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Abstract. In this paper, we introduce a generalization of the squared remainder minimization
method for solving multi-term fractional differential equations. We restrict our attention to linear
equations. Approximate solutions of these equations are considered in terms of linearly independent
functions. We change our problem into a minimization problem. Finally, the Lagrange-multiplier
method is used to minimize the resultant problem. The convergence of this approach is discussed
and theoretically investigated. Some relevant examples are investigated to illustrate the accuracy of
the method, and obtained results are compared with other methods to show the power of applied
method.

Keywords: squared remainder minimization method, Lagrange-multiplier method, multi-term
fractional differential equation.

1 Introduction

Fractional integration and differentiation are generalizations of integer-order calculus to
noninteger ones. It is demonstrated in literature that fractional calculus can play a justi-
fiable and beneficial role in the modeling of various phenomena e.g. science and engi-
neering [2, 3, 6, 25, 29, 30, 35–37, 42]. The classical differential operators are defined as
local operators, whereas the fractional differential operators are nonlocal. This significant
property makes studying fractional differential equations an active area of research. There
are a several number of definitions of fractional derivatives involving the kernel of the
special functions, such as Mittag–Leffler function, Prabhakar function and so on. Some
important ones are, Riemann–Liouville and Caputo fractional derivatives in [14, 41],
Caputo–Fabrizio fractional derivative in [8, 13], and Atangana and Baleanu suggested
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another version of fractional-order derivative, which uses the generalized Mittag–Leffler
function with strong memory as nonlocal and nonsingular kernel in [5].

Multi-point fractional differential equations appear in different types of visco-elastic
damping [40]. The multi-point boundary conditions in the fractional differential equations
can be understood as the controllers at the end points dissipate or add energy according
to censors located at intermediate points. Model equations proposed so far are almost al-
ways linear. Therefore, we concentrate on the following multi-point fractional differential
equation:

CDα
x+
0
u(x) =

k∑
j=1

γ C
j D

βj

x+
0

u(x) + γk+1u(x) + f(x), x ∈ [x0, xf ],

u(i)(x0) = ai, i = 0, 1, . . . , dαe − 1,

(1)

where γj , j=1, . . . , k+1 are real constant coefficients and 0 < β1 < β2 < · · ·< βk < α.
Here, we consider this equation with most usual fractional derivative in Caputo sense.
Equation (1) permits us to describe the model more accurately than the classical integer
equation. The nonlocality of Caputo fractional derivative means that the next state of
a system depends not only upon its current state but also upon all of its historical states.

Bhrawy et al. [11] applied the spectral algorithm based on generalized Laguerre tau
(GLT) method with generalized Laguerre–Gauss (GQ) and generalized Laguerre–Gauss–
Radau (GRQ) quadrature methods for Eq. (1). The shifted Chebyshev spectral tau (SCT)
method based on the integrals of shifted Chebyshev polynomials is utilized to construct
the approximate solutions of such problems [12]. Spectral tau method combined with the
shifted Chebyshev polynomials are proposed to solve the Eq. (1) in [15]. Three alternative
decomposition approaches are introduced for the approximate solution of Eq. (1) by Ford
et al. [16]. More discussion about the approximate solution of Eq. (1) can be found
in [27, 34, 38].

The paper is organized as follows: In Section 2, we briefly discuss some necessary
definitions and mathematical preliminaries of fractional calculus, which will be needed in
the forthcoming sections. The third section deals with a generalization of squared remain-
der minimization (GSRM) method for the multi-point fractional differential equations.
Section 4 is devoted to the study of convergence analysis for the proposed method. Some
illustrative examples are investigated in Section 5. Conclusion remarks provide our final
section.

2 Preliminaries and notations

In this section, we review some preliminaries and properties of well-known fractional
derivatives and integrals for the purpose of acquainting with sufficient fractional cal-
culus theory. Among various definitions of fractional derivatives e.g. Caputo–Fabrizio
[4,13,19], Atangana-Baleanu [7,17,18] and conformable fractional derivative [20,21,26],
we introduce two most commonly used definitions, namely, the Riemann–Liouville and
Caputo derivatives [9, 14, 33]. Various analytical and numerical methods are utilized to
consider the fractional differential equations e.g. [1, 10, 22–24, 31, 32, 39].
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Generalized squared remainder minimization method 59

Definition 1. Let α ∈ R+. The operator Jα
x+
0

∈ L1[x0, xf ] defined by

Jα
x+
0
u(x) :=

1

Γ(α)

x∫
x0

(x− t)α−1u(t) dt, x ∈ [x0, xf ],

is called the Riemann–Liouville fractional integral operator.

