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Colorectal malignancies are a leading cause of cancer-related death'and have
undergone extensive genomic study>*. However, DNA mutations alone do not fully
explain malignant transformation*”. Here we investigate the co-evolution of the
genome and epigenome of colorectal tumours at single-clone resolution using spatial
multi-omic profiling of individual glands. We collected 1,370 samples from 30 primary
cancers and 8 concomitant adenomas and generated 1,207 chromatin accessibility
profiles, 527 whole genomes and 297 whole transcriptomes. We found positive
selection for DNA mutations in chromatin modifier genes and recurrent somatic
chromatin accessibility alterations, including in regulatory regions of cancer driver
genes that were otherwise devoid of genetic mutations. Genome-wide alterations in
accessibility for transcription factor binding involved CTCF, downregulation of
interferon and increased accessibility for SOX and HOX transcription factor families,
suggesting the involvement of developmental genes during tumourigenesis. Somatic
chromatin accessibility alterations were heritable and distinguished adenomas from
cancers. Mutational signature analysis showed that the epigenome in turn influences
the accumulation of DNA mutations. This study provides a map of genetic and
epigenetic tumour heterogeneity, with fundamental implications for understanding

colorectal cancer biology.

Clonal evolution, fuelled by intra-tumour heterogeneity, drives
tumour initiation, progression and treatment resistance®®. Much is
known about the genetic evolution and intra-tumour heterogeneity
of colorectal malignancies**'°, Although genetic heterogeneity is
widespread", epigenetic changes are also responsible for phenotypic
variation between cancer cells*”. Epigenetic profiling of chromatin
accessibility in colon cancer hasbeen performed in seminal studiesin
celllines?and human samples™*, However, currentinvestigations are
limited to single-bulk samples and some also lack normal controls™.
Moreover, how cancer genomes and epigenomes concomitantly evolve
andshapeintra-tumour genetic and epigenetic heterogeneity remains
unexplored.

Measuring genome-epigenome co-evolutioninaquantitative manner
is possible by multi-omic profiling at single-clone resolution and accu-
rate spatial sampling of human neoplasms, as well as matched normal
tissue. Colorectal cancers (CRCs) are organized into glandular structures,
reminiscent of the crypts in the normal intestinal epithelium®. Normal

crypts are tube-like invaginations where cell proliferationis driven by a
relatively small number of stem cells at the base'*, and cancer glands
are thought to have the same architecture®. This implies that all cells
within a gland share arecent common ancestor and are a few cell divi-
sionsapart: thus, glands arelargely clonal populations that, through cell
proliferation, copy DNA with relatively high fidelity. Ultimately, the gland
can be thought of as a natural whole-genome amplification machine
that can be exploited to perform multi-omics at single-clone resolution.
Indeed, single-crypt and single-gland genomic profiling has long been
used tostudy clonal dynamicsinboth normal® 2 and cancer cells'** %,
We developed amethod to concomitantly profile single nucleotide vari-
ants (SNVs), copy-number alterations (CNAs), chromatin accessibility
with transposase-accessible chromatin sequencing (ATAC-seq)*° and full
transcriptomes withRNA sequencing (RNA-seq) from the sameindividual
gland or crypt. Here we present the results of multi-region single-gland
multi-omics 0f 1,370 samples from 38 lesions arising in 30 patients, with
21-55 tumour samples per patient (median =42).
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Fig.1|Spatial single-gland multi-omics. a, Fresh colectomy specimens from
30 patients with stage I-11l CRC were used to collect tissue from 30 cancers and
8adenomas. b, Single glands and small bulks (minibulks) were isolated from
normal and neoplastic samples. ¢, We performed cell lysis followed by nuclei
pelletingon eachsample.d, Cytosolic fractions were used for RNA-seq whereas
nucleiwere used for WGS and ATAC-seq. e, We identified separate regions of
the specimen: carcinoma (A, B, Cand D), adistant normal sample (E) and

Single-gland multi-omics

We prospectively collected fresh resection specimens from 30 stage
I-1ll primary CRCs and 8 concomitant adenomas from 30 patients
referred for surgery at the University College London Hospital (Fig. 1a,
Methods, Supplementary Fig.1and Supplementary Table1for clinical
information). Single-gland isolation was performed on normal and
neoplastictissue (Fig.1b and Methods), followed by separation of nuclei
from cytosol (Fig. 1c). Leftover fragments that remained after gland
isolation were retained to assess how representative glands are of the
bulk they originated from. We will refer to those samples, consisting
of afew tens of glands, as minibulks. We used the nuclei to perform
whole-genome sequencing (WGS) and chromatinaccessibility profiling
with ATAC-seq, and the cytosol to perform full transcriptome RNA-seq
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adenomasif present (F, Gand H). Each sample was splitinto 4 fragments (inset).
Scalebar,1cm.f, Fromeach fragment, we collected individual glands (labelled
as_G) aswellasminibulks (agglomerates of afew dozen crypts, labelled as_B).
g, We performed multi-omics using WGS, ATAC-seq and RNA-seq on the same
sample, achievingagood level of overlap between assays. h, For each assay, we
hadrepresentative samples from normal,adenomaand cancer regions.
Graphicsinb-dwere created with BioRender.com.

(Fig. 1d and Methods). We verified that cytosolic RNA expression in
our normal colon tissue controls was highly correlated with whole-cell
RNA expression from the The Cancer Genome Atlas cohort? (Supple-
mentary Fig. 2).

Our strategy of spatially sampling tumour tissue was designed to
measure clonal evolution at multiple scales. We first sampled four
spatially distant regions of agiven cancer (regions A, B, Cand D) located
close to the tumour edge, one distant region of normal epithelium
(region E) and concomitant adenomas if present (regions F, G and H).
Abulksamplewascollected fromeachregionandwasspatiallyannotated
in the original resection specimen (Fig. 1e and Supplementary Fig. 1).
Each piece was cutinto four subregions (for example, A1-A4 and B1-B4)
as shown in the inset of Fig. 1e. We then collected and profiled 12-40
(median =37) individual glands and 2-17 (median = 4) minibulks from


https://biorender.com

the tumours of each patient (Fig. 1f and additional figures at https://
doi.org/10.6084/m9.figshare.19848199). Blood or, when unavailable,
large adjacent normal tissue samples were used as normal reference.

ATAC-seqwas performed in18-59 samples per patient (median = 42;
Methods and Supplementary Table 2), deep WGS (median depth 35x)
was performedin 3-15samples per patient (median = 8), and low-pass
WGS (median depth 1.2x) was performed in 1-22 samples per patient
(median = 8; Methods and Supplementary Table 3). For a proportion
oftumour samples (n =370/1,370), both WGS and ATAC-seq data were
available (Fig. 1g). We also generated a total of 600 whole transcrip-
tomes, of which 297 were of sufficient quality to be used for analysis
(1-40samplesin 27 patients, median = 7; Methods and Supplementary
Table 4) with many also overlapping the WGS dataset, the ATAC-seq
dataset or both (Fig. 1h). In addition, we ran methylation arrays on 8
samples (Methods). Weidentified CNAs, somatic SNVs, shortinsertions
and deletions (indels) and ATAC-seq peaks for all samples (Methods).

Somatic mutations affecting the epigenome

Wefirstassessed the landscape of genetic alterationsin our cohort. Six
cases were characterized by microsatellite instability (MSI; Methods),
as reported in Fig. 2a, leading to substantially higher SNV and indel
burdens (Fig. 2b). CNAs recapitulated previous datasets>*, with micro-
satellite stable (MSS) cases exhibiting high aneuploidy and MSI cases
beinglargely diploid (Supplementary Fig. 3). As previously described?,
adenomasamples showed alower degree of aneuploidy than MSS car-
cinomas, except for two outliers (Extended Data Fig.1). Recurrent copy
loss of canonical tumour suppressor genes, suchas APC, PTEN, TP53and
SMAD4, was confirmed. Focal amplifications were found in FGFRI (two
cases) and MYC (one case). Recurrent cancer driver mutation events
in CRCs were recapitulated in this dataset, with stereotypical muta-
tions in APC, KRAS and TP53 (Fig. 2c and additional figures at https://
doi.org/10.6084/m9.figshare.19849138). Except for atwo cases (C522
and C539), mutationsin these three genes were invariably clonal. The
mutational profiles of the adenomas were consistent with an earlier
study® for both APC (4/8 versus 73/135, Pvalue = 1, Fisher’s exact test)
and KRAS (2/8 versus 13/135, Pvalue = 0.20, Fisher’s exact test) mutation
frequencies. We observed a slightly larger incidence of TP53 muta-
tionsin our study (2/8 versus 4/135, Pvalue = 0.037, Fisher’s exact test).
Adenoma mutation frequencies were similar to another previous study?
(TP53, Pvalue =1; KRAS, Pvalue = 0.33; APC, P value = 0.029; PIK3CA,
Pvalue =1; Fisher’s exact test).

Toinvestigate the influence of genetic mutations on the epigenome,
we examined somatic mutations in chromatin modifier genes (Supple-
mentary Table 5), such as members of the lysine demethylase (KDM),
lysine acetyltransferase (KAT), lysine methyltransferase (KMT) and
SWI/SNF (ARID1A) families (see Fig. 2d for MSS cases, and Supple-
mentary Fig. 4 for all). Evolutionary selection on chromatin modifier
genes was assessed by dn/dS (refs. *>* and Methods). Clonal truncating
mutations (occurring in all samples of a tumour) in chromatin modi-
fier genes of MSS cases showed clear signs of positive selection, with
dn/dS significantly >1 (Fig. 2e, arrow). Subclonal chromatin modifier
mutations were present, but positive selection was not detected, with
dn/dS =1 (Fig. 2e). No evidence of positive selection for chromatin
modifier gene mutations was detected in MSI cancers, although their
high mutational burden may limit the power of detection. Overall,
clonal truncating mutations in chromatin modifiers were found in
6/24 MSS cases (25%) and all MSI cases, with few recurrently mutated
genes, suggesting a convergent pattern of selection for inactivation
of chromatin modifiers in CRC.

