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Abstract. In this work, we investigate the optical solitons and other waves through magneto-optic
waveguides with Kudryashov’s law of nonlinear refractive index in the presence of chromatic
dispersion and Hamiltonian-type perturbation factors using the modified extended mapping ap-
proach. Many classifications of solutions are established like bright solitons, dark solitons, singular
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solitons, singular periodic wave solutions, exponential wave solutions, rational wave, solutions,
Weierstrass elliptic doubly periodic solutions, and Jacobi elliptic function solutions. Some of the
extracted solutions are described graphically to provide their physical understanding of the acquired
solutions.

Keywords: optical solitons, magneto-optic waveguides, Kudryashov’s law, modified extended
mapping technique.

1 Introduction

A soliton is a localized-in-time light pulse in nonlinear optics that propagates through
a nonlinear dispersive medium without converting into a different form. Nonlinear partial
differential equations (NLPDEs) are commonly used to visualize fundamental physical
phenomena such as fluid mechanics, electromagnetism, optics, magnetohydrodynamics,
quantum mechanics, superconductivity, thermodynamics, chemical reactions, finance,
neuroscience, and elasticity, among others. The mathematics and theoretical background
of optical solitons were discussed and explained clearly by Biswas et al. in [11].

When nonlinearity perfectly balances dispersion in optical fibres, an important nonlin-
ear phenomenon known as the soliton arises. A crucial component of the communications
industry sector is optical soliton dynamics. The propagation of the optical solitons is usu-
ally governed by the nonlinear Schrödinger equation, which is one of the most important
models in modern nonlinear science. Optical solitons have promising potential to become
information carriers in telecommunication due to their capability of propagating long
distance through an optical fiber without attenuation and changing their shapes amplitudes
and velocities. Magneto-optic wave guides can help to reduce solitons clutter and to solve
the internet bandwidth issue. In addition, magneto-optic waveguides should always be
considered instead of standard waveguides. When considering the amount of data that
is transmitted across transcontinental and transoceanic distances, such waveguides are
always beneficial. The solitons can become less cluttered in the existence of a magnetic
field. Only when the solitons are very close together does this prevent information from
leaking between them. Addressing the soliton scientific dynamics in nonlinear optics is
therefore of utmost importance (see [1, 4–6, 13, 16, 20, 26, 32]).

A variety of models have been examined in the context of magneto-optic solitons.
Apart from the Kerr law, the different variants of the non-Kerr law of nonlinearity exam-
ined in this context include parabolic law, power law, quadratic-cubic law, dual-power law,
and others. Besides, Yildirim et al. investigated many cases of optical solitons with many
different approaches (see [27–31]). González-Gaxiola et al. [14,15] discussed the optical
solitons by the Adomian decomposition scheme. In addition, Al Qarni et al. [21, 22]
explored the soliton solutions but using the improved Adomian decomposition scheme.
Many other researchers discussed a variety of models in order to obtain soliton solutions
with many different approaches (see [2, 3, 7–10, 12, 17, 19, 23, 24, 33–35]).

In the present work, we consider a coupled system of generalized nonlinear Schrö-
dinger’s equation (NLSE) in magneto-optic waveguides with Kudryashov’s law of non-
linear refractive index in the presence of chromatic dispersion and Hamiltonian-type
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perturbation factors as [18]

iΦt +A1Φxx

+

(
B1
|Φ|n

+
C1
|Φ|2n

+D1|Φ|n + E1|Φ|2n +
F1

|Ψ |n
+
G1
|Ψ |2n

+H1|Ψ |n +K1|Ψ |2n
)
Φ

−Q1Ψ − i
(
β1Φx + λ1

(
|Φ|2nΦ

)
x
+ γ1

(
|Φ|2n

)
x
Φ+ ϑ1|Φ|2nΦx) = 0 (1)

and

iΨt +A2Ψxx

+

(
B2
|Ψ |n

+
C2
|Ψ |2n

+D2|Ψ |n + E2|Ψ |2n +
F2

|Φ|n
+
G2
|Φ|2n

+H2|Φ|n +K2|Φ|2n
)
Ψ

−Q2Φ− i
(
β2Ψx + λ2

(
|Ψ |2nΨ

)
x
+ γ2

(
|Ψ |2n

)
x
Ψ + ϑ2|Ψ |2nΨx

)
= 0, (2)

where Φ(x, t) and Ψ(x, t) refer to the profiles of the soliton wave, and Ai for i = 1, 2
stem from the coefficients of chromatic dispersion. Bi, Ci, Di, and Ei are the self-phase
modulation coefficients, while Fi, Gi,Hi, and Ki arise from the cross-phase modulation.
Qi represents the magneto-optic parameters, while βi give the intermodal dispersions, and
λi emerge from the self-steepening coefficients, while γi and ϑi come from the nonlinear
dispersions, and n denotes the refractive index, which comes from the full nonlinearity.