Now, we discuss the interchange of the Riemann–Liouville fractional integration and
limit operation, which is useful in the convergence analysis of further discussed method.

Lemma 1. Let α ∈ R+. Assume that {un}∞1 is a uniformly convergent sequence of
functions on C[x0, xf ]. Then(

Jα
x+
0

lim
n→∞

un

)
(x) =

(
lim
n→∞

Jα
x+
0
un

)
(x).

Definition 2. Let α ∈ R+. The operator RLDα
x+
0

defined by

RLDα
x+
0
u(x) :=

ddαe

dxdαe
J
dαe−α
x+
0

u(x)

=
1

Γ(dαe − α)

ddαe

dxdαe

x∫
x0

(x− t)dαe−α−1u(t) dt, x ∈ [x0, xf ],

is called the Riemann–Liouville fractional differential operator, where the ceiling function
dαe denotes the smallest integer greater than or equal to α.

Definition 3. Let α ∈ R+. The operator CDα
x+
0

defined by

CDα
x+
0
u(x) := J

dαe−α
x+
0

u(dαe)(x)

=
1

Γ(dαe − α)

x∫
x0

(x− t)dαe−α−1u(dαe)(t) dt, x ∈ [x0, xf ],

is called the Caputo fractional differential operator.

For the Caputo derivative, we have

CDα
x+
0

(x− x0)β =


0 if β ∈ {0, 1, . . . , dαe − 1},

Γ(β+1)
Γ(β+1−α) (x− x0)β−α if β ∈ N and β > dαe or

if β /∈ N and β > dαe − 1.

3 The GSRM method

For problem (1), we specify the linear operator

(Ou)(x) := CDα
x+
0
u(x)−

k∑
j=1

γj
CDβj

x+
0

u(x)− γk+1u(x)− f(x). (2)

Nonlinear Anal. Model. Control, 26(1):57–71

https://doi.org/10.15388/namc.2021.26.20560


60 M.S. Hashemi et al.

Supposeψ0(x), ψ1(x), . . . , ψn(x) are linearly independent functions on [x0, xf ] and Ψn =
span{ψ0(x), ψ1(x), . . . , ψn(x)}. Let un(x) ∈ Ψn is the approximate solution of Eq. (1).
Then there exist unknown constants c0, c1, . . . , cn such that

un(x) =

n∑
l=0

clψl(x). (3)

Obviously, the approximate solution un(x) needs to satisfy the following conditions:∥∥(Oun)(x)
∥∥
L2[x0,xf ]

< ε, u(i)
n (x0) = ai, i = 0, 1, . . . , dαe − 1. (4)

Substituting (3) into Eq. (2) concludes

(Oun)(x) =

n∑
l=0

cl

(
CDα

x+
0
ψl(x)−

k∑
j=1

γj
CDβj

x+
0

ψl(x)− γk+1ψl(x)

)
− f(x)

=

n∑
l=0

clωl(x)− f(x), (5)

where ωl(x) = CDα
x+
0

ψl(x)−
∑k
j=1 γj

CDβj

x+
0

ψl(x)− γk+1ψl(x).

For any x ∈ [x0, xf ], if en(x) = un(x) − u(x), then the nth-order remaining terms
can be given by

Rn(x) = (Oun)(x)− (Ou)(x)

= CDα
x+
0
en(x)−

k∑
j=1

γj
CDβj

x+
0

en(x)− γk+1en(x).

Remark 1. IfRn(x)→ 0, then en(x)→ 0 or, equivalently, un(x)→ u(x).

Remark 2. If the linearly independent functions are supposed as

ψl(x) = xl, l = 0, 1, . . . , n, (6)

then Eq. (5) becomes

(Oun)(x) =

n∑
l=0

cl

(
CDα

x+
0
xl −

k∑
j=1

γj
CDβj

x+
0

xl − γk+1x
l

)
− f(x)

=

n∑
l=dαe

cl
Γ(l + 1)

Γ(l + 1− α)
xl−α −

k∑
j=1

γj

n∑
l=dβje

cl
Γ(l + 1)

Γ(l + 1− βj)
xl−βj

− γk+1

n∑
l=0

clx
l − f(x).
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The important point to note here is the minimization problem in the GSRM method
by the fact (4). That is, the problem is minimizing (Oun)(x) in such a way that

u(i)
n (x0) =

n∑
l=0

clψ
(i)
l (x0) = ai, i = 0, 1, . . . , dαe − 1.

