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On March 11th, 2011 the Mw 9.0 2011 Tōhoku-Oki earthquake resulted in a tsunami which caused major
devastation in coastal areas. Along the Japanese NE coast, tsunami waves reached maximum run-ups of
40 m, and travelled kilometers inland. Whereas devastation was clearly visible on land, underwater impact is
much more difficult to assess. Here, we report unexpected results obtained during a research cruise targeting
the seafloor off Shimokita (NE Japan), shortly (five months) after the disaster. The geography of the studied
area is characterized by smooth coastline and a gradually descending shelf slope. Although high-energy
tsunami waves caused major sediment reworking in shallow-water environments, investigated shelf
ecosystems were characterized by surprisingly high benthic diversity and showed no evidence of mass
mortality. Conversely, just beyond the shelf break, the benthic ecosystem was dominated by a low-diversity,
opportunistic fauna indicating ongoing colonization of massive sand-bed deposits.

T
he Mw 9.0 2011 Tōhoku-Oki earthquake offshore of Sendai (East Japan) occurred on March 11th 2011 (05:46
UTC) and is considered the most destructive natural hazard recorded in the modern history of Japan1. With
the hypocenter located at an underwater depth of approximately 24 km, 70 km east off the Oshika Peninsula

of Tōhoku, this earthquake generated a tsunami that struck Japanese coastlines within minutes2. Surging waters
were far more deadly and destructive than the earthquake itself, with tsunami surges recorded along all Pacific
coasts including Antarctica3. In northern Honshu, the coastline around Shimokita (Fig. 1) suffered tsunami waves
reaching run-up heights of 10 m. Although dramatic effects of this catastrophe were clearly visible inland,
environmental consequences on the seafloor have only been documented in a limited number of studies on
bathyal environments deeper than 300 m off Sendai4. Considering the scarcity of studies regarding modern
tsunami impacts on shallow-water benthic marine environments5–7, offshore imprints related to tsunami run-
up and backwash are complex to decipher in terms of both sedimentary disturbance and biodiversity response.
Especially as the sedimentary and biological features observed at the seafloor are already the product of many
interacting factors. Still, expected consequences of a tsunami consist of major sediment reworking at the seafloor,
erosion and mass-deposition, probably resulting in mass mortality of the benthos6–8. Beside the inherent com-
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plexity of ecological responses to tsunami deposits, these effects are
difficult to assess in the field since post-tsunami observations of
shallow-water benthic ecosystems may be distorted within week or
months by additional extreme meteorological events, potentially
generating strong hydro-sedimentary processes5. Furthermore,
paleo-tsunami records offshore are inherently difficult to interpret
because ongoing short-term and long-lasting processes (e.g. biotur-
bation, winnowing, liquefaction, diagenetic alteration) are recorded
in sedimentary archives9. Five months after the 2011 Tōhoku-Oki
tsunami, we anticipated recovering sediments devastated by a cata-
stophic event.

The coast of the Shimokita Peninsula is characterized by smooth
beaches and a gently sloping shelf. This setting contrasts sharply with
the coastline most severely damaged by the 2011 Tōhoku-Oki tsu-
nami at Sanriku, which possesses steep rocky shores and a sawtooth-
cliff coast. For evaluating impacts on benthic ecosystems, the coast of
Shimokita, with its sandy to muddy substrates, provides a more
valuable reference area. The material flows generated by tsunami
and their impact on benthic ecosystems are controlled by a number
of factors including tsunami energy, distance from the shore, coastal
bathymetry, prevailing currents and the resilience of existing ecosys-
tems. Our interpretations are based on a multidisciplinary approach
involving collection of sedimentary, geochemical and faunal data,
which are supported by numerical simulations of tsunami propaga-
tion and compared with historical observations.

Results
Observations five months after the 2011 Tōhoku-Oki earthquake
and tsunami. Data and samples were collected off Shimokita (NE
Japan) in August 2011, five months after the 2011 Tōhoku-Oki
tsunami and three months after the category 5 Typhoon Songda
(Fig. 1). The study area is situated ca. 300 km north of the
earthquake’s epicenter and approximately 400 km from the path of
Typhoon Songda10. Sediment cores from four different stations,
located between 55 and 211 m depth (40u419–40u509N, 141u319–
141u459E), have been studied.