In this research, the suggested model is handled using the modified extended map-
ping method, which gives us new and novel solutions not obtained before. This method
provided various and new sort of solutions such as bright solitons, dark solitons, singular
solitons, exponential wave solutions, rational wave solutions, Weierstrass elliptic doubly
periodic solutions, and Jacobi elliptic function solutions. The extracted solutions con-
firmed the efficacy and strength of the current technique. Furthermore, 3D, contour, and
2D simulations are depicted to demonstrate the nature of the obtained solutions.

2 The proposed technique summary

This part is considered as an introduction for the modified extended mapping scheme [25].
WE consider the following NLPDE:

Z(φ, φt, φx, φxx, φxt, φxxt, . . . ) = 0, (3)

where Z stands to a polynomial function of φ(x, t) and its corresponding partial deriva-
tives for the space and time.

Step 1. The subsequent travelling wave transformation will be used:

φ(x, t) = U(ξ), ξ = x− ηt, η 6= 0, (4)

where η is a real constant, and it represents the wave speed that will be evaluated later
on. Equation (3) can be transformed into the following nonlinear ordinary differential
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equation (NLODE) by substituting Eq. (4) into Eq. (3):

X (U ,U ′,U ′′,U ′′′, . . . ) = 0. (5)

Step 2: The solution of Eq. (5) can be expressed as

U(ξ) =
M∑
j=0

ajWj(ξ) +

−M∑
j=−1

b−jWj(ξ) +

M∑
j=2

cjWj−2(ξ)W ′(ξ)

+

−M∑
j=−1

d−jWj(ξ)W ′(ξ), (6)

where aj , b−j , cj , d−j are real constants to be estimated, andW(ξ) satisfies the following
auxiliary equation condition:

W ′(ξ) =
√
%0 + %1W(ξ) + %2W2(ξ) + %3W3(ξ) + %4W4(ξ) + %6W6(ξ), (7)

where %i, (i = 0, 1, 2, 3, 4, 6) are constants.

Step 3. By applying the principle of balance through Eq. (5) between the highest-
order derivatives and the highest-order nonlinear terms, the positive integer M can be
determined.

Step 4. Inserting the supposed solution in Eq. (6) along with Eq. (7) into Eq. (5), then
equalizing the coefficients ofW ′j(ξ)Wi(ξ) (j = 0, 1; i = 0,±1,±2, . . . ) to zero yields
a set of nonlinear algebraic equations for aj , b−j , cj , d−j , and η that can be solved by
Mathematica software packages or Maple. Then we can determine the unknown constants
aj , b−j , cj , and d−j . After that, we can obtain many exact solutions to Eq. (3).

3 Optical solitons and other wave solutions

The following wave transformations are assumed in order to obtain the optical solutions
of (1) and (2):

Φ(x, t) = U(ξ)eiZ(x,t),

Ψ(x, t) = V(ξ)eiZ(x,t),
(8)

and

ξ = x− ηt, η 6= 0, Z(x, t) = −κx+ ωt+∆, (9)

where U(ξ) and V(ξ) represent the amplitude terms of the solution, and κ, η, ω, and
∆ denote the velocity, wave number, frequency, and phase constant in the mentioned
sequence.
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Substituting Eqs. (8)–(9) into Eqs. (1) and (2), then separating the real and imaginary
parts, we get

A1U ′′ −
[
ω + β1κ+A1κ

2
]
U − κ(λ1 + ϑ1)U2n+1

−Q1V +
B1
Un−1

+
C1
U2n−1 +D1Un+1

+ E1U2n+1 +

(
F1

Vn
+
G1
V2n

+H1Vn +K1V2n

)
U = 0, (10)

A2V ′′ −
[
ω + β2κ+A2κ

2
]
V − κ(λ2 + ϑ2)V2n+1

−Q2U +
B2
Vn−1

+
C2
V2n−1 +D2Vn+1

+ E2V2n+1 +

(
F2

Un
+
G2
U2n

+H2Un +K2U2n

)
V = 0, (11)

(η + 2A1κ+ β1)U ′ +
[
(2n+ 1)λ1 + 2nγ1 + ϑ1

]
U2nU ′ = 0,

(η + 2A2κ+ β2)V ′ +
[
(2n+ 1)λ2 + 2nγ2 + ϑ2

]
V2nV ′ = 0.