Recurrent chromatin changes are largely clonal

Recurrent genetic events in cancer driver genes clearly demonstrate
the role of somatic alterations in cancer evolution, but is is unclear

how common epigenetic changes of chromatin accessibility in CRC
are. We examined the landscape of somatic chromatin accessibility
alterations (SCAAs) in our cohort. We identified peaks inthe ATAC-seq
data for each region of a cancer using MACS2 (ref. **) and compared
each peak size in the tumour versus a pool of normal samples, while
normalizing for the effect of CNAs (see figures at https://doi.org/
10.6084/m9.figshare.19849789), to identify significant SCAAs (Fig. 3a
and Methods). We found highly recurrent SCAAs in both promoters
(Extended DataFig. 2A) and putative enhancers (Extended Data Fig.2B)
of several genes of interest, including many previously associated with
cancer. Wenote that these levels of recurrence are as high if not higher
than for many genetic driver mutations (Fig. 2c).

Recurrent SCAAs were found inknown cancer driver genes previously
identified by genetic studies (Fig. 3b and listin Supplementary Table 5;
shown are events occurring in >4 individuals). Many of these genes
were devoid of genetic mutations in our cohort (marked with purple
starsinFig.3b), confirming that SCAAs are an alternative modality for
driver gene (in)activation. We also found recurrent SCAAs in genes
that were not previously associated with tumorigenesis by means of
genetic mutation (Fig. 3¢, shown are the 25 most recurrent loci per
group excluding those in Fig. 3b, example in Fig. 3d.

We then leveraged our spatial multi-region profiling strategy to
assessintra-tumour SCAA heterogeneity. The signal from ATAC peaks
is difficult to compare between samples because it is confounded by
variability in purity and transcription start site enrichment. We used our
matched WGS to identify clonal (truncal) DNA mutations presentin all
samples of the tumour and assessed the frequency of these variantsin
thereads from ATAC-seq to obtain accurate estimates of sample purity
(Methods and Supplementary Table 2). Samples from each region were
treated as pseudo-‘biological replicates’, and each of the signals for the
different cancer regions was compared with that of the corresponding
normal tissue while accounting for purity (Methods). A total of 24/30
cancers and10/10 adenomas had sufficient samples with enough purity
for the analysis. We focused on the 25 most recurrently altered loci per
category (promoter or enhancer, gained or lost), as well as those associ-
ated with CRC driver genes found in >4 cases (Supplementary Table 6).
We found that for most of these events (5,688/5,824, 97.7%), we had no
evidence that they were subclonal, suggesting that most SCAAs are
clonal epigenetic changes in the malignancy (Fig. 3b,c, see shading).

Among the recurrently altered and almost invariably clonal epige-
netic changes, we found aJAK3 promoter gain of accessibility in 11/24
cancers (Fig. 3d), as well as loss of chromatin accessibility in the CRC
tumour suppressor gene CCDC6. This was the case for both the pro-
moter (12/24 cancers) and an associated enhancer region (3/24 can-
cers); see, for example, case C524 in Supplementary Fig. 5A. Notably,
mutations in CCDC6 are infrequent in CRC (3/30 cases in our cohort,
annotated as a purple star in Fig. 3b). Furthermore, ARID1A enhancer
loss was observed in four cancers and one adenoma, with only two of
those cases also bearing a mutation in this gene. Alterations in other
putative CRC drivers were also found, such as SMAD3 and SMAD4 pro-
moter loss, and NCOR2 enhancer gain. NFATC2 and LIFR cancer driver
genes that were not reported in CRC were found to be epigenetically
altered in our cohort, and in the absence of DNA mutations. Of inter-
est, we found typically clonal promoter SCAAs in FOXQ1in11/24 cases,
aknown oncogene reported to be involved in CRC tumorigenicity®,
angiogenesis and macrophage recruitment during progression>®.
Although most recurrent SCAAs were clonalinthe cancer, aproportion of
SCAAswere found to be subclonal and confined to one or moreregions.
This was exemplified by a FOXLI enhancer gain (12/24 cases, 50%) in
Supplementary Fig. 5B occurring only inregions C and D of cancer C524.

We note that ATAC peaks called in our dataset overlapped with peaks
fromthe The Cancer Genome Atlas dataset that was composed of single
CRCbulks™ and the ENCODE normal colon tissue dataset®. Moreover,
the average peak sizes correlated strongly when reanalysed with our
pipeline (Supplementary Fig. 6). Owing to unmatched normal controls
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Fig.2|DNA alterationsin canonical cancer drivers and chromatin modifier
genes. a, MSIfrequency per case. Each data point shows the fraction of
mutated microsatellites reported by MSIsensor inasample. More than 25%
mutated microsatellites suggest MSI. b, Mutational burden by type of
mutation across all cancer samples of agiven case (MNV, multiple-nucleotide
variant). ¢, Fraction of samples in which recurrently mutated CRC driver genes
were mutated (shading) and the type of the corresponding mutation (colour).
Orange dotsindicate that the mutationis clonal (thatis, presentin all samples).

however, inthese orthogonal bulk-sample datasetsitis complicated to
distinguish chromatin changes that occurredin the cancer versus those
presentinthe normal colon (for example, to determine the somatically
changed status of the peak), and indeed most of the signal of chromatin
accessibility comes from the tissue of origin of the sample™.

Chromatin changes inadenomas and cancers

We then sought to determine the role of SCAAs in the adenoma-car-
cinoma transition, while not discarding the possibility that some of
these changes may be a product of normal tissue ageing. We examined
the stage of tumour development when SCAAs occurred. Out of the
665 recurrent SCAAs found in cancers (=6 cases) with available con-
comitantadenomas, only 113 (17.0%) were also detected in the matched
adenoma, suggesting that most SCAAs probably occurred at the onset
of malignant transformation, hence after neoplastic growthinitiation
but before subclonal diversification (as they were also largely clonal).
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Such events are exemplified by the gain of accessibility of a NXPH1
enhancer (4/24 patients, 17%) in C561, which was presentin eachregion
of the cancer but not in any of the concomitant two adenomas (Sup-
plementary Fig. 5C and additional figures at for all events). Indeed,
thelower SCAAburden of adenomas compared to that of cancers was
not dependent on purity or read depth (Supplementary Fig. 7A,B).
By explicitly normalizing for coverage (Supplementary Fig. 7C), we
found a significantly lower burden of recurrent gain-of-accessibility
SCAAs (>10 patients) between adenomas and carcinomas (Fig. 3e).
No difference was found in the burden of loss of accessibility (Fig. 3f).
We note that the only advanced adenomain our cohort that was found
co-locating with the cancer (C516; see Supplementary Fig. 1) indeed
showed the SCAA gain burden of a carcinoma (Fig. 3e). It was previ-
ously noted that there were limited differences between adenomas
and carcinomas in CRC at the level of point mutationsin driver genes,
andinstead major differences at the level of chromosomalinstability>.
Here we additionally found differences in epigenetic rewiring between
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Fig.3|SCAAsincancersand adenomas. a, Example of SCAAs detected in
cancer C530 versus normal. Significantly altered peaks are showninred. MS,
microsatellite.b, SCAAs affecting known cancer driver genes occurring in >4
cases. Starsindicate DNA mutations found in the gene. ¢, Summary of the 25
mostrecurrent SCAAsin promoter and putative enhancers of genes not
previously associated with cancer through DNA mutation. Subclonal changes
are marked inshaded squares. d, Clonal somatic peak gained at the JAK3
promoterincancer C551. The plot shows the normalised peak coverage of
glands from different regions (see colour legend). The coloured lines on top of
the plot show called peaks and the grey line shows the interval of the reference
peak.e,f,SCAAburden of adenomas versus carcinomas for gain (e) versus loss
(f) of accessibility. The number of gains, but not losses, of accessibility differed

adenomas and cancers. Moreover, the higher burden of SCAA gainsin
cancers supports the idea that carcinogenesis involves an increased
genome-wide chromatin accessibility.

To gainmore insight on the origins of SCAAs, we investigated chro-
matin changes in the normal colon by comparing each normal crypt

significantly (two-sided t-test) between adenomas (n = 8) and cancers (n =24)
after subsampling the number of reads in carcinomas to those inadenomas.
Thelower and upper hinges of the boxes show the first and third quartiles.
The whiskers extend to the largest and smallest valueup to1.5times the
interquartile range from the hinges, and values outside this range are shown
asindividual points. The grey horizontal lines within the boxes indicate the
median, and the dotsindicate the mean. The advanced adenoma of C516 is
highlighted asared dot.rec., recurrent. g, Example of apromoter for which
we confirmed changesin gene expression. The gene expressionbetween the
groups of cancers with matched RNA-seq that showed evidence of accessibility
gain (n=18) and those that did not (n =5) was compared using the DESeq2
contrast function.

againstthe pool of normals from the other patients. We found very few
SCAAsinindividualnormal crypts, supporting the idea that the SCAAs
we observedin the tumours wereindeed somaticalterations originated
during tumourigenesis, rather than during the normal process of epi-
genetic ageing of colon crypts. A small subset of SCAAs was detected
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inmultiple crypts of the same patient (Supplementary Figure 8A), but
SCAAsinnormal crypts were not recurrent (Supplementary Figure 8B)
and did not overlap with SCAAs observed intumours (Supplementary
Figure 8C). Plausibly germline genetic variation could cause some of
the chromatin accessibility alterations in normal tissue we observe.

