSS, close to the TSS and proximal to the TSS, both on the 
ATAC peak and not on the ATAC peak were compared.

Processing of RNA-seq. After initial quality control with FastQC (https:// 
github.com/s-andrews/FastQC) and default adapter trimming with 
Skewer62, paired-end reads were aligned to the GRCh38 reference  
genome and v28 of the Gencode GTF annotation using the STAR 
two-pass method108. Read groups were added with Picard v2.5.0 (http://
broadinstitute.github.io/picard). Per-gene read counts were produced 
with htseq-count, which is incorporated in the STAR pipeline108.

Filtering of RNA samples. Raw gene counts were first filtered for reads 
uniquely assigned to non-ribosomal protein-coding genes located on 
canonical chromosomes (chr1-22, X and Y). If samples had fewer than  
5 million of these ‘usable’ reads, they were resequenced to improve cov-
erage. When possible, the same library preparation pool was sent again 
for sequencing. These ‘top-ups’ proved to be true technical replicates, 
as the resulting gene expression of the resequenced samples clustered 
very closely to their original samples on both a sample–sample heatmap 
and a principal component analysis. It was therefore determined that 
the FASTQs of these samples could simply be merged at the start of the 
pipeline. In cases in which resequencing was required but insufficient 
library remained, a new library was prepared, and the sequencing run 
that produced the highest read was used in subsequent analysis. For 
eight samples, the sequencing of the second library contained too 
few reads to enable downstream analysis. Six of eight samples showed 
per-gene read counts that were very similar between libraries 1 and 
2 (Spearman’s rank correlation between replicates was significantly 
higher than the mean; Wilcoxon one-way rank test; FDR < 0.01) and so 
read counts were combined across libraries; the two remaining samples 
were discarded. Samples were also discarded if matched DNA sequenc-
ing revealed a tumour purity of less than 0.1.

Gene expression normalization and filtering. The number of non- 
ribosomal protein-coding genes on the 23 canonical chromosome 
pairs used for quality control was 19,671. Raw read counts uniquely  
assigned to these genes were converted into both transcripts per million 
and variance-stabilizing transformed (vst) counts using DESeq2 (ref. 97).

A list of expressed genes (n = 11,667) was determined by filtering 
out genes for which less than 5% of tumour samples had at least 10 
transcripts per million. To concentrate on tumour epithelial cell gene 
expression, genes were further filtered out if they negatively correlated 
with purity as estimated from matched DNA-sequencing data. Specifi-
cally, for the 157 tumour samples that had matched DNA sequencing 
and therefore accurate purity estimates, a linear mixed-effects model 
of exp(vst) ≈ Purity + (1|Patient) was compared using a chi-squared test 
to exp ≈ (1|Patient). Genes that had a negative coefficient for purity in 

the first model and an FDR-adjusted P value less than 0.05, suggesting 
that purity significantly affected the expression, were filtered out. This 
led to a filtered list of 11,401 expressed genes.

Mutational signature analysis. Mutational signature analysis 
was performed with SparseSignatures51. This method uses LASSO 
regularization109 to reduce noise in the signatures, controlled by a  
regularization parameter lambda (λ). It implements a procedure based 
on bi-cross-validation110 to select the best values for both the regulariza-
tion parameter λ and the number of signatures. Deconvolution using a 
maximum of 10 signatures was performed and values of λ of 0.000, 0.025, 
0.050 and 0.100 were tested. Optimal parameters were selected on the 
basis of the median bi-cross-validation error estimated over 1,000 itera-
tions, resulting in an optimal estimate with minimum cross-validation 
median error when 6 signatures were fitted and λ = 0.025. A second 
analysis with SigProfiler111, with default parameters and a total of 1,000 
iterations, confirmed the existence of these signatures.