Station 1 (depth 55 m) is characterized by fine to medium sands
(D10 . 100 mm; D90 . 200 mm). Comparing this with historical
sediment mapping11 shows no major changes in terms of sediment-
ary facies. However, a close inspection of our data (Fig. 2) reveals that
Station 1 possesses a 4.5 cm thick mixed layer (210Pb profile) where
terrigeneous particles (e.g., quartz, feldspar, rocky fragments) and
volcanic material (e.g., pumice and glass) create variable grain sizes
from fine to coarse sediment (290 mm , D90 , 550 mm). The sedi-
mentary record recovered from Station 2 (depth 81 m) is topped by a
4 cm thick, coarsening-up layer composed of very poorly sorted, very
coarse sand, with large (0.5–2 cm) shelly fragments. Station 3 (depth
105 m) is characterized by a 3 cm thick uppermost layer of medium
to coarse sands (after decalcification; D90 . 300 mm with values
around 600 mm in some intervals) (Fig. 2). A comparison with his-
torical data off Shimokita11 shows that modern surface sediments
from both stations are composed of larger particles than the fine-
to-medium-sandy facies described in the 1970s. The coarse sediment
layer overlaying finer sediments is stratigraphically consistent with
heterogeneous layers characterized by mixed 210Pb profiles (Fig. 2).
Clearly, a substantial hydro-sedimentary process supplied large sedi-
mentary particles at both Stations 2 and 3. The sediment properties
recorded at Station 4 (depth 211 m) located just beyond the shelf-
break, are very different. Whilst also composed of fine to medium
sands (D10 . 100 mm; D90 . 200 mm), the total 210Pb profile is
indicative of a mixed layer within the uppermost 10 cm. Sandy part-
icles from the upper 5 cm of this mixed layer are coarser (D90 max-
ima of 470 mm) than sediments below (250 mm , D90 , 380 mm).

Numerical simulation of the 2011 Tōhoku-Oki tsunami’s velocity
(see supplementary material) indicated that bottom-water velocities
reached 78 cm/s at the outer shelf at Station 3 (105 m) (Fig. 3). In

Figure 1 | Study area off Shimokita (NE Japan). The location of the 2011

Tōhoku earthquake epicenter is pictured in the upper map by a violet star.

Both middle and lower figures show the local area and bathymetry of the

four stations relative to the shoreline. In the middle figure, colored dots

represent the tsunami wave height above marine sea level along the

Shimokita coast47. Maps are drawn by The Generic Mapping Tools (GMT)

at JAMSTEC with bathymetry data from NOAA/NGDC and Japan

Oceanographic Data Center (JODC). The topographic profile are drawn

by KaleidaGraph with bathymetry data recorded during our cruise.
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Figure 2 | Sediment properties along the bathymetric transect. Grain-size features (in mm) are expressed in D10 and D90 for all stations. Shaded zones are

related to mixed sedimentary layers, determined from radionuclide profiles. Total 210Pb activity (expressed in Bq/g) is plotted. A video captured

image of the seafloor at Station 2 (81 m depth) is inserted at the bottom. Shells belonging to shallow-water bivalves and gastropods (i.e. Amusium

japonicum, Arca boureardi, Olivella fulgurata) are relatively abundant. Note also the spatial heterogeneity as clearly highlighted by the chaotic distribution

of the numerous shell fragments and the coarsening upwards profile overlying finer sediments. Scale 5 external diameter of Plexiglas tube is ,8.5 cm.
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contrast at Shimokita, modelling of Typhoon Songda indicated that
its recorded 11 m waves at 80 m water depth generated velocities of
,17 cm/s. The local Tsugaru Warm Current generates bottom water
velocities of 0.05–26 cm/s12. Velocities of 80 cm/s were required to
entrain the recovered coarse, bioclastic gravels (,2 mm) of quartz
density.