Impact of SCAAs on gene expression

We assessed the impact of SCAAs on gene expression using matched
RNA-seq (for example, Fig. 3g). More than10.8% of promoters (41/379)
and 13.5% of enhancers (10/74) with recurrent SCAAs (=6 patients)
showed signs of altering the expression of associated genes (false dis-
coveryrate (FDR) < 0.01, Methods, Supplementary Table 7 and figures
athttps://doi.org/10.6084/m9.figshare.19857274). We note that chro-
matin accessibility measures the potential for transcription, indicating
priming for future expression or aremnant ‘scar’ of past transcription.
Therefore, more chromatin changes than those that correlate with
expression in our analysis may actually be important for tumour evo-
lution. Moreover, the power to detect expression changes was limited
by the recurrence of agiven SCAA in the cohort, incomplete matched
RNA data and the lack of information about other factors influencing
transcriptionsuch as methylation, post-translational modifications or
transregulation. To further probe the impact of somatic mutations on
SCAAs, we analysed SNVs that we found were associated with changes
in cis gene expression in our associated article*® and found that some
ofthese SNVs co-occurred with a change in chromatin accessibility at
the locus (figures at https://doi.org/10.6084/m9.figshare.19857274).

Transcription factor signals indicate epigenetic
reprogramming

We extended our analysis beyond focal changes in chromatin acces-
sibility in promoters and enhancers, investigating whether chromatin
architecture could have a genome-wide influence on transcriptional
control. To examine this, we analysed the genome-wide accessibility
of transcription factor (TF) binding sites for 870 TFs* using publicly
available data for TF motifs and for chromatin immunoprecipitation
followed by sequencing (ChIP-seq; Methods). We piled up the ATAC
reads for all binding sites of agiven TF across the genome and plotted
read count versus the distance from the centre of the TF motif and the
length of each read, producing a characteristic signature of TF acces-
sibility for a given sample, which also encodes the footprint of the TF
complex itself, in the cancer (Extended Data Fig. 3A and additional
figures at https://doi.org/10.6084/m9.figshare.19857391) and normal
(Extended Data Fig. 3B) regions. The normalized difference of the TF
signal between tumour and normal glands indicated somatic changes
inaccessibility (Extended DataFig.3C). These analyses suggested per-
vasive genome-wide rewiring of TF chromatin accessibility in CRCs
(Fig. 4a, see Methods for details). As many TFs bind to similar loci, we
considered only largely non-overlapping TF annotations to ensure
that a single locus could not drive the signal of several TFs (figures at
https://doi.org/10.6084/m9.figshare.19857391).

Unsupervised clustering of somatic TF binding signatures produced
three main clusters. The first main cluster (green cluster, Fig. 4a) seemed
tobe associated with downregulation of interferon signalling through
loss of chromatin accessibility in loci putatively bound by TFs from
the interferon-regulatory factor family, suggesting suppression of
immune signalling. Reactome and Gene Ontology analysis (Fig. 4b)
indicated that the signal was significantly enriched for downregula-
tionof interferon-y (FDR = 0.003) and interferon-a/f (FDR = 0.00075).
This signal was stronger in MSI cancers, which are heavily infiltrated
by immune cells (P=0.012, Fisher’s exact test).

The second main cluster (blue cluster, Fig. 4a) contained two distinct
subgroups of patients with differential chromatin accessibility for
CTCF. The CCCTC-binding factor (CTCF) is a key player in chromatin
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insulation, determininglooping and formation of the topological asso-
ciating domain. Most cases were characterized by loss of accessibility
of the CTCF-binding site, particularly in MSI cancers. A smaller group
showed increased CTCF accessibility. CTCF chromatin accessibility
alterations were previously noted in single-bulk cancer samples®. CTCF
somatic mutations can occur in CRC*’, and indeed a mouse model of
chronic CTCF hemizygosity led to higher cancer incidence and dys-
regulation of oncogenic pathways*.

The third main cluster (red cluster, Fig. 4a) showed increased chro-
matinaccessibility for TFsinvolved in development, such as the HOX,
FOX and SOX families (UniProt: ‘homeobox’, FDR = 0.00069). The
chromatin accessibility of this cluster of TFs was higher in cancer in
most cases, suggesting possible reactivation of developmental genes
in CRC tumorigenesis (Fig. 4c). The expression of the TFs involved in
this cluster is reported in Supplementary Fig. 9.

Notably, matched RNA-seq data showed that gene expression of
humanleukocyte antigen (HLA) genes was significantly reducedin both
MSS and MSl cancers with respect to normal samples (Fig. 4d) consist-
entwith the downregulation of interferon signalling as highlighted by
the signal in the green cluster.

We also noted a small cluster characterized by increased accessi-
bility at the TF-binding sites of SNAI1 and SNAI2, two TFs involved in
epithelial-to-mesenchymal transition*2. This cluster was significantly
enriched in cases showing truncating mutations in chromatin modi-
fier genes (P=0.047, Fisher’s exact test), consistent with previously
reported regulation of epithelial-to-mesenchymal transition by chro-
matin modulators*. We cannot exclude that there could be further
subgroups of patients with distinct TF accessibility patterns beyond
the CTCF subgroup (blue cluster); further studies with more patients
areneeded.

Demethylation of developmental TF-binding sites

We further attempted to corroborate the increased accessibility to TF
involved in development. Changes in chromatin accessibility can be
accompanied by changes in DNA methylation, with heterochromatin
regions often being methylated and vice versa for open chromatin
regions. Thisis particularly the case for regions that are permanently
silenced after development**. We tested whether SCAAs identified at
TF-bindingsites (Fig.4a) werereflected in the methylation of the same
loci. We performed methylation profiling onasubset of 8 samples using
Illumina EPIC 850k methylation arrays (one sample from C516, two
samples from C518, two samples from C560 and three samples from
C561; see Methods for details). First, we report that C518 is probably a
CpGisland methylator phenotype case according to established mark-
ers® (Supplementary Fig. 10). Comparing the methylation of TF bind-
ing annotationsin cluster 3 (Fig. 4c), methylationin these regions was
found to be significantly lower than that in normal tissue, supporting
the finding that these sites were accessible (Supplementary Fig. 11a).
Thiswas particularly clear for TF-binding sites of DLX5, HOXA4, HOXB4,
ISL1,SOX5and SOX6 (Supplementary Fig. 11b), suggesting stable reacti-
vation of regulatory regionsinvolved in developmental genes. We note
that this was not due to a general pattern of global hypomethylation,
asmethylationin genes thatare usually normally highly methylatedin
normal were also high in cancer (Supplementary Fig.12).

Chromatin changes are stable and heritable

Epigenetic alterations, and in particular chromatin modifications,
are responsible for cell identity in all tissues, but it remains unclear
whether epigenetic changes in cancer are stable during tumour evolu-
tion. Seminal studies have begun unravelling epigenetic heritability in
blood cancers***, and suggest that stable SCAAs could provide a herit-
able substrate for Darwinian selection to operate. For most detected
SCAAs, if the peak was differentially accessible in one region of the
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Fig.4|Accessibility of the TF-binding siteisrewired in tumours.

a, The differential signal across TF-binding sites between tumour and
normalsamples (see Extended Data Fig. 3) was regressed against transcription
startsite enrichmentand purity toidentify altered TF binding accessibility in
tumours. Results are shown here for the three main clusters of differentially
accessible TF loci (heatmap colour is the regression coefficient; star indicates
significance). Main cluster identity is denoted by the top annotation columns.
IRF, interferon-regulatory factor.b, STRINGdb analysis of the green TF cluster
highlights downregulation of interferon signalling. GO, Gene Ontology.

tumour, it was also differentially accessible in other distant regions.
Aswe sampled opposing tumour sides (Fig. 1e,f), two sampled regions
likely have early common ancestors, diverging by alarge number of
cell divisions. Hence, we argue that most SCAAs we detect are prob-
ably clonal or have high ‘clonality’ (that is, they are shared by large
proportions of cancer cells). This can occur either through conver-
gence of different lineages to the same SCAAs, or through evolution by
common descent. Given the number of putatively clonal SCAAs, as
well as the distance and the probable difference in microenvironment
between the distinct regions of each cancer, we argue that the most

¢, STRINGdb analysis of the red cluster indicates upregulation of the activity

of developmental genes of the homeobox family. d, Relative (Rel.) tumour
expression of HLA genes versus other gene groups. The lower and upper hinges
oftheboxes show the first and third quartiles. The whiskers extend to the
largest and smallest value up to1.5times theinterquartile range fromthe
hinges, and values outside this range are shown as individual points. The grey
horizontal lines within the boxes indicate the median, and the dots indicate the
mean. Housekeeping genes from Ref. ®'. CMGs, chromatin modifier

genes. MHC, major histocompatibility complex.

parsimonious explanation s, as for species evolution, evolution by
common descent, rather than convergence of many different lineages
to the same overall epigenetic pattern.