We can obtain the exact solution under the following constraints:

η = −2A1κ− β1, (12)
(2n+ 1)λ1 + 2nγ1 + ϑ1 = 0,

η = −2A2κ− β2, (13)
(2n+ 1)λ2 + 2nγ2 + ϑ2 = 0.

From Eqs. (12) and (13) we can estimate the frequency

κ =
β2 − β1

2(A1 −A2)
, A1 6= A2, β1 6= β2.

Set
V(ξ) = Ω U(ξ), Ω 6= 0, 1.

Thus, Eqs. (10) and (11) come out as

A1U2n−1U ′′ +
(
C1 + G1Ω−2n

)
+
(
B1 + F1Ω

−n)Un
−
[
ω + β1κ+A1κ

2 +Q1Ω
]
U2n +

(
D1 +H1Ω

n
)
U3n

+
[(
E1 +K1Ω

2n
)
− κ(λ1 + ϑ1)

]
U4n = 0 (14)

and

A2ΩU2n−1U ′′ +
(
C2Ω1−2n + G2Ω

)
+
(
B2Ω1−n + F2Ω

)
Un

−
[
ω + β2κ+A2κ

2 +Q2

]
U2n +

(
D2Ω

n+1 +H2Ω
)
U3n

+
[(
E2Ω2n+1 +K2Ω

)
− κ(λ2 + ϑ2)Ω

2n+1
]
U4n = 0. (15)
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Then, by comparing the coefficients of Eqs. (14) and (15), they are equivalent under the
following constraints:

A1 = ΩA2, (16)

C1 + G1Ω−2n = C2Ω1−2n + G2Ω,
B1 + F1Ω

−n = B2Ω1−n + F2Ω,

A1κ
2 + β1κ+Q1Ω + ω = Q2 +

[
A2κ

2 + β2κ+ ω
]
Ω, (17)

D1 +H1Ω
n = D2Ω

n+1 +H2Ω,

and
K1Ω

2n + E1 − κ(ϑ1 − λ1) = K2Ω + E2Ω2n+1 − κ(ϑ2 − λ2)Ω2n+1.

Through Eqs. (16) and (17), we get the wave number as below:

ω =
κ(β1 − β2Ω) +ΩQ1 −Q2

Ω − 1
.

Suppose that
U = P 1/n.

Then Eq. (14) can be represented as follows:

nA1PP
′′ + (1− n)A1(P

′)2 + n2
(
L0 + L1P + L2P

2 + L3P
3 + L4P

4
)
= 0, (18)

where Li, (i = 0, 1, 2, 3, 4) are constants incorporated for notational convenience and
given by

L0 = C1 + G1Ω−2n,
L1 = B1 + F1Ω

−n,

L2 = −
(
A1κ

2 + β1κ+Q1Ω + ω
)
,

L3 = D1 +H1Ω
n,

L4 = K1Ω
2n + E1 − κ(κλ1 + ϑ1).

According to the proposed scheme in Section 2, the general solution for Eq. (18) can be
written as

P (ξ) = a0 + a1W(ξ) + b1
1

W(ξ)
+ d1

W ′(ξ)
W(ξ)

, (19)

where ai (i = 0, 1), b1, and d1 are constants, which can be evaluated under the restrictions
a1 or b1 or d1 6= 0.

Inserting Eqs. (19) and (7) into Eq. (18), then grouping the coefficients of the same
powers and setting them to zero, the result is a set of nonlinear algebraic equations that
can be solved with Mathematica to provide the following outcomes:

Case 1. When %0 = %1 = %3 = %6 = 0, we found the following set of solution:

a0 = a1 = b1 = L1 = L3 = 0,

d1 =
2
√
A1L0

nL2

√
n− 1

, %2 =
n2L2

2A1
, L4 =

(1− n2)L2
2

4L0
.
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Through the above solution set, we can express the solutions of Eqs. (1) and (2) as
follows:

If %2 > 0, %4 < 0, L2 > 0, and A1L0 > 0, then the solutions are:

Φ1.1(x, t) =

(
2
√
A1L0%2

nL2

√
n− 1

tanh
[
(x− ηt)√%2

])1/n

ei(−κx+ωt+∆), (20)

Ψ1.1(x, t) = Ω

(
2
√
A1L0%2

nL2

√
n− 1

tanh
[
(x− ηt)√%2

])1/n

ei(−κx+ωt+∆),

these solutions represent the dark soliton solutions.

