297 research outputs found

    Role of the anterior temporal lobes in semantic representations: paradoxical results of a cTBS study

    Get PDF
    According to the 'Semantic Hub' model, which was developed from data gathered in the moderate to advanced stages of semantic dementia (SD), a unitary amodal mechanism, located in the anterior parts of both temporal lobes (ATLs), should support the interactive activation of semantic representations in all modalities and for all semantic categories. This model has been challenged by clinical findings, which show that in the early stages of SD, when important asymmetries can be observed at the level of the right and left ATLs, the semantic impairment can be modality-specific, mainly affecting lexical-semantic knowledge when the left temporal lobe is more atrophic and pictorial representations when atrophy prevails on the right side. On the other hand, findings of experiments conducted in normal subjects with repetitive transcranial magnetic stimulations (rTMS), support the unitary model. In the most compelling of these studies, rTMS was used to investigate the role of right and left ATLs directly, by comparing semantic processing of the same concepts, presented as written words or pictures. The efficiency of semantic processing for words and pictures was reduced to the same degree by rTMS applied to the left and right ATLs. However, to consider more in depth some methodological inconsistencies of these studies and with the aim of discussing the effects of rTMS on high-level cognitive functions, we decided to repeat that experimental paradigm, using the continuous theta burst stimulation (cTBS) protocol over the right ATL, left ATL and vertex (as control site). A significant interaction was found between side of cTBS application and type of stimulus, but, contrary to our predictions, we observed significantly faster (rather than slower) responses to pictures after application of cTBS to the right ATL and no difference between responses to written words after application of cTBS to the left ATL in comparison with the vertex. These unexpected results are discussed with respect to the nature of the semantic representations supported by the right and left ATLs and to re-appraisal of the 'virtual lesion' account to explain results obtained with rTMS experiments on high-level cognitive functions

    Thermal Stability of Corrugated Epitaxial Graphene Grown on Re(0001)

    Get PDF
    We report on a novel approach to determine the relationship between the corrugation and the thermal stability of epitaxial graphene grown on a strongly interacting substrate. According to our density functional theory calculations, the C single layer grown on Re(0001) is strongly corrugated, with a buckling of 1.6 angstrom, yielding a simulated C 1s core level spectrum which is in excellent agreement with the experimental one. We found that corrugation is closely knit with the thermal stability of the C network: C-C bond breaking is favored in the strongly buckled regions of the moire cell, though it requires the presence of diffusing graphene layer vacancies

    A questionnaire to collect unintended effects of transcranial magnetic stimulation: A consensus based approach

    Get PDF
    Transcranial magnetic stimulation (TMS) has been widely used in both clinical and research practice. However, TMS might induce unintended sensations and undesired effects as well as serious adverse effects. To date, no shared forms are available to report such unintended effects. This study aimed at developing a questionnaire enabling reporting of TMS unintended effects. A Delphi procedure was applied which allowed consensus among TMS experts. A steering committee nominated a number of experts to be involved in the Delphi procedure. Three rounds were conducted before reaching a consen-sus. Afterwards, the questionnaire was publicized on the International Federation of Clinical Neurophysiology website to collect further suggestions by the wider scientific community. A last Delphi round was then conducted to obtain consensus on the suggestions collected during the publiciza-tion and integrate them in the questionnaire. The procedure resulted in a questionnaire, that is the TMSens_Q, applicable in clinical and research settings. Routine use of the structured TMS questionnaire and standard reporting of unintended TMS effects will help to monitor the safety of TMS, particularly when applying new protocols. It will also improve the quality of data collection as well as the interpre-tation of experimental findings.(c) 2022 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Fast Visuomotor Processing of Redundant Targets: The Role of the Right Temporo-Parietal Junction

    Get PDF
    Parallel processing of multiple sensory stimuli is critical for efficient, successful interaction with the environment. An experimental approach to studying parallel processing in sensorimotor integration is to examine reaction times to multiple copies of the same stimulus. Reaction times to bilateral copies of light flashes are faster than to single, unilateral light flashes. These faster responses may be due to ‘statistical facilitation’ between independent processing streams engaged by the two copies of the light flash. On some trials, however, reaction times are faster than predicted by statistical facilitation. This indicates that a neural ‘coactivation’ of the two processing streams must have occurred. Here we use fMRI to investigate the neural locus of this coactivation. Subjects responded manually to the detection of unilateral light flashes presented to the left or right visual hemifield, and to the detection of bilateral light flashes. We compared the bilateral trials where subjects' reaction times exceeded the limit predicted by statistical facilitation to bilateral trials that did not exceed the limit. Activity in the right temporo-parietal junction was higher in those bilateral trials that showed coactivation than in those that did not. These results suggest the neural coactivation observed in visuomotor integration occurs at a cognitive rather than sensory or motor stage of processing

    Long Lasting Modulation of Cortical Oscillations after Continuous Theta Burst Transcranial Magnetic Stimulation