Shelly fragments observed at Station 2 are notably made of inar-
ticulate, allochthonous bivalves from the inner shelf (i.e. Amusium
japonicum, Arca boureardi, Olivella fulgurata), and autochthonous
bivalves and gastropods (Fig. 2). Small pieces of organic tissue were
found on recovered allochthonous bivalves and occasional burrows
were obseved at Stations 1, 3 and 4. These burrows cut through the
coarse surface sediment layer (Fig. 2) and therefore must have been
created within five months after its deposition.

Analyses of C/N ratios and organic carbon isotopes revealed that
sediments from all study locations contained substantial concentra-
tions of organic matter with varying contributions of marine com-
pounds. Sedimentary organic matter typically has C/N ratios atomic
ratios ranging between 8.4 6 0.9 and 8.7 6 0.4, and d13C values
ranging between 223.5% and 222.3%. Both of these parameters
increase from Station 1 to Station 4 (Fig. S2). Land-derived partic-
ulate organic carbon (C3 land plants and lacustrine algea) usually
presents a d13C signature close to 227%13–15 versus 219 to 220%
(for fresh marine phytodetritus) and lower C/N ratios (5.5 to 7.5)16,17.
Our sample values are common in coastal sediments caused by mix-
ing of terrestrial matter and oceanic compounds17. Furthermore,
these signatures are indicative of marine organic compounds in an

advanced state of degradation and indicate an absence of fresh ter-
restrial biomarkers in surface sediements. Visual observations of all
.150 mm sieve residues dedicated to foraminiferal investigation
contained no continental macrophytic remains at any of the stations
investigated. The freshness of chlorophyllic pigments ([Chl a/(Chl a
1 Pheo a) ratio] ranging between 6.3 6 0.8% and 8.5 6 1.9%) and
nutritional values of bulk organics (EHAA/THAA ratio between
8.3% and 15.9%) showed fairly low values with only minor spatial
variability along the overall bathymetric transect (Fig. S2). The shelf-
break station (Station 4) is characterized by a deposit of more sorted
sand that is fairly different from other stations where chlorophyllic
pigments and bulk organics values are similar.

Living (rose bengal stained) and dead benthic foraminifera
(Rhizaria) were investigated as they are relevant and reliable bio-
indicators of marine benthic biodiversity and resilience18,19.
Compared to the three other shelf stations where dead foraminiferal
tests are relatively abundant in surficial sediments (1,644 Ind./50 cc,
14,300 Ind./50 cc and 16,700 Ind./50 cc in the first top half cm of
Stations 1, 2 and 3 respectively), the content of dead foraminiferal
tests at Station 4 is much lower (360 Ind./50 cc in the first half cm).
Therefore, sediments characterized by a terrigeneous/volcanic
matrix contain few dead foraminifera. The CT-scan images (Fig.
S1) support the presence of a chaotically structured and unconsoli-
dated fabric deposited at Station 4, different from that found at the
other stations.

Living (stained) foraminifera were recorded at the three shelf sta-
tions (1, 2 and 3) (49–63 taxa, H9 ranging between 2.38 and 3.31) with
relatively high diversity (Fig. 4). Most observed species (Table S1) are
typical from shelf environments off Japan20,21. Living communities
contained a few coastal taxa (i.e. Hanzawaia nipponica; living depth
, 10 m) and many epilithic species that live attached to the surface
of rock fragments and volcanic minerals22 (Fig. 5). Pioneer taxa were
not observed at Stations 1–3, which precludes the occurence of on-
going recolonization at the time of sample collection, i.e. five months
after the tsunami. Epilithic species were buried several centimeters
below the sediment-water interface. As depicted in Figures 2 and 4,
the vertical distribution of epilithic foraminifera broadly corresponds
with the mixed sedimentary layers. Station 4 (,200 m depth),
located at the shelf-break where the sea-floor slope steepens, revealed
living foraminiferal fauna dominated by opportunistic single-cham-
bered agglutinated foraminifera (86% Psammosphaera spp.), which

Figure 3 | Simulated maximum velocities and directions of incoming
and returning flows at the four stations during the 2011 Tōhoku-Oki
tsunami. The relationship between grain size (in mm) and maximum

tsunami wave velocity (cm/s) is pictured on the lower figure.