Case 2. When %1 = %3 = %6 = 0, %0 = %22/(4%4), we obtained the following sets of
solutions:

a0 = b1 = d1 = L1 = L3 = 0,(2.1)

a1 =

√
−(n+ 1)A1%4

n
√
L4

, L0 = − (n2 − 1)L2
2

4L4
, %2 = −n

2L2

A1
,

a0 = a1 = d1 = L1 = L3 = 0,(2.2)

b1 =
nL2

√
−(n+ 1)

2
√
A1L4%4

, L0 = − (n2 − 1)L2
2

4L4
, %2 = −n

2L2

A1
,

a0 = a1 = d1 = L1 = L3 = 0,(2.3)

b1 = −
nL2

√
−(n+ 1)

2
√
A1L4%4

, L0 = − (n2 − 1)L2
2

4L4
, %2 = −n

2L2

A1
,

a0 = d1 = L1 = L3 = 0,(2.4)

a1 =

√
−(n+ 1)A1%4

n
√
L4

, b1 =
nL2

√
−(n+ 1)

2
√
A1L4%4

,

L0 = − (n2 − 1)L2
2

4L4
, %2 = −n

2L2

4A1
,

a0 = a1 = b1 = L0 = L1 = L3 = 0,(2.5)

d1 =

√
−(n+ 1)A1

n
√
L4

, %2 =
n2L2

2A1
.

Through the solution set (2.1), we can express the solutions of Eqs. (1) and (2) as
follows:

If %2 < 0, %4 > 0, and L2L4 < 0, then the solutions are:

Φ2.1(x, t) =

(√
−(n+ 1)L2√

2L4

tanh

[
(x− ηt)

√
−%2

2

])1/n

ei(−κx+ωt+∆),

Ψ2.1(x, t) = Ω

(√
−(n+ 1)L2√

2L4

tanh

[
(x− ηt)

√
−%2

2

])1/n

ei(−κx+ωt+∆),

these solutions represent the dark soliton solutions.
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Through the solution set (2.2), we can express the solutions of Eqs. (1) and (2) as
follows:

If %2 < 0, %4 > 0, and L2L4 < 0, then the solutions are:

Φ2.2(x, t) =

(√
−(n+ 1)L2√
L4

coth

[
(x− ηt)

√
−%2

2

])1/n

ei(−κx+ωt+∆), (21)

Ψ2.2(x, t) = Ω

(√
−(n+ 1)L2√
L4

coth

[
(x− ηt)

√
−%2

2

])1/n

ei(−κx+ωt+∆),

these solutions represent the singular soliton solutions.
Through the solution set (2.3), we can express the solutions of Eqs. (1) and (2) as

follows:
If %2 < 0, %4 > 0, and L2 < 0, L4 > 0, then the solutions are:

Φ2.3(x, t) =

(
−L2

√
−n+ 1

L2L4
coth

[
(x− ηt)

√
−%2

2

])1/n

ei(−κx+ωt+∆),

Ψ2.3(x, t) = Ω(−L2

√
−n+ 1

L2L4
coth

[
(x− ηt)

√
−%2

2

])1/n

ei(−κx+ωt+∆),

these solutions represent the singular soliton solutions.
Through the solution set (2.4), we can express the solutions of Eqs. (1) and (2) as

follows:
If %2 < 0, %4 > 0, and L2L4 < 0, then the solutions are:

Φ2.4(x, t) =

(√
−2(n+ 1)L2√

L4

(
3 cosh2[(x− ηt)

√
−%22 ] + 1

2 sinh[2(x− ηt)
√
−%22 ]

))1/n

ei(−κx+ωt+∆),

Ψ2.4(x, t) = Ω

(√
−2(n+ 1)L2√

L4

(
3 cosh2[(x− ηt)

√
−%22 ] + 1

2 sinh[2(x− ηt)
√
−%22 ]

))1/n

ei(−κx+ωt+∆),

these solutions represent the hyperbolic wave solutions.
Through the solution set (2.5), we can express the solutions of Eqs. (1) and (2) as

follows: If %2 < 0, %4 > 0, and L2L4 > 0, then the solutions are:

Φ2.5(x, t) =

(√
(n+ 1)L2√
L4

csch
[
(x− ηt)

√
−2%2

])1/n

ei(−κx+ωt+∆),

Ψ2.5(x, t) = Ω

(√
(n+ 1)L2√
L4

csch
[
(x− ηt)

√
−2%2

])1/n

ei(−κx+ωt+∆),

these solutions represent the singular soliton solutions.
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Case 3. When %3 = %4 = %6 = 0, we found the following sets of solutions:

a0 = a1 = L1 = L3 = 0, b1 =
2n
√
L0%0

%2
√
(n− 1)A1

, d1 =
2n
√
L0

%2
√
(n− 1)A1

,(3.1)

L4 = −A
2
1(n

2 − 1)%22
16n4L0

, L2 =
A1%2
2n2

,

a0 = a1 = b1 = %1 = L1 = L3 = 0, d1 =
n
√
L0

%2
√
(n− 1)A1

,(3.2)

L4 = −A
2
1(n

2 − 1)%22
n4L0

, L2 =
2A1%2
n2

.

Through the solution set (3.1), we can express the solutions of Eqs. (1) and (2) as
follows: If %0 > 0, %2 > 0, %1 = 0, and A1L0 > 0, then the solutions are:

Φ3.1,1(x, t) =

(
2n
√
L0√

(n− 1)A1%2
coth

[
1

2
(x− ηt)√%2

])1/n

ei(−κx+ωt+∆),

Ψ3.1,1(x, t) = Ω

(
2n
√
L0√

(n− 1)A1%2
coth

[
1

2
(x− ηt)√%2

])1/n

ei(−κx+ωt+∆),

these solutions represent the singular soliton solutions.
If %2 > 0, %0 = %21/(4%2), and A1L0 > 0, then the solutions are:

Φ3.1,2(x, t) =

(
2n
√
L0√

(n− 1)%2A1

2%2e
(x−ηt)√%2 + %1

|2%2e(x−ηt)
√
%2 − %1|

)1/n

ei(−κx+ωt+∆),

Ψ3.1,2(x, t) = Ω

(
2n
√
L0√

(n− 1)%2A1

2%2e
(x−ηt)√%2 + %1

|2%2e(x−ηt)
√
%2 − %1|

)1/n

ei(−κx+ωt+∆),

these solutions represent the exponential wave solutions.
Through the solution set (3.2), we can express the solutions of Eqs. (1) and (2) as

follows:
If %0 > 0, %2 > 0, %1 = 0, and A1L0 > 0, then the solutions are:

Φ3.2,1(x, t) =

(
n
√
L0√

(n− 1)A1%2
coth

[
(x− ηt)√%2

])1/n

ei(−κx+ωt+∆),

Ψ3.2,1(x, t) = Ω

(
n
√
L0√

(n− 1)A1%2
coth

[
(x− ηt)√%2

])1/n

ei(−κx+ωt+∆),

these solutions represent the singular soliton solutions.
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If %2 > 0, %0 = %21/(4%2), and A1L0 > 0, then the solutions are:

Φ3.2,2(x, t) =

(
2n
√
L0%2√

(n− 1)A1

(
e(x−ηt)

√
%2

|%1 − 2%2e(x−ηt)
√
%2 |

))1/n

ei(−κx+ωt+∆),

Ψ3.2,2(x, t) = Ω

(
2n
√
L0%2√

(n− 1)A1

(
e(x−ηt)

√
%2

|%1 − 2%2e(x−ηt)
√
%2 |

))1/n

ei(−κx+ωt+∆),

these solutions represent the exponential wave solutions.

Case 4. When %0 = %1 = %2 = %6 = 0, then we found the following set of solution:

a0 = b1 = d1 = L0 = L1 = L2 = 0,

a1 =

√
−(n+ 1)A1%4

n
√
L4

, L3 =
(n+ 2)%3

√
−A1L4

2n
√
(n+ 1)%4

.

Then the solutions are:

Φ4(x, t) =

(
4%3
√
−(n+ 1)A1%4

n
√
L4(%23(x− ηt)2 − 4%4)

)1/n

ei(−κx+ωt+∆),

Ψ4(x, t) = Ω

(
4%3
√
−(n+ 1)A1%4

n
√
L4(%23(x− ηt)2 − 4%4)

)1/n

ei(−κx+ωt+∆),

which represent rational wave solutions under the conditions thatA1L4 > 0, %4 < 0, and
%3 > 0.