To do this, we introduce the real functions

J (c0, c1, . . . , cn) =
∥∥(Oun)(x)

∥∥2

L2[x0,xf ]
,

and

Ii(c0, c1, . . . , cn) =

n∑
l=0

clψ
(i)
l (x0)− ai, i = 0, 1, . . . , dαe − 1.

Therefore in order to find the unknown vector C = (c0, c1, . . . , cn), we have to solve the
minimization problem

MinJ (C) s.t. Ii(C) = 0, i = 0, 1, . . . , dαe − 1. (7)

Remark 3. If we set polynomials (6) as basis functions, then constrains in minimization
problem (7) become

Ii(C) =

n∑
l=i

cll(l − 1) · · · (l − i+ 1)xl−i0 − ai, i = 0, 1, . . . , dαe − 1.

We use the Lagrange-multiplier method [28] to minimize problem (7). By using this
method, we solve the following system of algebraic equations2:

∇J (C) + ΛT∇I(C) = 0, I(C) = 0, (8)

whereΛT = (λ0, λ1, . . . , λdαe−1) and IT(C) = (I0(C), I1(C), . . . , Idαe−1(C)). Equiv-
alently, we can define the vector

K = (K0,K1, . . . ,Kn) = ∇J (C) + ΛT∇I(C),

where

Kp =
∂‖(Oun)(x)‖2L2[x0,xf ]

∂cp
+

dαe−1∑
i=0

λi
∂Ii(C)

∂cp

= 2

xf∫
x0

(Oun)(x)
∂(Oun)(x)

∂cp
dx+

dαe−1∑
i=0

λi
∂Ii(C)

∂cp

= 2

xf∫
x0

ωp(x)

(
n∑
l=0

clωl(x)− f(x)

)
dx+

dαe−1∑
i=0

λiψ
(i)
p (x0)

2From the linearity of Eq. (1), this system of equations will be linear.
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= 2

n∑
l=0

cl

xf∫
x0

ωp(x)ωl(x) dx− 2

xf∫
x0

ωp(x)f(x) dx

+

dαe−1∑
i=0

λiψ
(i)
p (x0), p = 0, 1, . . . , n.

For simplicity of notations, if we use

〈f, g〉 =

xf∫
x0

f(x)g(x) dx and θpi = ψ(i)
p (x0),

then

Kp = 2

n∑
l=0

cl〈ωp, ωl〉 − 2〈ωp, f〉+

dαe−1∑
i=0

λiθpi, p = 0, 1, . . . , n.

Therefore, the linear system of equations (8) becomes

2

n∑
l=0

cl〈ωp, ωl〉+

dαe−1∑
i=0

λiθpi = 2〈ωp, f〉,

n∑
l=0

clθli = ai, i = 0, 1, . . . , dαe − 1,

or, in the abstract form, (
A1 A2

AT
2 0

)(
C
Λ

)
=

(
F1

F2

)
, (9)

where

A1 =


2〈ω0, ω0〉 2〈ω0, ω1〉 · · · 2〈ω0, ωn〉
2〈ω1, ω0〉 2〈ω1, ω1〉 · · · 2〈ω1, ωn〉

...
...

. . .
...

2〈ωn, ω0〉 2〈ωn, ω1〉 · · · 2〈ωn, ωn〉

 ∈M(n+1)×(n+1),

A2 =


θ00 θ01 · · · θ0(dαe−1)

θ10 θ11 · · · θ1(dαe−1)

...
...

. . .
...

θn0 θn1 · · · θn(dαe−1)

 ∈M(n+1)×(dαe),

FT
1 =

[
2〈ω0, f〉, 2〈ω1, f〉, . . . , 2〈ωn, f〉

]
∈M1×(n+1),

FT
2 =

[
a0, a1, . . . , adαe−1

]
∈M1×(dαe).

Therefore, our main goal is finding the unknown vector C from Eq. (9).
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4 Convergence analysis

This section is a discussion about the convergence of the GSRM method for the multi-
point fractional differential equations of the form (1).