Figure 4 | Living foraminiferal faunas including standing stock (number
of individuals/100 cm2), sample diversity (number of taxa) and
community composition.
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are documented to colonize sediments after major physical disturb-
ance (e.g., turbidite, large storm) causing benthic reworking23,24. This
group likely proliferated in surface sands following the tsunami,
becoming the highest standing stock (4,500 ind./100 cm2) of the
bathymetric transect, five months after the catastrophic event. This
exceptionally high density is not related to the bioavailability of
organic compounds (i.e. EHAA/THAA ratio), which is the lowest
at this station. Moreover, diversity is strongly altered at this station
with only 21 taxa (H9 5 0.64) compared to the shelf stations (H9 5

2.38–3.1). The other species which are present at this station are not
restricted to shelf environments but were also documented along the
upper slope20,21. Inspection of dead foraminiferal fauna in the upper-
most sediments revealed a large proportion of allochthonous, broken
tests, such as Buccella makiyamae.

Discussion
Here, we have applied a multidisciplinary approach to investigate the
impact of tsunami on benthic ecosystems. Our four-station transect
revealed several sedimentary signatures indicating relatively recent
disturbance. This is summarized in a conceptual scheme illustrated
in Figure 5. These signatures include coarse, heterogeneous sedi-
ments with large shelly fragments overlying finer-grained beds, a
coarsening upward sequence and 210Pb profiles indicating recent
sediment mixing correlating with the identified disturbed beds
(Fig. S1). Considering the timing of our cruise, only two substantial
events (2011 Tōhoku-Oki tsunami or Typhoon Songda) qualify as
likely to cause the signatures observed. Simulated modelling of the
regular Tsugaru Warm Current, the 2011 Tōhoku-Oki tsunami and
Typhoon Songda velocities indicated that bottom-water speeds of
investigated sediments reached up to 80 cm/s at depths lower than
100 m. This is beyond the estimated velocity of Typhoon Songda and
therefore only the 2011 Tōhoku-Oki tsunami generated sufficient
force to entrain the recovered sediments. This conclusion is in line
with other collected environmental data. Therefore, the sediments
studied here are regarded as tsunamigenic deposits not modified by
the subsequent passage of Typhoon Songda.

Offshore tsunami deposits of both the 2011 Tōhoku-Oki tsunami
and earlier events illustrate their variety in size, nature and perman-
ence7,25,26. Here, these deposits are most clearly indicated at Stations
1–3 by coarse beds overlying fine-grained beds. However, Station 2,
and potentially Station 3 additionally display coarsening upward
sequences (Fig. 2). These sequences are likely related to tsunami
backwash carrying coarse material offshore from shallow-water set-
tings. Uncertainty remains at Station 3 as to whether a coarsening
upward sequence is present (Fig. 2), which is obscured by subsequent
bioturbation (Fig. S1). Stations 1–3 are represented by heterogen-
eous, biogenic, terrigenous and volcanic sediments distributed along
the shelf. At the shelf-break, Station 4 is fairly different, characterized
by a deposit of more sorted sand. Tsunami backwash has great capa-
city to shift substantial amounts of onshore sediments out to sea26–28.
The coarse, poorly sorted, offshore sedimentation found in this study
may have occurred by retreating waves, entraining material to form
dense sediment flows nearshow which then flowed out to sea27.

Five months after the disaster, the three shelf stations (Stations 1–
3) are characterized by tsunamigenic deposits made of freshly
reworked sediments consisting of poorly sorted sands and relatively
degraded marine organic material. Marine organic material was
likely redistributed uniformly over both the shelf and the upper-slope
areas by tsunami waves. Because of the relatively uniform distri-
bution of sediments by the tsunami across Stations 1–3, there are
only slight variances in organic matter concentration.