To further test the heritability of epigenetic alterations, we specifi-
cally compared SCAAs within versus between tumour regions (Sup-
plementary Fig. 13A). In most patients (23/29), analysis of variance
controlling for transcription start site enrichment and total read count
showed that samples from the same region were significantly less
divergentinterms of SCAAs thansamples from different regions (Sup-
plementary Fig. 13B). Moreover, a direct correlation between genetic
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distance and epigenetic distance was found in 8/29 cases (the power of
this analysisis limited by small sample numbers), after controlling for
purity (see the example in Supplementary Fig. 13C). This was not the
case forall patients, either because of lack of a correlation or not enough
data (see the example in Supplementary Fig. 13D). Thus, chromatin
profiles were heritable and followed, at least in part, genetic divergence
(Supplementary Fig.13B; see coefficients of the analysis of variance per
regioninSupplementary Fig.14), thus providing further evidence that
common descent, not convergence, is the reason for SCAAs common
toseveral samples of the same tumour. Genome-wide TF SCAAs (Fig. 4)
showed similar evidence of heritability (figures at https://doi.org/
10.6084/m9.figshare.19857391), suggesting that such rewiring of the
chromatin existed in acommon ancestor of all the samples and was
inherited during tumour growth. There were however some interesting
exceptions in which different regions showed distinct SCAA profiles.
For example, whereas C548 showed homogeneous loss of accessi-
bility to CTCF-binding sites at loop loci, in C543 both promoter- and
loop-binding sites of CTCF were altered and in a heterogeneous man-
ner, withregions exhibiting differential organization of the chromatin
(figures at https://doi.org/10.6084/m9.figshare.19857391).

Mutational signatures affecting the epigenome

There is a growing appreciation of the multidimensional nature of
mutation signatures beyond the 96-channel representation and across
different regions of the genome, especially in relation to replication
time and three-dimensional genome organization*®. However, the rela-
tion between mutational signatures and epigenetic features remains
poorly studied owing to lack of matched data. Here we examined the
feedback between epigenome and transcription status and mutational
processes***° through tumour evolution. We performed de novo signa-
ture discovery using amethodology robust to overfitting®, detecting
six mutational signatures across our cohort (Supplementary Figs. 15A
and 16): SparseSignaturel, corresponding to COSMIC signature 1 of
C>T deamination at methylated CpG sites; SparseSignature2, corre-
sponding to COSMIC signatures 2 and 13 caused by APOBEC enzymes;
SparseSignature3, corresponding to COSMIC clock-like signature 5;
SparseSignature4, corresponding to COSMIC signatures 17a and 17b
of unknown aetiology; SparseSignature5, corresponding to COSMIC
signatures 9 and 41, also of unknown aetiology; SparseSignature6,
corresponding to COSMIC signature 44 caused by mismatch repair
deficiency.

Genome-wide signature activity divided the cohortinto five distinct
clusters of patients (Supplementary Fig.15B,C). The two main clusters
consisted of MSS (cluster 1) and MSI cases (cluster 2). Cluster 3 con-
tained only case C549, which was strongly enriched with the APOBEC
signature. Cluster 4 with cases C561 and C539 had high activity of
SparseSignature4 and SparseSignature5 of unknown aetiology. Cluster
Swith cases C518 and C548 had higher SparseSignature3 (clock-like sig-
nature). We assessed changes in mutational process activity over time
by comparinginferred activity between clonal and subclonal mutations
(Fig. 5a). SparseSignaturel (deamination) was dominant in MSS cases
throughout tumour evolution, and in MSI cancers SparseSignature6
(mismatch repair) was also dominant throughout. SparseSignature2
(APOBEC), SparseSignature4 and SparseSignature5 (unknown) were
enriched at the subclonal levelin cases inwhich they were active, dem-
onstrating activity late in tumour evolution.

Mutationsin chromatin modifier genes, or alterations in TF-binding
sites, can determine the characteristics of the epigenome. Conversely,
chromatin architecture determines how the cancer genome accu-
mulates mutations owing to its effect on different mutational pro-
cesses and activity of DNA repair genes®*%, To examine the impact of
the epigenome on the accumulation of mutations further, we com-
pared mutational signature burdens between epigenetic regulatory
regionsidentified withthe ATAC-seq data (active and inactive promoter,
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active and inactive enhancer, intergenic, and coding), as well as typi-
cally expressed and not expressed genes identified with the RNA-seq
data.

SparseSignaturel (cytosine deamination) was 2-4-fold higher in
closed chromatin regions of the genome (inactive promoters and
enhancers) for both clonal and subclonal mutations, consistent with the
need for methyl cytosine (enriched ininactivated regulatory regions)
tobepresentforittobecome deaminated and produce the associated
mutational signature (Fig. 5b). Analogous differences were observedin
the codingregions of the genome between genes expressed versus not
expressed genes in the normal: specifically, genes that were ‘switched
on’intumour after being offin normal carried anintermediate load of
C>T deamination mutations that were probably accumulated in the
normal tissue before carcinogenesis when the locus had inaccessible
chromatin, before the mutation rate was reduced when the chromatin
opened and gene expression was induced (Fig. 5b). Similar dynamics
were observed for SparseSignature4 (Fig. 5¢) and SparseSignature5
(Fig. 5d; ref. **). The activity of the mismatch repair signature in MSI
cases was more uniformly distributed across the genome (Supple-
mentary Fig.17).

We reasoned that different mutational processes may also differ-
entially alter the affinity of the TF-binding site, as an example mecha-
nism of how mutational processes can directly influence the cancer
epigenome. It has previously been documented that point mutations
candisrupt CTCF-binding sites*°. We selected CTCF sites with somatic
mutations that were predicted by deltaSVM* to cause significant loss
or gainofbinding and assessed the relative contribution of each muta-
tional signature to these mutationsin the CTCF-binding site across the
five mutational signature clusters. InMSS cancers (cluster 1), mutations
predicted to cause loss of binding had a signature that was consist-
ent with the background mutational signature acting on the genome
(cosine similarity = 0.977; Supplementary Fig.18A), and the same was
true for gains (cosine similarity = 0.919; Supplementary Fig. 18B). In
MSI cancers (cluster 2), SparseSignature6 (mismatch repair; Supple-
mentary Fig. 18C) was consistent with causing gain of CTCF binding
affinity (cosine similarity = 0.925). In C549, the only case with high
levels of SparseSignature4 (COSMIC signature 17; Supplementary
Fig. 18D), this signature was also a source of mutations causing gain
of affinity (cosine similarity = 0.977). These results suggest that CpG
deamination causes the largest proportion of mutations altering CTCF
binding in MSS cancers, with a higher tendency of generating loss of
binding (Fig. 5e). In MSI cases, the mismatch repair signature is also
a dominant factor in causing altered binding of CTCF, with a prefer-
ence for generating increased affinity (Fig. 5e). When considering the
abundance of any given mutational signature in the genome, we found
that 4% and 8% of SparseSignaturel mutations cause, respectively,
gainand loss of CTCF binding, whereas 5% and 8% of SparseSignature6
mutations cause, respectively, gain and loss of CTCF binding (see all
inSupplementary Fig.19).

Discussion

The contribution of epigenetic events to cancer evolutionis recognized
as highly significant™®, but has remained understudied’. Recently, a
pan-cancer analysis revealed the chromatin accessibility profile of
several cancer types, but the lack of an appropriate matched normal
control precluded proper identification of cancer-specific events, with
tissue-specific and ‘cell of origin’ chromatin profiles remaining the
dominantsignalin the data™. Studies with normal tissue references have
identified complex patterns of SCAAs in CRCs'**®, but have not been
able to assess the evolutionary dynamics that led to these chromatin
changes. Here we show that genetic and epigenetic modification of
cancer-associated genes occursindependently but recurrently in CRCs,
and that epigenome alterations probably control important tumour
cell phenotypes, including escape fromimmune surveillance. Further,
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Fig.5| DNA mutational signatures and the epigenome. a, Clonaland
subclonal mutational signature composition for each case. CpG demethyl.,
CpGdemethylation.b, The epigenomeinfluences accumulation of
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mutations. ¢, Signature SparseSignature4, mostly present subclonally, is also

we find that chromatin alterations are stable and heritable, providing a
substrate for Darwinian selection to act, and interrelatedly, chromatin
alterations influence the accumulation of somatic genetic alterations
that can also drive evolution®”*®, At present, genomics detects driver
alterations or mutational processes that inform on drug sensitivity
butisblind to potentially clinically actionable biology governed by the
epigenome. The observation that epigenetic changes occurinregula-
tory regions of known cancer driver genes in the absence of somatic
mutations argues for the importance of epigenomics for genomic
medicine. Certainly, the interaction between somatic mutations and
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influenced by the epigenomesstatus. d, Signature SparseSignature5,
particularly at the subclonal level, isagain depleted in active regions as
SparseSignaturel. e, The proportion of each signature for every cluster
responsible for generatingloss or gain of CTCF binding affinity in our cohort.

SCAAs remains challenging to unravel. Although several studies have
investigated the effects of somatic mutations in chromatin modifier
genes (for instance, linking mutations with increased transcriptional
heterogeneity*®), identifying the direct (cis) functional effects on the
chromatin caused by DNA variants remains difficult. Our multi-omic
dataset provides some clear examples of a genome-epigenome rela-
tionship: we observed somatic mutations associated withboth changed
cis gene expression and changed chromatin accessibility. Follow-up
workis required to explore the functionalimpact of epigenetic altera-
tions in cancer driver genes and other loci.
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Wealso observed that the epigenomes of adenomas and carcinomas
are distinct. The lower prevalence of SCAAs in adenomas and, at the
same time, the clonality of most SCAAs in carcinomas suggest that
many cancer SCAAs may occur at the onset of malignant transforma-
tion. Thisisimportant because, besides broad CNAs, mostly non-focal
chromosomal arm gains or losses of unknown significance, thereislittle
differencein driver alterations between benign adenomas and malig-
nant carcinomas®. Moreover, there is no validated prognostic genetic
alteration that predicts recurrence in CRC. Others have shown that
chromatin topology changes over time inageing colon tissue, including
intransformed tissues, and thatalink between altered chromatin pat-
terns and patient outcomes exists®. Thisis consistent with our finding
ofadecisiverolefor SCAAsin cancer biology. We acknowledge that our
multi-omic analysis was based on the analysis of tumour glands, and it
possible that the biology could differ in the rare CRCs that completely
lack glands.