Theorem 1. Suppose that u(x) is the exact solution of fractional differential equation (1)
defined on [x0, xf ], and un(x) is the corresponding approximate solution of problem
given by the GSRM method. If there exists a polynomial pn(x) ∈ Pn[x0, xf ] such that for
any x ∈ [x0, xf ], pn(x)→ u(x), then∥∥(Oun)(x)

∥∥
L2[x0,xf ]

→ 0.

Proof. One can easily conclude that for any n ∈ N, we have

0 6
∥∥(Oun)(x)

∥∥
L2[x0,xf ]

6
∥∥(Opn)(x)

∥∥
L2[x0,xf ]

.

Therefore

0 6 lim
n→∞

∥∥(Oun)(x)
∥∥
L2[x0,xf ]

6 lim
n→∞

∥∥(Opn)(x)
∥∥
L2[x0,xf ]

. (10)

Moreover, from the continuity of norms and pn(x)→ u(x) we get

lim
n→∞

∥∥(Opn)(x)
∥∥
L2[x0,xf ]

=
∥∥∥ lim
n→∞

(Opn)(x)
∥∥∥
L2[x0,xf ]

=

∥∥∥∥∥ lim
n→∞

(
CDα

x+
0
pn(x)−

k∑
j=1

γj
CDβj

x+
0

pn(x)− γk+1pn(x)− f(x)

)∥∥∥∥∥
L2[x0,xf ]

=

∥∥∥∥∥CDαx+
0

lim
n→∞

pn(x)−
k∑
j=1

γj
CDβj

x+
0

lim
n→∞

pn(x)

− γk+1 lim
n→∞

pn(x)− f(x)

∥∥∥∥∥
L2[x0,xf ]

=

∥∥∥∥∥CDαx+
0
u(x)−

k∑
j=1

γj
CDβj

x+
0

u(x)− γk+1u(x)− f(x)

∥∥∥∥∥
L2[x0,xf ]

=
∥∥(Ou)(x)

∥∥
L2[x0,xf ]

. (11)

From Eqs. (1), (2), obviously, we have (Ou)(x)=0 and therefore ‖(Ou)(x)‖L2[x0,xf ] =0.
Hence, from (10) and (11) we obtain

0 6 lim
n→∞

∥∥(Oun)(x)
∥∥
L2[x0,xf ]

6 0,

which completes the proof.
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5 Numerical results

In this section, we present the results of the GSRM method on five test problems. We
perform our computations using Maple 18 software with 30 digits.

Example 1. Consider the equation

CDα0+u(x) + u(x)

= x4 − 1

2
x3 − 3

Γ(4−α)
x3−α +

24

Γ(5−α)
x4−α, 0 < α < 1, x ∈ [0, 10],

with initial condition u(0) = 0. Exact solution of this equation is given by u(x) =
x4 − x3/2. Figure 1 shows the absolute errors for various α by the GSRM method

(a) (b)

(c)

Figure 1. Absolute errors of example 1 for (a) α = 0.01, (b) α = 0.5 and (c) α = 0.99.
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Table 1. Comparison of maximum absolute values for Example 1 and
various differential orders α.

α GLT(GQ) GLT(GRQ) SCT GSRM
0.01 5.58E− 07 1.58E− 06 1.30E− 13 5.19E− 24
0.50 1.59E− 05 3.56E− 05 2.20E− 13 9.24E− 25
0.99 1.42E− 06 1.77E− 06 2.10E− 16 8.21E− 25

with polynomial bases as (6) and n = 4. In Table 1, the absolute errors obtained by
present method are compared with GLT method [11] with N = 50 and SCT method [12]
with N = 64. From this table it may be concluded that the GSRM method is more
accurate than the mentioned approaches. The CPU time used in this example is 0.842,
and condition number of coefficient matrix in (9) w.r.t. α = 0.01 is 2.61.