Living foraminiferal communities from open marine environ-
ments are constrained by many physicochemical parameters
amongst which sedimentary organic compounds, oxygenation level
and hydrosedimentary processes constitute major ecological influ-
ences. Therefore, their diversity is used for bio-monitoring in marine

environments impacted by anthropogenic disturbances and also for
paleo-environmental reconstruction including tsunamis18,29,30. For
instance, opportunistic taxa are able to colonize freshly deposited
sediment layers during massive sedimentation events. Low-diversity
colonizing assemblages have been recorded in shelf environments
influenced by riverine flooding or in deep-sea ecosystems impacted
by turbidites24,31,32. The four investigated stations show two alterna-
tive types of recovery following a catastrophic event. At Stations 1–3,
original sediments were mixed and some components transported
further down shelf towards the shelf break (Station 4 region). The
original shelf setting of Stations 1–3 was characterized by a relatively
low energy and dominance of fine-grained sediments. Post-tsunami,
the now poorly sorted, coarser sediments, rich with organic material,
support a flourishing benthic community with an unexpectedly high
diversity. Foraminiferal abundance in both live and dead specimens
were reported to increase over a similar depth transect, only three
months after the 2003 Tokachi-oki earthquake and tsunami off
Hokkaido5. Unlike here, change was not uniform across all sites as
many post-tsunami sediments also recorded reductions in living and
dead foraminiferal abundances. What is particularly noteworthy in
our study is the contrasting abundance and distribution of epilithic
species. Original burrows of these taxa (1–2 cm beneath sediment
water interface) would have been likely destroyed by the tsunami, but
the freshly deposited surficial sediments has resulted in them inhab-
iting deeper sediments (3–5 cm) where they continued to survive
(Fig. 4). It is possible that the now bioturbated deposit is sufficiently
oxygenated to sustain them at a deeper horizon. Vertical displace-
ment to deeper sediments due to sediment disturbance in live benthic
communities has been previously reported for meiofauna33–35 but not
foraminifera.

The alternative recovery pathway was detected at the shelf-break
(,200 m depth, Station 4) where the original foraminiferal assem-
blage was decimated by the impact of the tsunami, substantially
decreasing diversity. This allowed colonization by the opportunistic,
agglutinated taxa Psammosphaera spp., to establish a new assem-
blage with high dominance and low diversity. This microbenthic
response was likely triggered by the tsunamigenic event causing
distal, massive sand-bed deposition. Rapid recolonization of turbi-
dite sediments after a tsunami event were similarly found in meio-
faunal communities after the 2004 Indian Ocean tsunami, however it
was not by single genus and this behaviour varied between different
taxa34. The allochthonous dead foraminifera in the terrigenous/vol-
canic matrix at Station 4 further eludes to mass deposition of shal-
lower sediments offshore commonly reported in similar studies5,27.
Here, this is due to the presence of commonly shallow water taxa
such as B. makiyamae which is not normally found in such high
abundance at these depths. Furthermore, as found with coiled, mod-
erately inflated morphologies, the flying-saucer shape of B. makiya-
mae facilitates selective transportation and sorting along the shelf
and to the upper slope when backwash turbidity currents ran down-
slope over the shelf break36–38. The use of foraminifera in offshore
tsunami studies includes isolating tsunami deposits25,27, gauging tsu-
nami outflow strength and direction5,27 and monitoring the return to
the original environmental setting for a region39. Tsunami studies
using foraminifera rarely have the opportunity to investigate live vs.
dead fauna nor note the recovery of the disturbed benthic com-
munities18. This is understandable considering the inherent difficult-
ies of such investigations in both paleo- (difficult to establish
recovery timeline) and modern (difficult to return to deposit site,
little faunal evidence of disturbance) tsunami investigations40–42.
Furthermore, tsunami deposits are more commonly investigated
on land or in sheltered shallow marine, brackish or marine proximal
fresh water settings28,43. Yet here we present unusual insight into both
the nature of tsunami deposits in deeper marine settings and the
varying response of foraminiferal communities to tsunamigenic
stress.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 7517 | DOI: 10.1038/srep07517 5



Figure 5 | Conceptual scheme illustrating the benthic marine environments off Shimokita (NE Japan) before, during and after the 2011 Tōhoku-Oki
tsunami. Loci of water particle movement by the March 2011 Tōhoku-Oki tsunami and the May 2011 Typhoon Songda is indicated.
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Studies regarding the composition of benthic communities post-
tsunami are rare and report varying reactions over different periods
of time27,39. The recovery of offshore foraminiferal assemblages to
return to their original character can take one to two years27. Similar
to Station 4, an entire new benthic assemblage can be established
before the original returns39. Whilst such dramatic environmental
changes did not occur off Shimokita, it is clear that the recovery/
returning of benthic assemblages to their pre-tsunami character
varies substantially in both timing and nature across different envir-
onmental settings. Caution must be employed with assessing post-
tsunami assemblages. Live/dead investigations are encouraged to
ensure that if assemblage diversity changes after an event, it is a
product of recovery and not deposited tsunami sediments containing
a different assemblage from another region44,45.