One of the most intriguing results was the evidence of reactivation
of developmental genes during tumorigenesis. Those genes are usually
silenced in somatic tissue, and the reactivation of the genes in these
families and their involvement in tumorigenesis has been postulated
before in the context of glioblastoma tumorigenesis®* as an enabler
of growth and adaption. We identified a group of TFs with decreased
accessibility that were related to interferon signalling. On the other
hand, we also found a group of TFs that had increased accessibility
and was enriched withhomeobox genes (for example, SOX5and SOX6)
that are directly involved in early development. We speculate that we
may detect biological processes that aim at reprogramming cell fate
through reactivation of developmental genes. Further functional work
iswarranted.

Overall, our spatially resolved multi-omic analysis of primary colo-
rectal cancers shows non-genetic determinants of cancer cell biology
and clonal evolution.
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Methods

Sample collection

Primary tumour tissue and matched blood samples were prospectively
collected from patients undergoing curatively intentioned surgery at
University College London Hospital (UCLH). All patients gave informed
consent for collection of their materials to the UCLH Cancer Biobank
(Research Ethics Committee approval 15/YH/0311). Four regions of
each primary cancer were sampled by punch biopsy or scalpel dissec-
tion, at notionally 12, 3, 6 and 9 o’clock positions around the tumour
periphery.Each region was further cut into four pieces and slow-frozen
to—-80 °C, usingaMr Frosty Freezing Container (Thermo Fisher),in1 ml
of abuffered medium (MEM supplemented with 5% FBS and 0.5% 5 mM
HEPES buffer, diluted with 10% dimethylsulfoxide) in a 1.8-ml Nunc
Cryotube (Sigma-Aldrich), and immersed in isopropanol to preserve
chromatin structure. All investigators were blinded to patient data
related to outcome, gender and other clinicopathological information.

Glandisolation

A clean glass slide was placed into a 10-cm Petri dish and 500 pl PBS
supplemented with RNAse and protease inhibitors was pipetted on
top of the slide. The Petri dish was then transferred to the stage of
a dissecting microscope. Tissue pieces were manually dissociated
under the microscope using two 16G needles, with individual glands
being pulled away from the tissue mass. For every specimen, a further
epithelial minibulk sample that comprised a total of approximately
10-20 crypts or glands was collected. Each gland was transferred to
a1.5-ml Eppendorftube containing a total volume of 50 pl cell lysis
buffer (10 mM Tris-HCI pH 7.4,10 mM NacCl, 3 mM MgCl,, 0.1% IGEPAL
CA-630 supplemented with protease inhibitors (1tabletin 50 mldH,0
asdirected by the manufacturer (cOmplete Protease Inhibitor Cocktail,
Sigma-Aldrich) and RNASE inhibitor 1 U pl™ (Protector RNase Inhibi-
tor, Sigma-Aldrich) and incubated onice for 10-45 min. Bulk samples
were collected inafinal volume of 100 pl cell lysis buffer. We found that
longer or warmer incubations decreased the RNA quality and yields
and negatively affected chromatinstructure. Inselecting the 30 cases
included in our study, we rejected only a single further case owing
to being unable to isolate any glands, confirming that retention of
glandular structures is pervasive in CRC.

Chromatin, DNA and RNA separation

Eachtube containinganindividual gland or bulk was lightly vortexed,
transferred to a pre-chilled centrifuge and spun at 500g for 10 min
holding the temperature at 4 °C. This produced a pellet of cell nuclei
at the bottom of the tube, with the cytosolic fraction present within
the supernatant. For RNA extraction, 45 pl (glands) or 90ul (bulks) of
the supernatant was transferred into a new tube containing 300 pl of
TRIzol (taking care not to disturb the pellet). TRIzol lysates were stored
at-20 °Cifnotprocessedimmediately or at —80 °C for long-term stor-
age. For extraction of nuclear material, the pellet of nuclei was resus-
pended inresidual cell lysis buffer. A 2.5 pl volume of suspension was
transferred into another tube for subsequent DNA extraction, which
was frozen if required. The remaining suspension was immediately
used for preparation of ATAC-seq libraries, as we found subsequent
handling or storage compromised library quality.

Preparation of ATAC-seq libraries

Tubes containing the suspension of nuclei (2.5 pl for glands and 7.5 pl
for minibulks) were kept on wetice.A2.5 pl volume of 2x TD buffer and
0.25 plof Tn5 transposes (Illumina) was added to each gland tube and
25 ul 2x TD buffer, 2.5 pl Tn5 transposes and 15 pl of DNAseq/RNase
free water was added to each minibulk tube beforeincubation at37 °C
for 30 min. Purification was performed using AMpure XP SPRI beads
(Beckman Coulter); 10 pl (2x sample volume) of room-temperature
beadswas addedto eachtube and mixed by pipetting 10 times, before

incubation at room temperature for 1 min. The tube was placed on a
magnetic plate, and beads were allowed to settle for 3 min. Once clear
the supernatant was discarded. With the tube still on the magnetic
plate, 200 pl of 80% ethanol was added and incubated at room tem-
perature for 30 s, the ethanol supernatant was discarded. The tube was
removed from the magnetic plate and 10 pl of 10 mM Tris buffer was
added to each tube and mixed. The tubes were placed on a magnetic
plate, and the beads were allowed to settle for 3 min. Once clear, 10 pl
of supernatant containing purified transposed DNA fragments was
transferred toafreshtube forimmediate library preparation or stored
at-20 °Cfor later use.

For library preparation, the transposed sample was supplemented
with 1 plof 10 pM Nextera i7 PCR primer, 1 pul of 10 uM Nextera i5 PCR
primer (Illumina) and 12.5 pl of NEBNext QS5 High-Fidelity 2x PCR Master
Mix (New England Biolabs). PCR amplification was performed, with
initial elongation at 72 °C for 5 min, then initial denaturation at 98 °C
for 30 s, and then 14 cycles (for glands) or 10 cycles (for bulks) of the
following: 10 s of denaturation at 98 °C, annealing step at 63 °C for
30 s followed by 72 °C for 1 min.

Following amplification, samples were purified with 2x SPRI beads
and eluted in 20-30 pl of 10 mM Tris buffer, pH 8. Samples were
screened using the Agilent Tapestation 4200 and HSD100O screen-
tapes. Only those that showed a fragment size distribution with peaks
atmultiples of about 147 base pairs (bp), indicating intact nucleosomal
structure within the nuclei, were sent for sequencing.

Preparation of WGS libraries

DNA fractions were extracted using the Zymo QuickDNA Microprep
pluskitaccordingtothe manufacturer’sinstructions. Only samples with
atotal DNAyield higher than 10 ng were taken forwards for WGS library
preparation. Libraries were prepared using the NEBNext Ultra Il FS kit
according tothe manufacturer’sinstructions. Ashortenzymatic frag-
mentation step of 5 minwas performed, and five PCR cycles were used
for library enrichment. After purification, libraries were quantified by
Qubitand runon the Agilent Tapestation using HSD1000 screentapes.
Samples with sufficientlibrary DNAyield and characteristic fragment
size distribution (about200-500 bp) were further subjected to either
low-pass (about 1x coverage) or deep (about 35x coverage) WGS.

RNA library preparation

The cytoplasmicfractions of each sample inthe form of TRIzol lysates
were used for RNA extraction using the Directzol kit (Zymo R2052).
Modifications to the manufacturer’s protocol were introduced to
increase the total RNA yields. First, we passed the initial TRIzol and
ethanol mix twice through the spin column. Second, we eluted the RNA
using two 25 pl volumes of water instead of just one 50 pl elution. The
optional DNase step was used.

Agilent Tapestation quality control showed low RNA integrity num-
berscores (<3) for most samples and so was not used to exclude samples
for library preparation. Libraries were prepared using the Illumina
TruSeq RNA Exome kit (compatible with low-quality input material)
according to the manufacturer’s instructions.

Methylation arrays

DNA methylationarray analyses were carried out on selected bulk sam-
ples with sufficient DNA yield. Genomic DNA was bisulfite-converted
using the Zymo EZ DNA Methylation kit. A 50-pl reaction containing
2.5-100 ng of DNA was incubated in the dark using amodified conver-
sion protocol: 95 °C for 30 s and then 50 °C for 60 min, for 16 cycles
and then holding at 4 °C. The full 8 pl eluate of converted DNA was
repaired using the Infinium HD FFPE Restore Kit (Illumina). All 8 pl
of the bisulfite-converted DNA for each sample was analysed on the
lllumina Human MethylationEPIC BeadChip (Illumina). Processing was
carried out by the University College London Genomics Core Facility
according to astandard protocol.



Sequencing

Sequence libraries were multiplexed and sequenced on an Illumina
NovaSeq, typically using S2 flow cells. Read length and depth were
varied asrequired by library composition. Sequencing was performed
by the Institute of Cancer Research Tumour Profiling Unit.