Example 2. Let us consider the following fractional equation:

CDα0+u(x) + u(x) = Γ(α+ 2)x+ xα+1, x ∈ [0, 1], 0 < α 6 2,

with initial conditions u(0) = 0 when 0 < α 6 1 and u(0) = u′(0) = 0 when 1 <
α 6 2. The reported exact solution of this fractional equation is u(x) = xα+1. In this
example, we suppose Ψ3 = span{xl/2+1, l = 0, . . . 3}. Maximum absolute error in the
best case E− 03 is reported w.r.t. α = 1.5 by Bhrawy et al. [11], whereas 5.93E− 18 and
1.31E − 21 are extracted by the present method for α = 0.5 and α = 1.5, respectively.
High accuracy of the GSRM method for both choices of α can be found from Fig. 2.
In Fig. 3, the approximate solutions obtained by the proposed method are plotted with
respect to different values of fractional-order α. The CPU time used in this example w.r.t.
α = 0.5 and α = 1.5 are 0.375s and 0.421s, respectively.

(a) (b)

Figure 2. Absolute errors of example 2 for (a) α = 0.5 and (b) α = 1.5.
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(a) (b)

Figure 3. Approximate solutions of example 2 for various values of α.

Example 3. Consider the Bagley–Torvik equation

u′′(x) + CD0.5
0+ u(x) + u(x) = x2 + 2 +

2

0.75 · Γ(0.5)
x1.5, x ∈ [0, 10],

with initial conditions u(0) = 0 and u′(0) = 0. Exact solution of this equation is given
by u(x) = x2. For this problem, we choose the polynomial linear independent functions
with n = 2, and we obtain

A1 =

 20 147.5766431 1087.279811
147.5766431 1364.910338 11184.58608
1087.279811 11184.58608 97877.15350

 , A2 =

1 0
0 1
0 0

 ,

F1 =

1087.279811
11184.58608
97877.15350

 , F2 =

(
0
0

)
.

By solving the resultant system, we get c0 = c1 = 0 and c2 = 1. Therefore we obtain the
exact solution for this example by using the GSRM method. The best maximum absolute
errors by GLT(GQ) and GLT(GRQ) reported in [11] w.r.t. N = 90, are 7.06E − 06
and 1.75E − 05, respectively. The Haar wavelet collocation method obtained the error
4.23E− 22 for h = 1/512 in [38]. By using an operational matrix method [34] it can be
found the maximum absolute error 1.89E − 12. The best reached error value among the
utilized methods in [16] is 1.54E− 05, which is reported for method 2 w.r.t. h = 1/512.
So, the present method is most reliable and powerful approach for this example.
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Example 4. Let us consider the equation

u′′(x) + CD0.75
0+ u(x) + u(x) = x3 + 6x+

6

0.703125 · Γ(0.25)
x2.25, x ∈ [0, 1],

with initial conditions u(0) = u′(0) = 0. Exact solution of this equation is given by
u(x) = x3. Numerical results will not be presented since the exact solution is achieved
by choosing n = 3.

Regarding Example 4 and in [16], the best result is attained with 512 steps, and the
maximum absolute errors are 6.93E−05, 1.18E−04 and 3.10E−06 by using method 1,
method 2 and method 3, respectively. Obtained results by GLT(GQ) and GLT(GRQ)
methods [11] with N = 64 are 1.43E − 05 and 1.80E − 05, respectively. Moreover,
in [38], the absolute error 1.86E− 09 is reported by HWCM method, and 3.39E− 13 is
reported by SCT method in [15].

Example 5. As the last test problem, we consider

CD2.2
0+ u(x) + CD1.25

0+ u(x) + CD0.75
0+ u(x) + u(x) = f(x), x ∈ [0, 1],

with initial conditions u(0) = u′(0) = u′′(0) = 0 and f(x) = x3/3 + 2x0.8/Γ(1.8) +
2x1.75/Γ(2.75) + 2x2.25/Γ(3.25). Exact solution of this equation is reported as u(x) =
x3/3. By choosing n = 4 we obtain the absolute error plot of this equation in Fig. 4.

In [27], the maximum absolute error by the Haar wavelet operational matrix method
is 1.12E − 02, and reported error in [38] is 2.91E − 03, w.r.t. N = 64. Whereas by the
GSRM method, we obtain 4.99E−28. The CPU time used in this example is 0.811s, and
condition number of coefficient matrix in (9) is 849.54.

Figure 4. Absolute error of Example 5.
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6 Conclusion

In the present paper, the squared remainder minimization method is developed to the
multi-term fractional differential equations. A minimization problem is manifested and
it considered by the Lagrange-multiplier method. Convergence of the GSRM method is
theoretically proved. Five test problems are investigated. For some of the given examples,
exact solutions by the present method are extracted. Accuracy and reliability of the GSRM
method is revealed by the reported figures and tables.
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