Case 5. When %0 = %1 = %6 = 0, then we found the following set of solutions:

a0 = b1 = L1 = L3 = 0, a1 = −
√
A1L0%4

nL2

√
n− 1

,

d1 = −
√
A1L0

nL2

√
n− 1

, %2 =
2n2L2

A1
, L4 = − (n2 − 1)L2

2

4L0
.

Then the corresponding solutions of Eqs. (1) and (2) will be as follows:
If %2 > 0, %23 = 4%2%4, and L0L2 > 0, then the solutions are:

Φ5.1(x, t) =

( √
2L0√

(n− 1)L2

tanh

[
1

2
(x− ηt)√%2

])1/n

ei(−κx+ωt+∆),

Ψ5.1(x, t) = Ω

( √
2L0√

(n− 1)L2

tanh

[
1

2
(x− ηt)√%2

])1/n

ei(−κx+ωt+∆),

these solutions represent the dark soliton solutions.
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If %2 > 0, %23 = 4%2%4, and L0L2 > 0, then the solutions are:

Φ5.2(x, t) =

( √
2L0√

(n− 1)L2

coth

[
1

2
(x− ηt)√%2

])1/n

ei(−κx+ωt+∆),

Ψ5.2(x, t) = Ω

( √
2L0√

(n− 1)L2

coth

[
1

2
(x− ηt)√%2

])1/n

ei(−κx+ωt+∆),

these solutions represent the singular soliton solutions.

Case 6. When %2 = %4 = %6 = 0, then we found the following set of solution:

a0 = a1 = d1 = L0 = L2 = 0, b1 = − (n+ 2)A1%1
2n2L3

,

%3 = − 4n4L1L3

(n2 − 4)A2
1%1

, L4 = −4n2(n+ 1)L2
3%0

(n+ 2)2A1%21
.

Then the solutions are:

Φ6(x, t) =

(
− (n+ 2)A1%1

2n2L3℘[
1
2 (x− ηt)

√
%3,− 4%1

%3
,− 4%0

%3
]

)1/n

ei(−κx+ωt+∆),

Ψ6(x, t) = Ω

(
− (n+ 2)A1%1

2n2L3℘[
1
2 (x− ηt)

√
%3,− 4%1

%3
,− 4%0

%3
]

)1/n

ei(−κx+ωt+∆),

these solutions represent the Weierstrass elliptic doubly periodic solutions under the con-
ditions that %3 > 0 and A1L3%1 < 0.

Case 7. When %1 = %3 = 0, then we found the following sets of solutions:

a0 = a1 = b1 = L1 = L3 = %6 = 0,(7.1)

d1 =

√
−(n+ 1)A1

n
√
L4

, L2 =
2A1%2
n2

, L0 = − (n2 − 1)A2
1(%

2
2 − 4%0%4)

n4L4
,

a0 = b1 = d1 = L1 = L3 = %6 = 0,(7.2)

a1 =

√
−(n+ 1)A1%4

n
√
L4

, L0 = − (n2 − 1)A2
1%0%4

n4L4
, L2 = −A1%2

n2
.

Through the solution set (7.1), we can express the solutions of Eqs. (1) and (2) as follows:
If %2 > 0 and A1L4 < 0, so, soliton solutions of the singular type can be found as

Φ7.1(x, t) =

(√
−(n+ 1)A1%2

n
√
L4

coth
[
(x− ηt)√%2

])1/n

ei(−κx+ωt+∆),

Ψ7.1(x, t) = Ω

(√
−(n+ 1)A1%2

n
√
L4

coth
[
(x− ηt)√%2

])1/n

ei(−κx+ωt+∆).
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Through the solution set (7.2), we can express the solutions of Eqs. (1) and (2) as
follows: If %2 > 0 and A1L4 < 0, so, soliton solutions of the hyperbolic wave type can
be found as

Φ7.2(x, t) =

(√
−2(n+ 1)A1

n
√
L4

√
%2

cosh
[
2(x− ηt)√%2

]
− 1

)1/n

ei(−κx+ωt+∆),

Ψ7.2(x, t) = Ω

(√
−2(n+ 1)A1

n
√
L4

√
%2

cosh
[
2(x− ηt)√%2

]
− 1

)1/n

ei(−κx+ωt+∆).

