21 research outputs found

    Nonclassical Symmetries for a Class of Reaction-Diffusion Equations: the Method of Heir-Equations

    Get PDF
    The nonclassical symmetries method is applied to a class of reaction-diffusion equations with nonlinear source, i.e. u t =u xx +cu x +R(u, x). Several cases are obtained by using suitable solutions of the heir-equations as described in [M.C. Nucci, Nonclassical symmetries as special solutions of heir-equations, J. Math. Anal. Appl. 279 (2003) 168–179]

    Generalized squared remainder minimization method for solving multi-term fractional differential equations

    Get PDF
    In this paper, we introduce a generalization of the squared remainder minimization method for solving multi-term fractional differential equations. We restrict our attention to linear equations. Approximate solutions of these equations are considered in terms of linearly independent functions. We change our problem into a minimization problem. Finally, the Lagrange-multiplier method is used to minimize the resultant problem. The convergence of this approach is discussed and theoretically investigated. Some relevant examples are investigated to illustrate the accuracy of the method, and obtained results are compared with other methods to show the power of applied method

    Analytical solutions for nonlinear systems using Nucci's reduction approach and generalized projective Riccati equations

    Get PDF
    In this study, the Nucci's reduction approach and the method of generalized projective Riccati equations (GPREs) were utilized to derive novel analytical solutions for the (1+1)-dimensional classical Boussinesq equations, the generalized reaction Duffing model, and the nonlinear Pochhammer-Chree equation. The nonlinear systems mentioned earlier have been solved using analytical methods, which impose certain limitations on the interaction parameters and the coefficients of the guess solutions. However, in the case of the double sub-equation guess solution, analytic solutions were allowed. The soliton solutions that were obtained through this method display real positive values for the wave phase transformation, which is a novel result in the application of the generalized projective Riccati method. In previous applications of this method, the real positive properties of the solutions were not thoroughly investigated

    Solitons in magneto-optic waveguides with Kudryashov’s law nonlinear refractive index for coupled system of generalized nonlinear Schrödinger’s equation using modified extended mapping method

    Get PDF
    In this work, we investigate the optical solitons and other waves through magneto-optic waveguides with Kudryashov’s law of nonlinear refractive index in the presence of chromatic dispersion and Hamiltonian-type perturbation factors using the modified extended mapping approach. Many classifications of solutions are established like bright solitons, dark solitons, singular solitons, singular periodic wave solutions, exponential wave solutions, rational wave, solutions, Weierstrass elliptic doubly periodic solutions, and Jacobi elliptic function solutions. Some of the extracted solutions are described graphically to provide their physical understanding of the acquired solutions

    The global burden of cancer attributable to risk factors, 2010-19 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. Methods The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk-outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. Findings Globally, in 2019, the risk factors included in this analysis accounted for 4.45 million (95% uncertainty interval 4.01-4.94) deaths and 105 million (95.0-116) DALYs for both sexes combined, representing 44.4% (41.3-48.4) of all cancer deaths and 42.0% (39.1-45.6) of all DALYs. There were 2.88 million (2.60-3.18) risk-attributable cancer deaths in males (50.6% [47.8-54.1] of all male cancer deaths) and 1.58 million (1.36-1.84) risk-attributable cancer deaths in females (36.3% [32.5-41.3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20.4% (12.6-28.4) and DALYs by 16.8% (8.8-25.0), with the greatest percentage increase in metabolic risks (34.7% [27.9-42.8] and 33.3% [25.8-42.0]). Interpretation The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.Peer reviewe

    Lie symmetry analysis of fractional differential equations

    No full text

    Exact solutions for porous fins under a uniform magnetic field: A novel reduction method

    No full text
    This study presents a novel reduction method to obtain exact solutions for the behavior of a porous fin under a uniform magnetic field, considering the effects of convection, radiation, and internal heat generation. The study applies the reduction method to simplify the governing equations and reduce the complexity of the mathematical model, making it possible to obtain closed-form solutions. The results of the analysis provide a comprehensive understanding of the behavior of the porous fin, including the temperature distribution and heat transfer characteristics, and the impact of the magnetic field on its performance. The findings of this research could be useful for the analysis and description of various heat transfer and energy systems that involve porous fins in magnetic fields

    Singularly perturbed Burgers-Huxley equation by a Meshless method

    No full text
    A meshless method based upon radial basis function is utilized to approximate the singularly perturbed Burgers-Huxley equation with the viscosity coefficient ε. The proposed method shows that the obtained solutions are reliable and accurate. Convergence analysis of method was analyzed in a numerical way for different small values of singularity parameter
    corecore