This study highlights that the response and resilience of benthic
communities to tsunami in offshore settings varies due to a number
of parameters. Living foraminiferal faunas have been found to both
rapidly recover and flourish after a tsunami event or for a new com-
munity to replace the original. Future sampling in the investigated
area could reveal long-term recovery from the tsunami where abund-
ance and diversity may return to their pre- March 2011 levels. Work
presented here expands the understanding of tsunami impact off-
shore and the varied reaction of foraminiferal communities in dif-
ferent marine settings.

Methods
The oceanographic cruise KT11-20 aboard the R/V Tansei Maru (AORI, University
of Tokyo/JAMSTEC) took place off Shimokita (NE Japan) in August 2011, five
months after the Tōhoku-Oki disaster and three months after Typhoon Songda (May,
2011). The study area is situated ca. 300 km north of the earthquake’s epicenter. At
this location, the marine shelf is swept from north to south by the Tsugaru Warm
Current transporting warm and saline water from the Japan Sea into the Pacific
Ocean through the Tsugaru Straight46. Four stations located between 55 and 211 m
depth (40u419–40u509N, 141u319–141u459E) were sampled with a classical Barnett
multi-corer designed to collect eight sediment cores per deployment (Fig. 1). At each
investigated station, one sediment core (surface area 5 53 cm2) was dedicated to
organic matter analyses (C/N ratio atomic ratio, [EHAA/THAA] ratio, [Chl a/(Chl a
1 Pheo a)] ratio, organic matter d13C, biomarkers) and to grain-size distribution (e.g.,
D10 and D90). A second core was used to perform 210Pb measurements.
Sedimentological descriptions (lithological and mineralogical analyses and CT-scan)
were performed on a third core. A final core was dedicated to quantify living (rose
bengal stained) benthic foraminifera as they are relevant and reliable bio-indicators of
marine benthic biodiversity and resilience18. All investigated cores were sliced hori-
zontally in varying sediment intervals (see supplementary material online). A
numerical simulation of the 2011 Tōhoku-Oki tsunami propagation effect on both
water mass (e.g. bottom-current velocity) and sediments was performed to strengthen
observation and interpretation. Further details regarding sampling and methods are
provided in the online supplementary information with living foraminiferal census
data. CT-scan pictures are presented in online Supplementary Table S1 and Figure S1.

1. Koketsu, K. et al. A unified source model for the 2011 Tohoku earthquake. Earth
Planet. Sc. Lett. 310, 480–487 (2011).

2. Tsuji, Y. et al. Field surveys of tsunami heights from the 2011 off the Pacific Coast
of Tohoku, Japan Earthquake. B. Earthq. Res. I. Tokyo 86, 29–279 (2011).

3. Brunt, K. M., Okal, E. A. & MacAyeal, D. R. Antarctic ice-shelf calving triggered by
the Honshu (Japan) earthquake and tsunami, March 2011. J. Glaciol. 57, 785–788
(2011).

4. Arai, K. et al. Tsunami-generated turbidity current of the 2011 Tohoku-Oki
earthquake. Geology 41, 1195–1198 (2013).

5. Noda, A. et al. Evaluation of tsunami impacts on shallow marine sediments: An
example from the tsunami caused by the 2003 Tokachi-oki earthquake, northern
Japan. Sediment. Geol. 200, 314–327 (2007).

6. Lomovaski, B. J., Firstater, F. N., Gamarra Salazar, A., Mendo, J. & Iribarne, O. O.
Macro benthic community assemblage before and after the 2007 tsunami and
earthquake at Paracas Bay, Peru. J. Sea Res. 65, 205–212 (2011).