Case 8. When %1 = %3 = %6 = 0, then we found the following sets of solutions:

a0 = a1 = d1 = L1 = L3 = 0,(8.1)

b1 =

√
(n+ 1)L2%0√
L4%2

, A1 = −n
2L2

%2
, L0 = − (n2 − 1)L2

2%0%4
L4%22

,

a0 = a1 = b1 = L1 = L3 = %4 = 0,(8.2)

d1 =

√
−(n+ 1)L2√

2L4%2
, A1 =

n2L2

2%2
, L0 = − (n2 − 1)L2

2

4L4
.

Through the solution set (8.1), we can express the solutions of Eqs. (1) and (2) as
follows: If %0 = 1, %2 = −m2 − 1, %4 = m2, L2L4 < 0, and 0 6 m 6 1, then the
solutions are:

Φ8.1,1(x, t) =

( √
(n+ 1)L2√
−(m2 + 1)L4

ns(x− ηt)
)1/n

ei(−κx+ωt+∆),

Ψ8.1,1(x, t) = Ω

( √
(n+ 1)L2√
−(m2 + 1)L4

ns(x− ηt)
)1/n

ei(−κx+ωt+∆)

or

Φ8.1,2(x, t) =

( √
(n+ 1)L2√
−(m2 + 1)L4

dc(x− ηt)
)1/n

ei(−κx+ωt+∆),

Ψ8.1,2(x, t) = Ω

( √
(n+ 1)L2√
−(m2 + 1)L4

dc(x− ηt)
)1/n

ei(−κx+ωt+∆),

these solutions represent the Jacobi elliptic function solutions.
If %0 = m2 − 1, %2 = 2 − m2, %4 = −1, L2L4 < 0, and 0 6 m < 1, then the

solutions are:

Φ8.1,3(x, t) =

(√
(m2 − 1)(n+ 1)L2√
−(m2 − 2)L4

nd(x− ηt)
)1/n

ei(−κx+ωt+∆),

Ψ8.1,3(x, t) = Ω

(√
(m2 − 1)(n+ 1)L2√
−(m2 − 2)L4

nd(x− ηt)
)1/n

ei(−κx+ωt+∆),

these solutions represent the Jacobi elliptic function solutions.
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If %0 = −m2, %2 = 2m2 − 1, %4 = 1 −m2, L2L4 < 0, and 0 < m 6 1, then the
solutions are:

Φ8.1,4(x, t) =

(√
−m2(n+ 1)L2√
(2m2 − 1)L4

cn(x− ηt)
)1/n

ei(−κx+ωt+∆),

Ψ8.1,4(x, t) = Ω

(√
−m2(n+ 1)L2√
(2m2 − 1)L4

cn(x− ηt)
)1/n

ei(−κx+ωt+∆),

these solutions represent the Jacobi elliptic function solutions.
If we set m = 1, then

Φ8.1,5(x, t) =

(√
−(n+ 1)L2√
L4

sech[x− ηt]
)1/n

ei(−κx+ωt+∆), (22)

Ψ8.1,5(x, t) = Ω

(√
−(n+ 1)L2√
L4

sech[x− ηt]
)1/n

ei(−κx+ωt+∆),

these solutions represent the bright soliton solutions.
If %0 = −1, %2 = 2 − m2, %4 = m2 − 1, L2L4 < 0, and 0 6 m 6 1, then the

solutions are:

Φ8.1,6(x, t) =

( √
−(n+ 1)L2√
−(m2 − 2)L4

dn(x− ηt)
)1/n

ei(−κx+ωt+∆),

Ψ8.1,6(x, t) = Ω

( √
−(n+ 1)L2√
−(m2 − 2)L4

dn(x− ηt)
)1/n

ei(−κx+ωt+∆),

these solutions represent the Jacobi elliptic function solutions.
If %0 = 1/4, %2 = (m2 − 2)/2, %4 = m4/4, L2L4 < 0, and 0 6 m 6 1, then the

solutions are:

Φ8.1,7(x, t) =

( √
(n+ 1)L2√

2(m2 − 2)L4

(
dn(x− ηt) + 1

)
ns(x− ηt)

)1/n

ei(−κx+ωt+∆),

Ψ8.1,7(x, t) = Ω

( √
(n+ 1)L2√

2(m2 − 2)L4

(
dn(x− ηt) + 1

)
ns(x− ηt)

)1/n

ei(−κx+ωt+∆)

or

Φ8.1,8(x, t) =

( √
(n+ 1)L2√

2(m2 − 2)L4

(
dn(x− ηt) +

√
1−m2

)
nc(x− ηt)