Alignment for WGS

Contaminating adapter sequences were removed using Skewer
v0.2.2 (ref. ©%). Adapter sequences were 5-AGATCGGAAGAGC-3" and
5-ACGCTCTTCCGATCT-3’, with amaximum error rate of 0.1, a mini-
mum mean quality value of 10 and aminimum read length of 35 after
trimming using the options -135-r 0.1-Q 10 -n. The trimmed and
filtered reads from each sequencing run and library were separately
aligned to the GRCh38 reference assembly of the human genome®
using the BWA-MEM algorithm v0.7.17 (ref. ®*). Following the GATK
best practices and the associated set of tools v4.1.4.1 (refs. %), reads
were sorted by coordinates (GATK SortSam), independent sequenc-
ing runs or libraries generated from the same tissue sample were
merged and duplicate reads were marked using GATK’s MarkDupli-
cates. The structure of the final bam files was verified using GATK’s
ValidateSamFile.

Alignment for ATAC-seq
Adapter sequences were removed with Skewer v0.2.2 (ref. ©%) using the
following full-length adapter sequences with the option ‘-m any’:
5’-CTGTCTCTTATACACATCTCCGAGCCCACGAGACNNNNNNNNATCT
CGTATGCCGTCTTCTGCTTG-3” 5'-CTGTCTCTTATACACATCTGA
CGCTGCCGACGANNNNGTGTAGATCTCGGTGGTCGCCGTATCATT-3'.
The reads of each sequencing run and library were aligned to the
GRCh38 reference genome using Bowtie2 v2.3.4.3 (ref. °®) with
the options ‘--very-sensitive -X 2000’ set. After sorting the reads
with SAMtools v1.9 (ref. ®°), those mapping to non-canonical chro-
mosomes and mitochondria (chrM) were removed (GATK PrintReads
followed by RevertSam and SortSam). After merging independent
libraries for each sample, we removed duplicate reads using GATK’s
MarkDuplicates and removed all reads mapping to several locations
(multi-mappers). The final bam files were validated with GATK’s
ValidateSamFile.

Detection of germline variants

HaplotypeCaller v4.1.4.1with the GATK package’ was used to identify
germline variants from the reference normal samples in each patient
(buffy coats or adjacent normal tissue) using known germline variant
annotations from build 146 of the dbSNP database” separately for
each chromosome. Resulting VCF files were then merged with GATK
MergeVcfs. Variant recalibration was performed with GATK’s VariantRe-
calibrator with options set according to GATK best practices” 7 and
applied to VCF files using GATK ApplyVQSR with the options ‘-mode SNP
-ts-filter-level 99.0”and “mode INDEL -ts-filter-level 99.0’, respectively.
Allgermline variant calls marked as PASS were retained.

Verification of sample-patient matches

For all samples, we excluded the possibility of sample mismatch by com-
paring germline variantsidentified in normal tissue to neoplasia sam-
plesofagiven patient. The reads of each read group were extracted with
SAMtools view using the options -bh {input_bam} -r {read_group_id},
and GATK’s CheckFingerprint tool was applied to extract statistics on
sample—patient matches™. For virtually all high-purity samples with-
out extensive loss of heterozygosity, we were able to confirm that the
samples were obtained from the expected patient. A few samples with
high amount of LOH and high purity fingerprinting did not confirm the
sample-patient match; for these we instead inspected copy-number
profiles (see below) to confirm that these matched the remaining sam-
ples of the corresponding patient.

Copy-number analysis

Deep WGS. Coverage values for genomic loci relative to matched
normal tissue samples (buffy coats or adjacent normal tissues) were
extracted with methods provided in the Sequenza v2.1.2 package for
R (ref. ) and binned in non-overlapping windows of 10° bp. B-allele
frequencies of germline mutations determined with the GATK Hap-
lotypeCaller (see above) for each patient were added to these binned
files. Joint segmentation on B-allele frequencies and depth ratios
across all samples from a given tumour were used to determine a set
of breakpoints to use for the subsequent analysis. Specifically, GC
content bias correction was applied using the gc.norm method from
Sequenza v2.1.2, and positions with non-unique mappability (that is,
<1), as determined by the approach of QDNAseq v3.8 (ref. ”’), in win-
dows of 50 bp were removed. Piecewise constant curves were fitted
for each chromosome arm using the multipcf function (gamma = 80)
from the copynumber v1.22.0 package for R (ref. ’®). The per-patient
set of breakpoints, binned depth ratio and B-allele frequency data
weretheninputtedinto the Sequenzaalgorithm (v2.1.2) to determine
allele-specific copy numbers, ploidy ¥ and purity p estimates™. The
initial parameter space searched was restrictedto {p| 0.1<p <1} and
{W]|1< ¥Y<7}.Onmanualreview of theresults, we identified several sam-
ples with unreasonable fits (cases in which calls suggested extremely
variable ploidy values across samples). For these samples, we manually
identified alternative solutions consistent with the other samples and
somatic variant calls.

Low-pass WGS. Low-pass WGS bam files were processed using
QDNAseq” to count reads in 500-kilobase (kb) bins across the auto-
somes of hg38 and convertread counts into log,-ratios. Data normali-
zation was performed in accordance with the QDNAseq workflow,
except for outlier smoothing (smoothQutlierBins function), which
was seen to artificially depress the signal from highly amplified bins.
Bins for hg38 were also generated according to QDNAseq instruc-
tions. log,[ratio] valuesin each bin were normalized by subtracting the
medianlog,[ratio] fromalllog,[ratio] values per sample. Samples from
a patient were segmented jointly using the multipcf functionin the R
package copynumber (gamma=10)"%, and the mean segment log,[ratio]
was calculated across the bins.

Absolute copy-number status was calculated using the approach
taken by ASCAT”. Using the ASCAT equation to describe log,[R ratio]
values, wetook aninteger ploidy value ¥,inthe tumour t as determined
by paired deep WGS ineach case and searched arange of purities from
0.1to1(and assumed gamma was 1 as is the case in sequencing data).
For each purity (p) value, we calculated the continuous copy-number
status of eachbinand calculated the sum of squared differences of these
values to the nearest positive integer of the modulus. Purity estimates
were given by local minima (goodness of fit to integer copy-number
values, measured as the sum of squared differences) across the purity
range considered. The absolute copy-number state for each bin was
taken asthe closestinteger value calculated using this purity. If no local
minimumwas found the purity wasassumed tobe 1. If the best solution
produced negative copy-number states at some loci, these were set to
have a copy number of zero to avoid impossible copy-number states. In
two patients, per sample ploidies were determined by manual adjust-
ment owing to integer ploidy values producing poor fits.

SNV detection

Somatic mutations were first called for each tumour sample separately
against matched blood derived buffycoats or adjacent normal tissue
samples with Mutect2 (v4.1.4.1) using the options ‘--af-of-alleles-not-in
resource 0.0000025 --germline-resource af-onlygnomad.hg38.vcf.gz’
(refs.798%) Variants detected in any tumour sample (marked PASS,
coverage AD 10 in both normal and tumour, at least 3 variant reads in
the tumour, O variantreadsin the normal, reference genotype innormal
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and non-reference genotype in cancer) were merged into asingle list of
candidate mutations. The multi-sample caller Platypus v0.8.1.1 (ref. 8
was then used to recall variants at each candidate mutation position
in all samples of the patient. In practice, this meant that the pipeline
leveraged information across samples toimprove the sensitivity of vari-
ant calling. The Platypus output of joint variant calls was then filtered
to keep only high-quality variants with the flags PASS, alleleBias, QD
or Q20, in canonical chromosomes (that is, not in decoy), aminimum
number of reads NR > 5in all samples, a genotyping quality GQ > 10
in all samples, a reference genotype (that is, 0/0) in the normal refer-
ence and a non-reference genotype (thatis, 0/1or 1/1) in at least one
tumour sample.

To alleviate concerns of false-negative calls of mutations inimpor-
tant driver alterations, we generated a second set of variant calls
for the identification of known driver mutations and dn/dS analysis
(see details below) to whichwe did not apply the second step of filtering.

SNV annotation

Somatic variants were annotated and candidate driver genes of CRCs
reported by ref. ® and IntOGen®? as well as pan-cancer driver genes
reported by refs. 3% were filtered with the Variant Effect Predictor
v93.2 (ref. 54).

MSI status detection

The identification of MSI CRCs was performed with MSIsensor v0.2
(ref.%). Wefirst determined the position of microsatellite sites by apply-
ingthe MSlsensor scan method to the GRCh38 reference assembly and
subsetting the identified microsatellites to those located on the first
chromosome. In a second step, we identified the fraction of mutated
microsatellites in each sample using the MSlsensor msi method with
default options. Generally, in known MSI cases (for example, those
identified by mutation burden and mutational signature), more than
30% of microsatellites were mutated, and we used thisas acritical value
to classify cases as MSS and MSI. One exception was C562, in which the
low purity of the samples led to a low MSIsensor score. However, this
case was clinically classified as MSI by pathological reports, and it had
arelatively highindelburdenleading to the conclusion that it was MSI.

