66 research outputs found
A Comparative Study of Adverbial Types and Markers in Zhuang-Thai Language
Zhuang language and Thai language belong to the Sino Tibetan language family, and both belong to the Dong Dai language family. There are many similarities in the types of adverbs and markers between the two languages. Analyze and compare the types of adverbs in Zhuang and Thai languages, as well as the usage of marker words in the two languages, to identify the similarities and differences between the two
New Insights Into the Role of Follicle-Stimulating Hormone in Sex Differentiation of the Protogynous Orange-Spotted Grouper, Epinephelus coioides
Follicle-stimulating hormone (FSH) signaling is considered to be essential for early gametogenesis in teleosts, but its functional roles during sex differentiation are largely unknown. In this study, we investigated the effects of long-term and short-term FSH injection on sex differentiation in the protogynous orange-spotted grouper (Epinephelus coioides). Long-term FSH treatment initially promoted the formation of ovaries but subsequently induced a male fate. The expression of female pathway genes was initially increased but then decreased, whereas the expression of male pathway genes was up-regulated only during long-term FSH treatment. The genes related to the synthesis of sex steroid hormones, as well as serum 11-ketotestosterone and estradiol, were also up-regulated during long-term FSH treatment. Short-term FSH treatment activated genes in the female pathway (especially cyp19a1a) at low doses but caused inhibition at high doses. Genes in the male pathway were up-regulated by high concentrations of FSH over the short term. Finally, we found that low, but not high, concentrations of FSH treatment activated cyp19a1a promoter activities in human embryonic kidney (HEK) 293 cells. Overall, our data suggested that FSH may induce ovarian differentiation or a change to a male sex fate in the protogynous orange-spotted grouper, and that these processes occurred in an FSH concentration-dependent manner
Cancer LncRNA Census reveals evidence for deep functional conservation of long noncoding RNAs in tumorigenesis.
Long non-coding RNAs (lncRNAs) are a growing focus of cancer genomics studies, creating the need for a resource of lncRNAs with validated cancer roles. Furthermore, it remains debated whether mutated lncRNAs can drive tumorigenesis, and whether such functions could be conserved during evolution. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, we introduce the Cancer LncRNA Census (CLC), a compilation of 122 GENCODE lncRNAs with causal roles in cancer phenotypes. In contrast to existing databases, CLC requires strong functional or genetic evidence. CLC genes are enriched amongst driver genes predicted from somatic mutations, and display characteristic genomic features. Strikingly, CLC genes are enriched for driver mutations from unbiased, genome-wide transposon-mutagenesis screens in mice. We identified 10 tumour-causing mutations in orthologues of 8 lncRNAs, including LINC-PINT and NEAT1, but not MALAT1. Thus CLC represents a dataset of high-confidence cancer lncRNAs. Mutagenesis maps are a novel means for identifying deeply-conserved roles of lncRNAs in tumorigenesis
Recommended from our members
Analyses of non-coding somatic drivers in 2,658Â cancer whole genomes.
The discovery of drivers of cancer has traditionally focused on protein-coding genes1-4. Here we present analyses of driver point mutations and structural variants in non-coding regions across 2,658 genomes from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium5 of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). For point mutations, we developed a statistically rigorous strategy for combining significance levels from multiple methods of driver discovery that overcomes the limitations of individual methods. For structural variants, we present two methods of driver discovery, and identify regions that are significantly affected by recurrent breakpoints and recurrent somatic juxtapositions. Our analyses confirm previously reported drivers6,7, raise doubts about others and identify novel candidates, including point mutations in the 5' region of TP53, in the 3' untranslated regions of NFKBIZ and TOB1, focal deletions in BRD4 and rearrangements in the loci of AKR1C genes. We show that although point mutations and structural variants that drive cancer are less frequent in non-coding genes and regulatory sequences than in protein-coding genes, additional examples of these drivers will be found as more cancer genomes become available
Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples
Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts
Simultaneous modulation of surface composition, oxygen vacancies and assembly in hierarchical Co<sub>3</sub>O<sub>4</sub> mesoporous nanostructures for lithium storage and electrocatalytic oxygen evolution
Co3O4 hierarchical nanostructures with tunable surface composition, oxygen vacancies and assembly exhibit excellent lithium storage and electrocatalytic oxygen evolution properties.</p
Demographic and radiographic factors for knee symptoms and range of motion in patients with knee osteoarthritis: a cross-sectional study in Beijing, China
Abstract Background Knee osteoarthritis (KOA) causes not only pain, stiffness, and dysfunction of the knee, but also the reduction of the joint range of motion (ROM). This study explored the demographic and radiographic factors for knee symptoms and ROM in patients with symptomatic KOA. Methods The demographic variables, Kellgren-Lawrence (KL) grade, and the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) of patients with symptomatic KOA recruited in Beijing were collected. The knee ROM of all patients were also measured. We analyzed the influencing factors for WOMAC and ROM using a generalize linear model, respectively. Results This study included a total of 2034 patients with symptomatic KOA, including 530 males (26.1%) and 1504 females (73.0%), with a mean age of 59.17 (± 10.22) years. Patients with advanced age, overweight or obesity, a family history of KOA, a moderate-to-heavy manual labor job and use of nonsteroidal anti-inflammatory drugs (NSAIDs) had significantly higher WOMAC and lower ROM (all P < 0.05). The more the comorbidities, the higher the WOMAC (all P < 0.05). Patients with higher education had better ROM than those with only an elementary education(β = 4.905, P < 0.05). Compared with those KL = 0/1, the WOMAC of patients whose KL = 4 were higher (β = 0.069, P < 0.05), but the WOMAC of those KL = 2 were lower (β = -0.068, P < 0.05). ROM decreased with the increase of KL grade (all P < 0.05). Conclusions KOA patients with advanced age, overweight or obesity, a family history of KOA in first-degree relatives, a moderate-to-heavy manual labor job tended to have more severe clinical symptoms and worse ROM. Patients with more severe imaging lesions tend to have poorer ROM. Symptom management measures and regular ROM screening should be taken early to these people
Study on the Flame Transition Characteristics of a Gas Turbine Combustor
Gas turbines are widely used as important equipment for electricity generation on islands and offshore platforms. During the operation of a gas turbine, the flame shape in the combustion chamber undergoes variations in response to changes in parameters such as gas turbine load, fuel distribution, and burner structure. These alterations in flame shape exert influence on combustion instability, emissions, and load characteristics. This study explores the variations in flame transition, emissions, and operating parameters among three distinct center stage structures: namely, the non-premix center stage (NPCS), premix center stage (PCS), and enhanced premix center stage (PCSE). The investigation is conducted using a heavy-duty gas turbine hybrid burner on a full temperature, full pressure, and full-size single burner experimental bench. Simultaneously, a multi-parameter numerical simulation regarding the influence of the central fuel split on flame shape analysis was conducted using the PCS burner under the design point for a more in-depth understanding of the mechanisms and for influencing factors associated with flame transition. The findings indicate that variations in flame transition loads among different central stage structures: for the NPCS burner, the transition occurs between 45% and 50% load; for the PCS burners, it takes place between 60% and 65% load; for the PCSE burners, it shifts between 55% and 60% load. Additionally, a reduction in NOx emissions is observed during the flame transition process. Furthermore, it was found that decreasing the central stage fuel results in a decline in flame angle for the same burner structure. As the central stage fuel diminishes to a specific value, the flame shape undergoes a sudden change. Further reduction in central stage fuel does not significantly affect the flame shape and temperature distribution
- …