327 research outputs found

    mTOR mutations in Smith-Kingsmore syndrome: Four additional patients and a review

    Full text link
    Smith-Kingsmore syndrome (SKS) OMIM #616638, also known as MINDS syndrome (ORPHA 457485), is a rare autosomal dominant disorder reported so far in 23 patients. SKS is characterized by intellectual disability, macrocephaly/hemi/megalencephaly, and seizures. It is also associated with a pattern of facial dysmorphology and other non-neurological features. Germline or mosaic mutations of the mTOR gene have been detected in all patients. The mTOR gene is a key regulator of cell growth, cell proliferation, protein synthesis and synaptic plasticity, and the mTOR pathway (PI3K-AKT-mTOR) is highly regulated and critical for cell survival and apoptosis. Mutations in different genes in this pathway result in known rare diseases implicated in hemi/megalencephaly with epilepsy, as the tuberous sclerosis complex caused by mutations in TSC1 and TSC2, or the PIK3CA-related overgrowth spectrum (PROS). We here present 4 new cases of SKS, review all clinical and molecular aspects of this disorder, as well as some characteristics of the patients with only brain mTOR somatic mutations.This research was supported by the project IP-17 from the call “Todos Somos Raros” (Telemaraton TVE promoted by FundaciĂłn Isabel Gemio, FederaciĂłn ASEM, and FederaciĂłn Española de Enfermedades Raras), and co-financed by ISCIII, FEDER FUNDS FIS PI15/ 0148

    Mutations of AKT3 are associated with a wide spectrum of developmental disorders including extreme megalencephaly

    Get PDF
    Mutations of genes within the phosphatidylinositol-3-kinase (PI3K)-AKT-MTOR pathway are well known causes of brain overgrowth (megalencephaly) as well as segmental cortical dysplasia (such as hemimegalencephaly, focal cortical dysplasia and polymicrogyria). Mutations of the AKT3 gene have been reported in a few individuals with brain malformations, to date. Therefore, our understanding regarding the clinical and molecular spectrum associated with mutations of this critical gene is limited, with no clear genotype–phenotype correlations. We sought to further delineate this spectrum, study levels of mosaicism and identify genotype–phenotype correlations of AKT3-related disorders. We performed targeted sequencing of AKT3 on individuals with these phenotypes by molecular inversion probes and/or Sanger sequencing to determine the type and level of mosaicism of mutations. We analysed all clinical and brain imaging data of mutation-positive individuals including neuropathological analysis in one instance. We performed ex vivo kinase assays on AKT3 engineered with the patient mutations and examined the phospholipid binding profile of pleckstrin homology domain localizing mutations. We identified 14 new individuals with AKT3 mutations with several phenotypes dependent on the type of mutation and level of mosaicism. Our comprehensive clinical characterization, and review of all previously published patients, broadly segregates individuals with AKT3 mutations into two groups: patients with highly asymmetric cortical dysplasia caused by the common p.E17K mutation, and patients with constitutional AKT3 mutations exhibiting more variable phenotypes including bilateral cortical malformations, polymicrogyria, periventricular nodular heterotopia and diffuse megalencephaly without cortical dysplasia. All mutations increased kinase activity, and pleckstrin homology domain mutants exhibited enhanced phospholipid binding. Overall, our study shows that activating mutations of the critical AKT3 gene are associated with a wide spectrum of brain involvement ranging from focal or segmental brain malformations (such as hemimegalencephaly and polymicrogyria) predominantly due to mosaic AKT3 mutations, to diffuse bilateral cortical malformations, megalencephaly and heterotopia due to constitutional AKT3 mutations. We also provide the first detailed neuropathological examination of a child with extreme megalencephaly due to a constitutional AKT3 mutation. This child has one of the largest documented paediatric brain sizes, to our knowledge. Finally, our data show that constitutional AKT3 mutations are associated with megalencephaly, with or without autism, similar to PTEN-related disorders. Recognition of this broad clinical and molecular spectrum of AKT3 mutations is important for providing early diagnosis and appropriate management of affected individuals, and will facilitate targeted design of future human clinical trials using PI3K-AKT pathway inhibitors

    Growth hormone deficiency in megalencephaly-capillary malformation syndrome: An association with activating mutations in PIK3CA