Extraction of reads supporting variants

Using the VCF files from both somatic and germline variant calling, we
extracted the number of reads supporting the reference and alterna-
tive alleles as well as the total number of reads covering the sites from
WGS, low-pass WGS and ATAC-seq samples using Python and the Pysam
library®®, Pysam v0.15.2, SAMtools v1.9.

dn/dS analysis

The dndscv package for R (ref. **) was used for dn/dS analysis.
Per-patient variant calls were obtained from the VCF files® and lifted
over to the hgl9 reference genome using the rtracklayer package for
R (ref.¥). Variants were divided into clonal mutations (that s, present
inallsamples) and subclonal mutations (that is, present in asubset of
samples) present in the cancer and a set of mutations present in any
of the adenoma samples. MSI and MSS cases were treated separately.
dndscv was applied separately to each of the four sets (MSI or MSS
and clonal or subclonal) (using default parameters apart from deacti-
vated removal of cases because of a highe number of variants). Further,
dn/dSvalues for aset of 167 chromatin modifier genes were extracted.

ATAC-seq

Extraction of cutsites in ATAC peak-calling analysis. For the detection
of cutsites (hereafter ‘peaks’ where read density was high), bed files of
ATAC-seq cut sites were produced. Aligned reads were sorted by read
name using SAMtools sort -n{bamy}, and all proper reads pairs (that s,
reads mapped to the same chromosome and with correct read orienta-
tion) were isolated using SAMtools view -bf 0x2 and finally converted

to the bed format using bedtools bamtobed -bedpe -matel -i{bamj}.
As inref. %8, the start site of reads was shifted to obtain the cut sites:
specifically, forward reads were shifted by -4 bases and reverse reads
were shifted by +5bases. ATAC-seq reads spanning nucleosomes have
aninsertionsize periodicity of multiples of 200 bp, and readsin regions
of open chromatin have insertion sizes smaller than 100 bp (ref. ).
For this reason, as in previous studies, ATAC-seq reads were divided
into a set of nucleosome-free reads (insertion size <100) and a set of
nucleosome-associated reads (180 < insertion size < 620).

Peak detection in ATAC peak-calling analysis. Peaks were called sepa-
rately for each tumour region using MACS2 v2.21 (ref. %) using ‘macs2
callpeak -f BED -g hs --shift --75 --extsize 150 --nomodel --call-summits
--keep-dupall-p 0.01' with the concatenated and sorted bed read files of
nucleosome-free cut sites of allsamples asinput. A set of normal peaks
(across patients) was called using the concatenated normal sample
bed files (thatis, region E samples) as input. Per-adenoma peaks were
called using alladenoma bulk samples as input.

Filtering and concatenation of peaks in ATAC peak-calling analysis.
Per region peak calls were filtered for those having a g-value < 0.1%,
enrichment > 4.0, and a maximum of the top 20,000 peaks. Iterative
merging was then applied, using a method equivalent to that used in
ref. on per-region peak calls of individual patients (per-tumour peaks
set) as well as across all cancer samples and pan-patient normal peak
calls (pan-patient peak set). The iterative merging resulted ina total of
n=343,240 peaks, of whichn = 67,215 peaks called in >2 tumour regions
or the panel of normal wereretained. The ChiPseeker v2.14.0 package
for R (ref. °°) was used in combination with the TxDb.Hsapiens.UCSC.
hg38.knownGene package v3.10.0 for R to annotate peaks on the basis
oftheir genomic location. For peaks that were not proximal to known
promoter regions (+3,000 bp), overlaps with known enhancer elements
reportedinthe double-elite annotations of the GeneHancer database
were examined®.

Extraction of cut sites in peaks in ATAC peak-calling analysis. Read
counts for each peak in the final set were collated using bedtools*? using:
‘bedtools coverage -abed peaks-bbed cut sites -split -counts-sorted’.

Purity estimation for ATAC-seq and accounting for CNAs. Clonal
variants identified by paired WGS sequencing (clonal variants were
those present in all samples from the cancer) were used to estimate
sample-specific ATAC-seq purity. First, variants inintervals with identi-
cal (clonal) copy-number states (that is, A&B-allele states) and regions
of closed chromatin were identified from WGS data. Copy-number
values c;and mutation multiplicity m; of each variant site i were ob-
tained from the WGS data. For amutation at site i covered by n;, reads
insample s, the number of reads k; containing the alternative allele is
expected to follow a binomial distribution with the pdf
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inwhich the expected success probability p;,is a function of the sample
purity p, the number of mutated alleles in the tumour cells m, ;, the total
copy number of the mutated site in the tumour cells ¢,; and the copy
number in contaminating normal cells ¢, =2

_ psms,i _ psms,i
b=
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Amaximum-likelihood estimate of the sample p,bjritypswas obtained
by minimizing the negative-log-likelihood L(p)= 3 -logBkip, ; ns))
across all N mutated sites. =0 '



To account for the influence of CNAs on the read counts, the signal
observed at alocus should be given by S = SN%, inwhich S is
the signal of the reference allele, p is the purity of the sample, 77 is the
copy number of the locus, and g is the ploidy of the tumour. For pooled
samples, we calculate the average of S weighted by the total number
of reads across samples. Indeed, CNAs were affecting the read depth
atthelocus (see the figures at https://doi.org/10.6084/m9.figshare.
19849789 for details).

However, itisimportant to consider that, in general, CNAs are caus-
ingrelatively small changes in the ATAC-seq signals compared to those
of bona fide SCAAs. This was demonstrated by the strong correlation
of the recurrence number in the model with copy-number adjust-
ment versus the one without. This approach was most relevant in the
identification of lost chromatin accessibility in regions with a copy-
number gain and gained chromatin accessibility in regions with a copy-
number loss.

Identification of recurrently altered peaks across patients. Analysis
was restricted tosamples with purity p > 0.4. Peaks proximal (<1,000 bp)
to a transcription start site (TSS; that is, promoters) and those more
distant to a TSS (that is, putative enhancers) were considered sepa-
rately toaccount for the possibility of differential dispersion. Whereas
we relied on proximity for promoters, we used the GeneHancer data-
base for enhancers®. An overdispersed Poisson model was fitted to
eachpeak using edgeRv3.30.3 (refs. °>*), per-sample set normalization
factors were calculated using the TMMwsp method®, a global disper-
sion estimate was estimated across sets from all cancers and each set
of pure glands (per patient) was compared against alarge pool of nor-
mal tissue ATAC-seq samples. Recurrently altered peaks were identi-
fied as those that were significantly altered at a level of P< 0.01in at
least 4/26 (that is, 20%) of cases.

Identification of associated changes in gene expression. The ba-
sic processing of matched RNA-seq data is described in the associ-
ated manuscript®®. A subset 0f 27,699 peaks that were either adjacent
to aknown TSS of a gene®® or overlapped a previously characterized
enhancer element described in the GeneHancer database® were identi-
fied. Ofthese 456/27,699 (=1.65%) wererecurrently altered. Changesin
expression of genes associated with these sites were tested for using
DESeq2 (ref. ”’) to compare coefficients of the fitted B-binomial regres-
sionmodel (design: ~Patient, with allnormal samples as ‘Normal’) with
the contrastargumentbeingalist of vectors containing the significant
and non-significant patient sets.

For promoters, a one-tailed hypothesis test was applied by setting
the altHypothesis argumentto ‘less’ (for closed peaks) or ‘greater’ (for
opened peaks). For enhancers, atwo-tailed hypothesis test on all associ-
atedgeneswas applied by setting the altHypothesis argument to ‘great-
erAbs’. Pvalues from all tests were adjusted for multiple-hypothesis
testing using FDR method®® associations at FDR < 0.1% where reported.
For the visualization of gene expression values, the average variance
stabilised log-transformed gene expression was calculated across sam-
ples of all each cancer and across all normal samples.

Identification of subclonal changes in recurrently altered peaks.
Subclonality was assessed only for a set of recurrent somatic acces-
sibility changes, comprising recurrent events affecting driver genes
and the top 25 most recurrent in each of the 4 categories: gained pro-
moter, lost promoter, gained enhancer and lost enhancer (total of 521
sites assessed).

Our previous analyses recognized that sample purity was highly
correlated with tumour piece (regions A-D). To distinguish subclonal
chromatin accessibility alterations from variability in ploidy, regres-
sion to account for purity was performed. Specifically, alog ratio test
from DESeq2 was used to compare a ‘full model’ -purity + regionto a
reduced model ~purity. Samples from the same region were used as

biological replicates. Events were considered putatively subclonal
when the adjusted Pvalue was below 0.05 and if the direction of log[fold
change] from analysis of matched bulk tissues was correlated with that
observedinindividual samples. In the case of gained events, subclonal
events were filtered out if MACS peak-calling (see above) had not called
a peak within 500 bp of the location of the putative gain event (this
removed 33 sites). For losses, 5/45 subclonal events were removed as
the log[fold change] was in the wrong direction.

For visualization of peaks, coverage per region was calculated 1 kb
upstream and 1 kb downstream from the centre of the peak. Coverage
was normalized per million reads in peaks and was plotted using func-
tions from GenomicRanges®® and Gviz'%.

Prediction of TF-binding sites. The motifmatchr package for R (ref. "),
areimplementation of the C++library MOODS"*', was used to iden-
tify binding sites for all human TF motifs defined in a curated ver-
sion of the CIS-BP database!®*. The list of predicted binding sites was
filtered using a minimum significance value of P<107%, followed by
removal of binding sites in centromeric regions and non-autosomal
(thatis, sex and non-canonical) chromosomes. After this initial filter-
ing, predicted binding sites were split into six distinct groups on the
basis of their distance to the next TSS (proximal: d < 2,000 bp; close:
2,000 bp <d<10,000 bp; distal: d>10,000 bp) and whether they over-
lapped witha peak observedinthe ATAC-seq data. Foranumber of TFs,
homotypicclustering of binding sites in specificintervals was observed;
to account for this, binding sites that were closer thand <1,000 bp to
the next predicted binding site of the same TF were removed.

