33 research outputs found

    Stephen Minot Correspondence

    Get PDF
    Entries include a typed letter and a typed biography from Minot who was selected for the O. Henry Prize story collection

    Advances in the Large Area Picosecond Photo-Detector (LAPPD): 8" x 8" MCP-PMT with Capacitively Coupled Readout

    Full text link
    We present advances made in the Large Area Picosecond Photodetector (LAPPD), an 8" ×\times 8" microchannel plate photomultiplier tube (MCP-PMT), since pilot production was initiated at Incom, Inc. in 2018. The Gen-I LAPPD utilizes a stripline anode for direct charge readout. The novel Gen-II LAPPD employs an internal resistive thin-film which capacitively couples to a customizable external signal readout board, streamlining production. The Gen-II LAPPD, with an active area of 373 cm2^2, is capable of high single photoelectron (PE) gain of ∼\sim107^7, low dark rates (∼\sim1 kHz/cm2^2), single PE timing resolution of ∼\sim65 ps, and O\mathcal{O}(mm) position resolution. Coupled with a UV-grade fused silica window, the LAPPD features a high quantum efficiency (QE) bialkali photocathode of >>30% with spectral response down to ∼\sim165 nm. The LAPPD is an excellent candidate for electromagnetic calorimeter (ECAL) timing layers, photon-based neutrino detectors, high energy collider experiments, medical imaging systems, and nuclear non-proliferation applications

    Health and environmental applications of gut microbiome: A review

    Get PDF
    Life on Earth harbours an unimaginable diversity of microbial communities. Among these, gut microbiome, the ecological communities of commensal, symbionts (bacteria and bacteriophages) are a unique assemblage of microbes. This microbial population of animal gut helps in performing organism's physiological processes to stay healthy and fit. The role of these microbial communities is immense. They continually maintain interrelation with the intestinal mucosa in a subtle equilibrium and help the gut for different functions ranging from metabolism to immunologic functions like upgradation of nutrient-poor diets, aid in digestion of recalcitrant food components, protection from pathogens, contribute to inter-And intra-specific communication, affecting the efficiency as disease vectors etc. The microbial diversity in the gut depends upon environmental competition between microbes, their sieving effects and subsequent elimination. Due to wide diversity of anatomy and physiology of the digestive tracts and food habits, the gut microbiome also differs broadly among animals. Stochastic factors through the history of colonization of the microbiome in a species and in situ evolution are likely to establish interspecies diversity. Moreover, the microbes offer enormous opportunity to discover novel species for therapeutic and/or biotechnological applications. In this manuscript, we review the available knowledge on gut microbiome, emphasising their role in health and health related applications in human. © 2017 Soumya Chatterjee et al., published by De Gruyter Open 2017

    Validation of high throughput sequencing and microbial forensics applications

    Get PDF
    High throughput sequencing (HTS) generates large amounts of high quality sequence data for microbial genomics. The value of HTS for microbial forensics is the speed at which evidence can be collected and the power to characterize microbial-related evidence to solve biocrimes and bioterrorist events. As HTS technologies continue to improve, they provide increasingly powerful sets of tools to support the entire field of microbial forensics. Accurate, credible results allow analysis and interpretation, significantly influencing the course and/or focus of an investigation, and can impact the response of the government to an attack having individual, political, economic or military consequences. Interpretation of the results of microbial forensic analyses relies on understanding the performance and limitations of HTS methods, including analytical processes, assays and data interpretation. The utility of HTS must be defined carefully within established operating conditions and tolerances. Validation is essential in the development and implementation of microbial forensics methods used for formulating investigative leads attribution. HTS strategies vary, requiring guiding principles for HTS system validation. Three initial aspects of HTS, irrespective of chemistry, instrumentation or software are: 1) sample preparation, 2) sequencing, and 3) data analysis. Criteria that should be considered for HTS validation for microbial forensics are presented here. Validation should be defined in terms of specific application and the criteria described here comprise a foundation for investigators to establish, validate and implement HTS as a tool in microbial forensics, enhancing public safety and national security.Peer reviewe

    Inflammasome sensor NLRP1 controls rat macrophage susceptibility to Toxoplasma gondii

    Get PDF
    Toxoplasma gondii is an intracellular parasite that infects a wide range of warm-blooded species. Rats vary in their susceptibility to this parasite. The Toxo1 locus conferring Toxoplasma resistance in rats was previously mapped to a region of chromosome 10 containing Nlrp1. This gene encodes an inflammasome sensor controlling macrophage sensitivity to anthrax lethal toxin (LT) induced rapid cell death (pyroptosis). We show here that rat strain differences in Toxoplasma infected macrophage sensitivity to pyroptosis, IL-1β/IL-18 processing, and inhibition of parasite proliferation are perfectly correlated with NLRP1 sequence, while inversely correlated with sensitivity to anthrax LT-induced cell death. Using recombinant inbred rats, SNP analyses and whole transcriptome gene expression studies, we narrowed the candidate genes for control of Toxoplasma-mediated rat macrophage pyroptosis to four genes, one of which was Nlrp1. Knockdown of Nlrp1 in pyroptosis-sensitive macrophages resulted in higher parasite replication and protection from cell death. Reciprocally, overexpression of the NLRP1 variant from Toxoplasma-sensitive macrophages in pyroptosis-resistant cells led to sensitization of these resistant macrophages. Our findings reveal Toxoplasma as a novel activator of the NLRP1 inflammasome in rat macrophages

    EDNA ST. VINCENT MILLAY: A CRITICAL REVALUATION

    No full text
    Abstract not availabl

    Stephen Minot Correspondence

    No full text
    Entries include a typed letter and a typed biography from Minot who was selected for the O. Henry Prize story collection

    Dahak

    No full text
    A sustainable approach to non-clinical metagenomic analyse
    corecore