7. Sakuna, D., Szczucinski, W., Feldens, P., Schwarzer, K. & Khokiattiwong, S.
Sedimentary deposits left by the 2004 Indian Ocean tsunami on the inner
continental shelf offshore of Khao Lak, Andaman Sea (Thailand). Earth Planets
Space 64, 931–943 (2012).

8. Seike, K., Shirai, K. & Kogure, Y. Disturbance of Shallow Marine Soft-Bottom
Environments and Megabenthos Assemblages by a Huge Tsunami Induced by the
2011 M9.0 Tohoku-Oki Earthquake. PLoS ONE 8, e65417, doi:10.1371/
journal.pone.0065417 (2013).

9. Chague-Goff, C. Chemical signatures of palaeotsunamis: A forgotten proxy? Mar.
Geol. 271, 67–71 (2010).

10. Kitamoto, A. Typhoon 201102 (SONGDA). (2011) Available at: http://agora.ex.nii.
ac.jp/digital-typhoon/summary/wnp/s/201102.html.en. (Accessed: 7th May
2014).

11. Arita, M. & Kinoshita, Y. in Marine Geology Map series no. 9 (Geological Survey of
Japan, Tsukuba, 1978).

12. Japan Oceanographic Data Centre. Oceanographic Data and Information: Ocean
Current Data. (2014) Available at: http://www.jodc.go.jp/. (Accessed: 5th
September 2014).

13. Meyers, P. A. Preservation of elemental and isotopic source identification of
sedimentary organic matter. Chem. Geol. 114, 289–302 (1994).

14. Ogawa, N. & Ogura, N. Dynamics of particulate organic matter in the Tamagawa
estuary in Inner Tokyo Basin. Estuar. Coast. Shelf Sci. 44, 263–273 (1997).

15. Barth, J. A. C., Veizer, J. & Mayer, B. Origin of particulate organic carbon in the
upper St. Lawrence: isotopic constraints. Earth Planet. Sc. Lett. 162, 111–121,
doi:10.1016/S0012-821X(98)00160-5 (1998).

16. Kitazato, H. et al. Seasonal phytodetritus deposition and responses of bathyal
benthic foraminiferal populations in Sagami Bay, Japan:Preliminary results from
‘‘Project Sagami’’. Mar. Micropaleontol. 40, 135–149 (2000).

17. Nakatsuka, T., Masuzawa, T., Kanda, J., Kitazato, H. & Shirayama, Y. Particle
dynamics in the deep water column of Sagami Bay, Japan. I: origins of apparent
flux of sinking particles. Prog. Oceanogr. 57, 31–45, doi:10.1016/S0079-
6611(03)00049-1 (2003).

18. Mamo, B., Strotz, L. & Dominey-Howes, D. Tsunami sediments and their
foraminiferal assemblages. Earth-Sci. Rev. 96, 263–278 (2009).

19. Murray, J. W. Ecology and Applications of Benthic Foraminifera. (Cambridge
University Press, 2006).

20. Ishiwada, Y. Benthonic foraminifera off the Pacific coast of Japan referred to
biostratigraphy of the Kazusa group. Geol. Sur. Japan 205, 1–45 (1964).

21. Ikeya, N. in Reports of Faculty of Sciences Vol. 6 179–201 (Shizuoka University,
1971).

22. Matoba, Y. Recent foraminiferal assemblages off Sendai, northeast Japan. Mar.
Sedimentol. Spec. Publ. 1, 205–220 (1976).

23. Kaminski, M. A. Evidence for control of abyssal agglutinated foraminiferal
community structure by substrate disturbance. Mar. Geol. 66, 113–131 (1985).

24. Hess, S., Jorissen, F. J., Venet, V. & Abu-Zied, R. Benthic foraminiferal recovery
after recent turbidite deposition in Cap Breton Canyon (Bay of Biscay).
J. Foraminifer. Res. 35, 114–129 (2005).

25. Cita, M. B. & Aloisi, G. Deep-sea tsunami deposits triggered by the explosion of
Santorini (3500 y BP), eastern Mediterranean. Sediment. Geol. 135, 181–203
(2000).

26. Goto, K., Ikehara, K., Goff, J., Chagué-Goff, C. & Jaffe, B. The 2011 Tohoku-oki
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