)1/n

× ei(−κx+ωt+∆),

Ψ8.1,8(x, t) = Ω

( √
(n+ 1)L2√

2(m2 − 2)L4

(
dn(x− ηt) +

√
1−m2

)
nc(x− ηt)

)1/n

× ei(−κx+ωt+∆),

these solutions represent the Jacobi elliptic function solutions.
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If we set m = 1, then

Φ8.1,9(x, t) =

(√
(n+ 1)L2√
−2L4

coth

[
1

2
(x− ηt)

])1/n

ei(−κx+ωt+∆),

Ψ8.1,9(x, t) = Ω

(√
(n+ 1)L2√
−2L4

coth

[
1

2
(x− ηt)

])1/n

ei(−κx+ωt+∆),

these solutions represent the singular soliton solutions.
Through the solution set (8.2), we can express the solutions of Eqs. (1) and (2) as

follows:
If %0 = −m2, %2 = 2m2 − 1, %4 = 1−m2, and L2L4 < 0, then the solutions are:

Φ8.2(x, t) =

(√
−(n+ 1)L2√

2L4

tanh[x− ηt]
)1/n

ei(−κx+ωt+∆),

Ψ8.2(x, t) = Ω

(√
−(n+ 1)L2√

2L4

tanh[x− ηt]
)1/n

ei(−κx+ωt+∆),

these solutions represent the dark soliton solutions.

4 Illustrations of the solutions graphically

To fully comprehend the physical structures of some extracted solutions to be shown, 2D,
contour, and 3D figures of some special solutions are presented.

Figure 1 displays a dark soliton solution of Eq. (20) when A1 = −1.4, C1 = −1.6,
Ω = 1.8, G1 = 1.8, n = 2, ∆ = 1.5, %2 = 0.9, β1 = −1.9, Q1 = −1.1, Q2 = 1.4,
β2 = 1.5, A2 = 1.4, and −10 < x < 10.

Figure 1. Equation (20): the graphical representation of 3D, contour, and 2D plots of dark soliton solution.
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Figure 2. Equation (21): the graphical representation of 3D, contour, and 2D plots of singular soliton solution.

Figure 3. Equation (22): the graphical representation of 3D, contour, and 2D plots of bright soliton solution.

Figure 2 exhibits a singular soliton solution of Eq. (21) with selecting the parameters
to be A1 = −1.8, Ω = −1.3, n = 3, ∆ = 1.5, %2 = −0.9, β1 = 1.7, Q1 = 1.2,
ϑ1 = 1.1, λ1 = −1.9, K1 = −1.7, E1 = −1.1, Q2 = 1.5, β2 = 1.1, A2 = −1.1, and
−10 < x < 10.

In addition, Eq. (22) is a bright soliton solution that is represented in Fig. 3 when
A1 = 1.7, Ω = 1.5, n = 2.5, ∆ = 1.6, β1 = 1.9, ϑ1 = 1.4, λ1 = −1.5, K1 = 1.5,
E1 = 1.6, Q1 = 1.8, Q2 = 1.7, β2 = 1.5, A2 = 1.3, and −10 < x < 10.
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5 Conclusion

Magneto-optic elements can move light solitons from the state of attraction to the state of
mutual isolation, thereby controlling cluttering of the soliton. Thus, the streamline flow
of a soliton pulse across a transcontinental distance is realised, and the smooth propaga-
tion of a magneto-optical waveguide across an intercontinental distance is secured. The
findings are useful in understanding soliton dynamics in magneto-optic waveguides. In
the current work, we obtained the optical solitons and other wave solutions in magneto-
optic waveguides with Kudryashov’s law of refractive index by using the modified ex-
tended mapping method. Several different types of solutions such as bright solitons, dark
solitons, singular solitons, singular periodic wave solutions, exponential wave solutions,
rational wave solutions, Weierstrass elliptic doubly periodic solutions, and Jacobi elliptic
function solutions were extracted. The graphs of different shapes have been sketched for
the attained solutions, and some physical properties have been raised. The obtained results
show that it is possible to balance the dispersive effects and nonlinearities to produce
various solitary wave solutions that propagate while maintaining their speed and shape.
By setting the different parameters to the suitable values, these solitary wave solutions can
be produced and controlled. The obtained solutions are new, and the governing model is
studied at first time by applying the proposed method.
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