56 research outputs found

    Osteocyte-Driven Downregulation of Snail Restrains Effects of Drd2 Inhibitors on Mammary Tumor Cells

    Get PDF
    While bone is a frequent target of breast cancer-associated metastasis, little is known about the effects of tumor-bone interactions on the efficacy of tumor-suppressing agents. Here we examined the effect of two FDA-approved dopamine modulators, fluphenazine and trifluoperazine, on mammary tumor cells, osteoclasts, osteoblasts, and osteocytes. These agents suppressed proliferation and migration of mammary tumor cells chiefly by antagonizing dopamine receptor D2 and reduced bone resorption by downregulating nuclear factor of activated T cells, cytoplasmic 1 (Nfatc1). Three-dimensional spheroid formation assays revealed that tumor cells have high affinity to osteocytes and type I collagen, and interactions with osteocytes as well as administration of fluphenazine and trifluoperazine downregulated Snail and suppressed migratory behaviors. Unlike the inhibitory action of fluphenazine and trifluoperazine on tumor growth, tumor-osteocyte interactions stimulated tumor proliferation by upregulating NFκB and Akt. In the bone microenvironment, osteocytes downregulated Snail and acted as an attractant as well as a stimulant to mammary tumor cells. These results demonstrate that tumor-osteocyte interactions strengthen dopamine receptor-mediated suppression of tumor migration but weaken its inhibition of tumor proliferation in the osteocyte-rich bone microenvironment.Significance: These findings provide novel insight into the cellular cross-talk in the bone microevironment and the effects of dopamine modulators on mammary tumor cells and osteocytes. Cancer Res; 78(14); 3865-76. ©2018 AACR

    Finite Element Analysis of the Mouse Proximal Ulna in Response to Elbow Loading

    Get PDF
    Bone is a mechano-sensitive tissue that alters its structure and properties in response to mechanical loading. We have previously shown that application of lateral dynamic loads to a synovial joint, such as the knee and elbow, suppresses degradation of cartilage and prevents bone loss in arthritis and postmenopausal mouse models, respectively. While loading effects on pathophysiology have been reported, mechanical effects on the loaded joint are not fully understood. Because the direction of joint loading is non-axial, not commonly observed in daily activities, strain distributions in the laterally loaded joint are of great interest. Using elbow loading, we herein characterized mechanical responses in the loaded ulna focusing on the distribution of compressive strain. In response to 1-N peak-to-peak loads, which elevate bone mineral density and bone volume in the proximal ulna in vivo, we conducted finite-element analysis and evaluated strain magnitude in three loading conditions. The results revealed that strain of ~ 1000 μstrain (equivalent to 0.1% compression) or above was observed in the limited region near the loading site, indicating that the minimum effective strain for bone formation is smaller with elbow loading than axial loading. Calcein staining indicated that elbow loading increased bone formation in the regions predicted to undergo higher strain

    Inhibitory Effects of Dopamine Receptor D1 Agonist on Mammary Tumor and Bone Metastasis

    Get PDF
    Dopaminergic signaling plays a critical role in the nervous system, but little is known about its potential role in breast cancer and bone metabolism. A screening of ~1,000 biologically active compounds revealed that a selective agonist of dopamine receptor D1 (DRD1), A77636, inhibited proliferation of 4T1.2 mammary tumor cells as well as MDA-MB-231 breast cancer cells. Herein, we examined the effect of A77636 on bone quality using a mouse model of bone metastasis from mammary tumor. A77636 inhibited migration of cancer cells in a DRD1-dependent fashion and suppressed development of bone-resorbing osteoclasts by downregulating NFATc1 through the elevation of phosphorylation of eIF2α. In the mouse model of bone metastasis, A77636 reduced osteolytic lesions and prevented mechanical weakening of the femur and tibia. Collectively, we expect that dopaminergic signaling might provide a novel therapeutic target for breast cancer and bone metastasis

    Case of plasmablastic lymphoma of the sigmoid colon and literature review

    Get PDF
    Plasmablastic lymphoma (PBL) is a rare form of non-Hodgkin\u27s lymphoma that is associated with human immunodeficiency virus (HIV) infection. Although PBL is most commonly observed in the oral cavity of HIV-positive patients, it can also be observed at extra-oral sites in HIV-negative patients. This report represents an unusual case of HIV-negative PBL that occurred in the sigmoid colon. This patient had a history of systemic lupus erythematosus and an underlying immunosuppressive state from long term steroid therapy. The lymphoma cells were positive for CD138, kappa light chain restriction and Epstein-Barr virus and negative for CD20/L26, CD3, CD79a, UCHL1 (CD45RO) and cytokeratin (AE1/AE3). The patient died approximately 2 mo after the operation. In the present paper, we review cases of PBL of the colon in HIVnegative patients