Extraction of signal values. For each of the TF sets described above,
the counts of insertions around the centre of the TF-binding site
(1,000 bp) as well as the insertion size of the read pair (that is, the
distance to the second nick) for each sample® were tabulated.
The insertion sizes (rows) were binned into intervals of 5 bp and
divided by the total count of reads withanequivalentsize in the entire
genome. After this, the background signal was estimated to be the
average number of insertions 1,000 bp-750 bp from the centre of
the TF-bindingsite perinsertionsize and subtracted from the counts.
Thedifference betweenthese normalized and background-corrected TF
signals in each sample and a pool of normal samples was calculated
andintegrated across the central region of the TF-binding sites (inser-
tionsize [25;120], distances [-100 bp;100 bp]) asasummary statistic.
Linear regression analysis was used to identify associations with purity
estimates, and in this context, signals were found to correlate with TSS
enrichment (TSSe; for both nucleosome-free and all reads). For this
reason, a further term was added to the regression model of each
TF to correct for this effect: signal = tsse*tsse, + purity:patient (where
‘’indicates aninteraction between two or more variablesin the model
formula and * indicates all the main effects and interactions among
the variables that it joins), in which tsse and tsse,;are the differences
inTSSe between the sample and the pooled normal samples, and each
observation was weighted by the square root of the number of reads
inthe sample. A second linear model in which a region-specific effect
of the purity (signal = tsse*tsse,; + purity:region) was considered was
also fitted to the data. For both models, the statistical significance
of the purity coefficient was determined. The estimates of the coef-
ficients were also used as a patient-specific summary for subsequent
analysis.

Cluster analysis. The analysis was focused on the 150 TFs for which a
significant association with the tumour cell content (thatis, the purity)
and TF signal was most frequently observed. With the aim to identify
general patternsin these data, aclustering analysis was conducted (hier-
archical clustering with Euclidean distance and complete linkage). This
method identified three main groups of TFs, each of which was analysed
with STRINGdb'® to identify significantly overrepresented pathways.
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Methylation array analysis. A reference normal methylation array
dataset was downloaded fromref. ¢ that included normal tissue sam-
pled adjacent to CRCs that was profiled using the HumanMethyla-
tion450 BeadChip array (Illumina).

Here, eight bulk samples from four cases (C516, C518, C560 and C561)
were profiled using the MethylationEPIC BeadChip (Infinium) microar-
ray according to the manufacturer’s instructions.

The ChAMPR package pipeline'” was used to analyse the methylation
bead array data. Probes that had a detection P> 0.01 and probes with
<3 beads in at least 5% of samples per probe, probes that were on the
XorYchromosome, all probes associated with single nucleotide poly-
morphisms and all multi-hit probes were removed. Subset-within-array
normalization was used to correct for biases resulting from type1and
type 2 probes on the array. After quality control and normalization,
B-values were calculated for further comparison.

To compare the methylation patterns between our samples and the
reference normal dataset, the overlapped probes of all samples located
distaltothe TSS, close to the TSS and proximal to the TSS, bothon the
ATAC peak and not on the ATAC peak were compared.

Processing of RNA-seq. Afterinitial quality controlwithFastQC (https://
github.com/s-andrews/FastQC) and default adapter trimming with
Skewer®?, paired-end reads were aligned to the GRCh38 reference
genome and v28 of the Gencode GTF annotation using the STAR
two-pass method'®®. Read groups were added with Picard v2.5.0 (http://
broadinstitute.github.io/picard). Per-gene read counts were produced

with htseq-count, which is incorporated in the STAR pipeline!®,

Filtering of RNA samples. Raw gene counts were first filtered for reads
uniquely assigned to non-ribosomal protein-coding genes located on
canonical chromosomes (chr1-22, X and Y). If samples had fewer than
Smillionof these ‘usable’ reads, they were resequenced toimprove cov-
erage. When possible, the same library preparation pool was sent again
for sequencing. These ‘top-ups’ proved to be true technical replicates,
astheresulting gene expression of the resequenced samples clustered
very closely to their original samples onboth asample-sample heatmap
and a principal component analysis. It was therefore determined that
the FASTQs of these samples could simply be merged at the start of the
pipeline.Incasesin which resequencing was required but insufficient
library remained, anew library was prepared, and the sequencing run
that produced the highest read was used in subsequent analysis. For
eight samples, the sequencing of the second library contained too
fewreads to enable downstream analysis. Six of eight samples showed
per-gene read counts that were very similar between libraries 1 and
2 (Spearman’s rank correlation between replicates was significantly
higher than the mean; Wilcoxon one-way rank test; FDR < 0.01) and so
read counts were combined across libraries; the two remaining samples
were discarded. Samples were also discarded if matched DNA sequenc-
ing revealed a tumour purity of less than 0.1.

Gene expression normalization and filtering. The number of non-
ribosomal protein-coding genes on the 23 canonical chromosome
pairs used for quality control was 19,671. Raw read counts uniquely
assigned to these genes were converted into both transcripts per million
and variance-stabilizing transformed (vst) counts using DESeq_2 (ref. *’).

Alist of expressed genes (n =11,667) was determined by filtering
out genes for which less than 5% of tumour samples had at least 10
transcripts per million. To concentrate on tumour epithelial cell gene
expression, genes were further filtered outif they negatively correlated
with purity as estimated from matched DNA-sequencing data. Specifi-
cally, for the 157 tumour samples that had matched DNA sequencing
and therefore accurate purity estimates, alinear mixed-effects model
of exp(vst) = Purity + (1|Patient) was compared using a chi-squared test
to exp = (1|Patient). Genes that had a negative coefficient for purityin

the first model and an FDR-adjusted Pvalue less than 0.05, suggesting
that purity significantly affected the expression, were filtered out. This
led to afiltered list of 11,401 expressed genes.

Mutational signature analysis. Mutational signature analysis
was performed with SparseSignatures®. This method uses LASSO
regularization'® to reduce noise in the signatures, controlled by a
regularization parameter lambda (1). Itimplements a procedure based
onbi-cross-validation"® to select the best values for both the regulariza-
tion parameter Aand the number of signatures. Deconvolution using a
maximum of10 signatures was performed and values of 10f0.000,0.025,
0.050 and 0.100 were tested. Optimal parameters were selected onthe
basis of the median bi-cross-validation error estimated over 1,000 itera-
tions, resulting in an optimal estimate with minimum cross-validation
median error when 6 signatures were fitted and A= 0.025. A second
analysis with SigProfiler™, with default parameters and a total of 1,000
iterations, confirmed the existence of these signatures.

Signature-based clustering was performed considering the six-
signature solution by SparseSignatures; the signatures exposure matrix
given as an output by the tool was used to compute the pairwise simi-
larity matrix for each patient as 1 minus the cosine similarity of their
exposures. Clustering was then performed on the similarity matrix by
k-means withsix clusters explainingall of the variance. Although from a
statistical perspective clusters C3 and C4 are defined by a smallnumber
of samples (and explain 3% and 4% of the variance, respectively), from
thebiological perspective, we have evidence that in these patients the
distribution of mutations resembles very different signatures and
mutational processes (Supplementary Fig. 15A).

Mutational signature exposures were also analysed across epigenetic
regions. Mutations were first grouped as clonal or subclonal across the
whole genome and then in different genomic regions (as described
above). Signature activitiesin each region were estimated by jackknife
sampling"2. Specifically, data from each patient were partitioned on
thebasis of their clusters as defined above, and repeated jackknife sam-
pling was performed 100 timesindependently for each of the 3 clusters
(including a random sample of 90% of the tissue samples each time).
Foreachiteration, the mutationsin each genomic region were used to
compute a data matrix normalized against the trinucleotide content
(across the 96 channels) in the whole genome versus region-specific
counts, and signature assignments were then performed on the normal-
ized databy LASSO®'?, Finally, relative signature activities estimated
overthe100 jackknife samples were normalized on the basis of the total
size of eachregion. Moreover, as clusters C3and C4 represent rare and
very distinct mutational patterns, we excluded these samples from the
estimation of mutational processes in the epigenetic regions by jack-
knife, and instead we focused on MSS (cluster 1) versus MSI (clusters
2 and 5) tumour, as the samples in clusters C3 and C4 would probably
have biased the jackknife estimation for these two groups.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Geneexpression data, somatic mutation calls (VCF files from Mutect2
plusPlatypus), copy-number calls (Sequenzaand QDNAseq), thefraction
of mutated microsatellites (MSlsensor), ATAC-seq insertion counts
and allele counts of somatic SNVs in all sample types are available on
Mendeley (https://doi.org/10.17632/7wx3chtsxx.1). Other figures
havebeendepositedin Figshare (https://doi.org/10.6084/m9.figshare.c.
6011476.v1). Sequence data have been deposited at the European
Genome-phenome Archive, which is hosted by the European Bio-
informatics Institute and the Centre for Genomic Regulation, under
accession number EGAS00001005230. Further information about
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the European Genome-phenome Archive can be found at https://
ega-archive.org. Access to these dataisrestricted and subject to appli-
cation.

Code availability

Complete scripts to replicate all bioinformatic analysis are available
at https://github.com/sottorivalab/EPICC2021_data_analysis. Further
exploration of the ATAC-seq datashowninFig.3 canbe carried out using
a Shiny-App accessible at https://theide.shinyapps.io/EPICC_shiny_
app/. Alocal version of the app and the associated source code can
be obtained from https://github.com/sottorivalab/EPICC_shiny_app.
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Extended DataFig.1|Chromosomal differences betweenadenomas and
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