Signature-based clustering was performed considering the six- 
signature solution by SparseSignatures; the signatures exposure matrix 
given as an output by the tool was used to compute the pairwise simi-
larity matrix for each patient as 1 minus the cosine similarity of their 
exposures. Clustering was then performed on the similarity matrix by 
k-means with six clusters explaining all of the variance. Although from a 
statistical perspective clusters C3 and C4 are defined by a small number 
of samples (and explain 3% and 4% of the variance, respectively), from 
the biological perspective, we have evidence that in these patients the 
distribution of mutations resembles very different signatures and 
mutational processes (Supplementary Fig. 15A).

Mutational signature exposures were also analysed across epigenetic 
regions. Mutations were first grouped as clonal or subclonal across the 
whole genome and then in different genomic regions (as described 
above). Signature activities in each region were estimated by jackknife 
sampling112. Specifically, data from each patient were partitioned on 
the basis of their clusters as defined above, and repeated jackknife sam-
pling was performed 100 times independently for each of the 3 clusters 
(including a random sample of 90% of the tissue samples each time). 
For each iteration, the mutations in each genomic region were used to 
compute a data matrix normalized against the trinucleotide content 
(across the 96 channels) in the whole genome versus region-specific 
counts, and signature assignments were then performed on the normal-
ized data by LASSO51,109. Finally, relative signature activities estimated 
over the 100 jackknife samples were normalized on the basis of the total 
size of each region. Moreover, as clusters C3 and C4 represent rare and 
very distinct mutational patterns, we excluded these samples from the 
estimation of mutational processes in the epigenetic regions by jack-
knife, and instead we focused on MSS (cluster 1) versus MSI (clusters 
2 and 5) tumour, as the samples in clusters C3 and C4 would probably 
have biased the jackknife estimation for these two groups.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability
Gene expression data, somatic mutation calls (VCF files from Mutect2 
plus Platypus), copy-number calls (Sequenza and QDNAseq), the fraction  
of mutated microsatellites (MSIsensor), ATAC-seq insertion counts 
and allele counts of somatic SNVs in all sample types are available on 
Mendeley (https://doi.org/10.17632/7wx3chtsxx.1). Other figures  
have been deposited in Figshare (https://doi.org/10.6084/m9.figshare.c. 
6011476.v1). Sequence data have been deposited at the European 
Genome-phenome Archive, which is hosted by the European Bio
informatics Institute and the Centre for Genomic Regulation, under 
accession number EGAS00001005230. Further information about 
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the European Genome-phenome Archive can be found at https://
ega-archive.org. Access to these data is restricted and subject to appli-
cation.

Code availability
Complete scripts to replicate all bioinformatic analysis are available 
at https://github.com/sottorivalab/EPICC2021_data_analysis. Further 
exploration of the ATAC-seq data shown in Fig. 3 can be carried out using 
a Shiny-App accessible at https://theide.shinyapps.io/EPICC_shiny_
app/. A local version of the app and the associated source code can 
be obtained from https://github.com/sottorivalab/EPICC_shiny_app. 
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Extended Data Fig. 1 | Chromosomal differences between adenomas and 
carcinomas. (A) Ploidy and (B) PGA (Percentage Genome Altered) of adenomas 
vs carcinomas, separated by MSI/MSS status (Number of samples per group: 10 
Adenoma MSI, 13 Adenoma MSS, 66 Carcinoma MSI, 408 Carcinoma MSS). The 

lower and upper hinges of the boxes show the first and third quartiles, the black 
the horizontal lines show the medians. Whiskers extend to the most extreme 
values up to 1.5 inter quartile ranges from the whiskers and values outside of 
this range are shown as individual points. (C) Comparison of the two values.



Extended Data Fig. 2 | Recurrence of SCAA. A) Number of times each promoter and B) enhancer showed gained (y-axis) and reduced (x-axis) accessibility.
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Extended Data Fig. 3 | Transcription factor binding site accessibility is 
rewired in tumours. (A) TF binding site accessibility (in this example CTCF) is 
computed by summing the signal of ATAC-seq reads centred at the binding site, 
plotted against read length. (B) The same is done for the normal controls.  

(C) Signal from the normal is subtracted from the signal from the cancer to 
assess differential accessibility. TF accessibility for CTCF is reduced in this 
example as demonstrated by fewer ATAC cuts at the binding site in the cancer.
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