    Mechanical tibial loading remotely suppresses brain tumors by dopamine-mediated downregulation of CCN4

    Get PDF
    Mechanical loading to the bone is known to be beneficial for bone homeostasis and for suppressing tumor-induced osteolysis in the loaded bone. However, whether loading to a weight-bearing hind limb can inhibit distant tumor growth in the brain is unknown. We examined the possibility of bone-to-brain mechanotransduction using a mouse model of a brain tumor by focusing on the response to Lrp5-mediated Wnt signaling and dopamine in tumor cells. The results revealed that loading the tibia with elevated levels of tyrosine hydroxylase, a rate-limiting enzyme in dopamine synthesis, markedly reduced the progression of the brain tumors. The simultaneous application of fluphenazine (FP), an antipsychotic dopamine modulator, enhanced tumor suppression. Dopamine and FP exerted antitumor effects through the dopamine receptors DRD1 and DRD2, respectively. Notably, dopamine downregulated Lrp5 via DRD1 in tumor cells. A cytokine array analysis revealed that the reduction in CCN4 was critical for loading-driven, dopamine-mediated tumor suppression. The silencing of Lrp5 reduced CCN4, and the administration of CCN4 elevated oncogenic genes such as MMP9, Runx2, and Snail. In summary, this study demonstrates that mechanical loading regulates dopaminergic signaling and remotely suppresses brain tumors by inhibiting the Lrp5-CCN4 axis via DRD1, indicating the possibility of developing an adjuvant bone-mediated loading therapy

    Unexpected biotic resilience on the Japanese seafloor caused by the 2011 Tōhoku-Oki tsunami

    Get PDF
    On March 11th, 2011 the Mw 9.0 2011 Tōhoku-Oki earthquake resulted in a tsunami which caused major devastation in coastal areas. Along the Japanese NE coast, tsunami waves reached maximum run-ups of 40 m, and travelled kilometers inland. Whereas devastation was clearly visible on land, underwater impact is much more difficult to assess. Here, we report unexpected results obtained during a research cruise targeting the seafloor off Shimokita (NE Japan), shortly (five months) after the disaster. The geography of the studied area is characterized by smooth coastline and a gradually descending shelf slope. Although high-energy tsunami waves caused major sediment reworking in shallow-water environments, investigated shelf ecosystems were characterized by surprisingly high benthic diversity and showed no evidence of mass mortality. Conversely, just beyond the shelf break, the benthic ecosystem was dominated by a low-diversity, opportunistic fauna indicating ongoing colonization of massive sand-bed deposits.Peer reviewe

    Tsunami - triggered dispersal and deposition of microplastics in marine environments and their use in dating recent turbidite deposits

    Get PDF
    International audienceMicroplastics have become widely dispersed throughout the marine environment in and around Japan since the 1960s, which correspond to the onset of mass plastic production and use in this country. Our study documents a possible abrupt microplastics depositional event in continental shelf and deep-sea environments triggered by a tsunami. The sediment layers contaminated by microplastics correspond with sedimentary horizons where 137Cs signals were measured, indicating deposition after 1960s nuclear tests. The microplastics were observed in the 2011 Tohoku-Oki tsunami deposits. Tsunamis can thus contribute to the wide dispersal of microplastics from coastal to deep-sea areas, and these anthropogenic particles can be used to date very recent turbidite deposits

    Carbon Ion Irradiation Suppresses Metastatic Potential of Human Non-small Cell Lung Cancer A549 Cells through the Phosphatidylinositol-3-Kinase/Akt Signaling Pathway

    No full text
    We previously showed that carbon ion irradiation can inhibit the expression of the anillin (ANLN) gene, which is regulated by the activation of the phosphatidylinositol-3-kinase (PI3K)/Akt signaling path- way associated with metastasis. The purpose of this study is to compare the effects of carbon ion irradia- tion on the PI3K/Akt signaling pathway to those of photon irradiation. Our study showed that carbon ion irradiation of human lung adenocarcinoma cells A549 decreased their invasion more effectively than pho- ton irradiation did. We found that carbon ion irradiation reduced the nuclear localization of ANLN at lower dose, but did not affect its expression. Low-dose carbon ion irradiation also reduced the level of phosphorylated Akt compared to untreated controls, whereas photon irradiation did not. These results sug- gest that carbon ion irradiation effectively suppresses the metastatic potential of A549 cells by suppressing the PI3K/Akt signaling pathway
    corecore