    Get PDF
    Transcranial magnetic theta burst stimulation (TBS) differs from other high-frequency rTMS protocols because it induces plastic changes up to an hour despite lower stimulus intensity and shorter duration of stimulation. However, the effects of TBS on neuronal oscillations remain unclear. In this study, we used electroencephalography (EEG) to investigate changes of neuronal oscillations after continuous TBS (cTBS), the protocol that emulates long-term depression (LTD) form of synaptic plasticity. We randomly divided 26 healthy humans into two groups receiving either Active or Sham cTBS as control over the left primary motor cortex (M1). Post-cTBS aftereffects were assessed with behavioural measurements at rest using motor evoked potentials (MEPs) and at active state during the execution of a choice reaction time (RT) task in combination with continuous electrophysiological recordings. The cTBS-induced EEG oscillations were assessed using event-related power (ERPow), which reflected regional oscillatory activity of neural assemblies of θ (4–7.5 Hz), low α (8–9.5 Hz), µ (10–12.5 Hz), low β (13–19.5 Hz), and high β (20–30 Hz) brain rhythms. Results revealed 20-min suppression of MEPs and at least 30-min increase of ERPow modulation, suggesting that besides MEPs, EEG has the potential to provide an accurate cortical readout to assess cortical excitability and to investigate the interference of cortical oscillations in the human brain post-cTBS. We also observed a predominant modulation of β frequency band, supporting the hypothesis that cTBS acts more on cortical level. Theta oscillations were also modulated during rest implying the involvement of independent cortical theta generators over the motor network post cTBS. This work provided more insights into the underlying mechanisms of cTBS, providing a possible link between synchronised neural oscillations and LTD in humans

    Temporal Dynamics of Visual Attention Allocation

    Get PDF
    We often temporally prepare our attention for an upcoming event such as a starter pistol. In such cases, our attention should be properly allocated around the expected moment of the event to process relevant sensory input efficiently. In this study, we examined the dynamic changes of attention levels near the expected moment by measuring contrast sensitivity to a target that was temporally cued by a five-second countdown. We found that the overall attention level decreased rapidly after the expected moment, while it stayed relatively constant before it. Results were not consistent with the predictions of existing explanations of temporal attention such as the hazard rate or the stimulus-driven oscillations. A control experiment ruled out the possibility that the observed pattern was due to biased time perception. In a further experiment with a wider range of cue-stimulus-intervals, we observed that attention level increased until the last 500 ms of the interval range, and thereafter, started to decrease. Based on the performances of a generative computational model, we suggest that our results reflect the nature of temporal attention that takes into account the subjectively estimated hazard rate and the probability of relevant events occurring in the near future

    In situ observations of the atomistic mechanisms of Ni catalyzed low temperature graphene growth.

    Get PDF
    The key atomistic mechanisms of graphene formation on Ni for technologically relevant hydrocarbon exposures below 600 °C are directly revealed via complementary in situ scanning tunneling microscopy and X-ray photoelectron spectroscopy. For clean Ni(111) below 500 °C, two different surface carbide (Ni2C) conversion mechanisms are dominant which both yield epitaxial graphene, whereas above 500 °C, graphene predominantly grows directly on Ni(111) via replacement mechanisms leading to embedded epitaxial and/or rotated graphene domains. Upon cooling, additional carbon structures form exclusively underneath rotated graphene domains. The dominant graphene growth mechanism also critically depends on the near-surface carbon concentration and hence is intimately linked to the full history of the catalyst and all possible sources of contamination. The detailed XPS fingerprinting of these processes allows a direct link to high pressure XPS measurements of a wide range of growth conditions, including polycrystalline Ni catalysts and recipes commonly used in industrial reactors for graphene and carbon nanotube CVD. This enables an unambiguous and consistent interpretation of prior literature and an assessment of how the quality/structure of as-grown carbon nanostructures relates to the growth modes.L.L.P. acknowledges funding from Area di Ricerca Scientifica e Tecnologica of Trieste and from MIUR through Progetto Strategico NFFA. C.A. acknowledges support from CNR through the ESF FANAS project NOMCIS. C.A. and C.C. acknowledge financial support from MIUR (PRIN 2010-2011 nº 2010N3T9M4). S.B. acknowledges funding from ICTP TRIL program. S.H. acknowledges funding from ERC grant InsituNANO (n°279342). R.S.W. acknowledges funding from EPSRC (Doctoral training award), and the Nano Science & Technology Doctoral Training Centre Cambridge (NanoDTC). The help of C. Dri and F. Esch (design) and P. Bertoch and F. Salvador (manufacturing) in the realization of the high temperature STM sample holder is gratefully acknowledged. We acknowledge the Helmholtz-Zentrum-Berlin Electron storage ring BESSY II for provision of synchrotron radiation at the ISISS beamline and we thank the BESSY staff for continuous support of our experiments.This is the accepted manuscript. The final version is available from ACS at http://pubs.acs.org/doi/abs/10.1021/nn402927q
    corecore