    Get PDF
    Megalencephaly-capillary malformation syndrome (MCAP) is a brain overgrowth disorder characterized by cortical malformations (specifically polymicrogyria), vascular anomalies, and segmental overgrowth secondary to somatic activating mutations in the PI3K-AKT-MTOR pathway (PIK3CA). Cases of growth failure and hypoglycemia have been reported in patients with MCAP, raising the suspicion for unappreciated growth hormone (GH) deficiency. Here we report an observational multicenter study of children with MCAP and GH deficiency. Eleven participants were confirmed to have GH deficiency, all with very low or undetectable circulating concentrations of insulin-like growth factor-1 and insulin-like growth factor binding protein-3. Seven underwent GH stimulation testing and all had insufficient responses with a median GH peak of 3.7 ng/ml (range 1.1-8.6). Growth patterns revealed a drastic decline in length z-scores within the first year of life but then stabilized afterward. Five were treated with GH; one discontinued due to inconsolability. The other four participants continued on GH with improvement in linear growth velocity. Other endocrinopathies were identified in 7 of the 11 participants in this cohort. This study indicates that GH deficiency is associated with MCAP and that children with MCAP and hypoglycemia and/or postnatal growth failure should be evaluated for GH deficiency and other endocrinopathies

    Congenital microcephaly

    Get PDF
    The underlying etiologies of genetic congenital microcephaly are complex and multifactorial. Recently, with the exponential growth in the identification and characterization of novel genetic causes of congenital microcephaly, there has been a consolidation and emergence of certain themes concerning underlying pathomechanisms. These include abnormal mitotic microtubule spindle structure, numerical and structural abnormalities of the centrosome, altered cilia function, impaired DNA repair, DNA Damage Response signaling and DNA replication, along with attenuated cell cycle checkpoint proficiency. Many of these processes are highly interconnected. Interestingly, a defect in a gene whose encoded protein has a canonical function in one of these processes can often have multiple impacts at the cellular level involving several of these pathways. Here, we overview the key pathomechanistic themes underlying profound congenital microcephaly, and emphasize their interconnected nature

    Nephroblastomatosis or Wilms tumor in a fourth patient with a somatic PIK3CA mutation.

    Get PDF
    Wilms tumor and nephroblastomatosis are associated with syndromic conditions including hemihyperplasia. Hemihyperplasia is genetically heterogeneous and may be the result of genomic abnormalities seen in Beckwith-Wiedemann syndrome, mosaic chromosome or genomic abnormalities, or somatic point mutations. Somatic missense mutations affecting the PI3K-AKT-MTOR pathway result in segmental overgrowth and are present in numerous benign and malignant tumors. Here, we report a fourth patient with asymmetric overgrowth due to a somatic PIK3CA mutation who had nephroblastomatosis or Wilms tumor. Similar to two of three reported patients with a somatic PIK3CA mutation and renal tumors, he shared a PIK3CA mutation affecting codon 1047, presented at birth with asymmetric overgrowth, and had fibroadipose overgrowth. Codon 1047 is most commonly affected by somatic mutations in PIK3CA-related overgrowth spectrum (PROS). While the fibroadipose overgrowth phenotype appears to be common in individuals with PIK3CA mutations at codon 1047, individuals with a clinical diagnosis of Klippel-Trenaunay syndrome or isolated lymphatic malformation also had mutations affecting this amino acid. Screening for Wilms tumor in individuals with PROS-related hemihyperplasia may be considered and, until the natural history is fully elucidated in larger cohort studies, may follow guidelines for Beckwith-Wiedemann syndrome, or isolated hemihyperplasia. It is not known if the specific PIK3CA mutation, the mosaic distribution, or the clinical presentation affect the Wilms tumor or nephroblastomatosis risk in individuals with PROS. © 2016 Wiley Periodicals, Inc.US National Institutes of Health under NINDS grants K08NS092898This is the author accepted manuscript. The final version is available from Wiley via http://dx.doi.org/10.1002/ajmg.a.3775

    Functional abilities in children and adults with the CDKL5 disorder

    Get PDF
    Functional abilities in the CDKL5 disorder have been described as severely impaired, yet some individuals are able to run and use phrases for speech. Our study investigated gross motor, hand function, and expressive communication abilities in individuals with the CDKL5 disorder. Data for 108 females and 16 males registered with the International CDKL5 disorder database and with a pathogenic CDKL5 mutation were analyzed. Relationships between functional abilities, age, genotype, and gender were analyzed using regression models. Over half of the females could sit on the floor and nearly a quarter could walk 10 steps. Fewer males could complete these tasks although one boy was able to sit, walk, and run. Most females and few males were able to pick up a large object. Females mostly used gestures to communicate while males mostly used other forms of non-verbal communication. Compared to those with no functional CDKL5 protein, individuals with truncating variants after aa 781 were more likely to be able to stand (OR 5.7, 95%CI 1.2, 26.6) or walk independently (4.3, 95%CI 0.9, 20.5), and use more advanced communication methods such as words (OR 6.1, 95%CI 1.5–24.2). Although abilities were markedly impaired for the majority with the CDKL5 disorder, some females and a few males had better functional abilities. This variability may be related to underlying gene variants, with females with a late truncating variant having better levels of ability than those with no functional protein
    • 

    corecore