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Abstract 

Bone is a mechano-sensitive tissue that alters its structure and properties in response to 

mechanical loading.  We have previously shown that application of lateral dynamic loads to a 

synovial joint, such as the knee and elbow, suppresses degradation of cartilage and prevent bone 

loss in arthritis and postmenopausal mouse models, respectively.  While loading effects on 

pathophysiology have been reported, mechanical effects on the loaded joint are not fully 

understood.  Because the direction of joint loading is non-axial, not commonly observed in daily 

activities, strain distributions in the laterally loaded joint are of great interest.  Using elbow 

loading, we herein characterized mechanical responses in the loaded ulna focusing on the 

distribution of compressive strain.  In response to 1 N peak-to-peak loads, which elevate bone 

mineral density and bone volume in the proximal ulna in vivo, we conducted finite element 

analysis and evaluated strain magnitude in three loading conditions.  The results revealed that 

strain of ~1,000 µstrain (equivalent to 0.1% compression) or above was observed in the limited 

region near the loading site, indicating that the minimum effective strain for bone formation is 

smaller with elbow loading than axial loading.  Calcein staining indicated that elbow loading 

increased bone formation in the regions predicted to undergo higher strain.   
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Introduction 

To prevent bone loss associated with postmenopausal osteoporosis, the benefits of physical 

activities are well supported by clinical data (1, 2).  An important physiological component of 

physical activity is mechanical loading to the bone matrix, and accumulating evidence supports 

that bone cells are sensitive to mechanical stimulation (3, 4).  As currently understood, the 

osteocyte, the most abundant cell in bone matrix, acts as a mechano-sensor to activate the 

development of bone-forming osteoblasts (5, 6).  In pre-clinical studies, various loading 

modalities, such as ulna loading, tibia loading, etc., have been employed, and the loading 

conditions that elevate bone mass and bone mineral density have been investigated (7-9).  

Among previous and on-going studies, dynamic strain in bone matrix and strain-induced fluid 

flow in the lacuno-canalicular network are two of the major contributors to mechanotransduction 

in bone (10, 11). 

 

Unlike axial loading, such as in ulna and tibia loading, joint loading employs lateral loads that 

sandwich a synovial joint, such as the knee, ankle, and elbow (12 – 14).  Knee loading, for 

instance, is shown to reduce tissue degeneration by inhibiting the responses to inflammatory 

cytokines and downregulating matrix metalloproteinases (15, 16).  It is also reported that knee 

loading stimulates bone formation in the lower limbs and promotes fracture healing in the femur 

(17, 18).  Elbow loading, another joint loading modality with lateral loads, is reported to inhibit 

degeneration of cartilage tissue and promote bone formation (19, 20).  While biological 

characterization in response to joint loading has been investigated, including its effects on 

ischemic necrosis, angiogenesis, and obesity-related fatty liver disease (21 – 23), its mechanical 

effect on bone matrix has not been fully analyzed.  While joint loading with lateral loads may not 
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be commonly encountered in daily physical activities, it could potentially offer a novel form of 

physical therapy in patients with reduced mobility for decreasing inflammatory responses or 

preventing bone loss in the cartilage and long bones. 

 

In this study, we determined the strain distribution to the ulna in response to elbow loading using 

a mouse model and finite element (FE) analysis.  Daily loading with 1 N peak-to-peak force at 1 

Hz for 5 min was applied to ovariectomized (OVX) mice as well as sham-OVX mice (control 

mice), and bone mineral density (BMD) was measured at the site of loading after 4 weeks of 

loading.  We first examined whether ovariectomy surgery reduces BMD in the proximal ulna, 

and whether elbow loading elevates BMD locally.  After confirming the effective loading 

condition, we conducted FE analysis of the proximal ulna using the same loading force.  Our 

primary aim was to predict the maximum value of compressive strain in response to elbow 

loading.  We employed three loading configurations: load and a single point of support, load and 

a three-point support, and load across soft tissues that may mimic surrounding skin and muscle.  

While no model may precisely represent the true loading conditions in vivo, we present a 

comparative analysis of these configurations to facilitate our overall understanding of the effects 

of joint loading.  The result indicates that the maximum compressive strain is 0.1% (1,000 

µstrain) and beyond in the load-adjacent regions in response to elbow loading with 1 N loads.  
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Materials and Methods 

Animal model. The experimental procedure was approved by the Indiana University Animal 

Care and Use Committee and was in compliance with the Guiding Principles in the Care and Use 

of Animals endorsed by the American Physiological Society.  Forty BALB/c female mice (~12 

weeks, Harlan Laboratories, Indianapolis, IN, USA) were employed.  They were fed with mouse 

chow and water ad libitum, and divided into four groups: ovariectomized (OVX) mice with and 

without elbow loading, and sham-OVX mice with and without elbow loading.  Ovariectomy was 

conducted using the procedure previously employed (23), and sham-OVX mice received sham 

surgery in which the same operation was conducted without removing ovaries. The animals were 

given 4 weeks after surgery to recover before beginning elbow loading. The animals were 

sacrificed after 5 weeks of daily loading, and the ulnae were harvested for characterization. 

 

Elbow loading. Elbow loading was conducted using Electro Force 3100 (Bose, Inc., 

Framingham, MA, USA) using the same procedure previously described (24) (Fig. 1A & B).  

The lateral loads to the elbow were given 5 min per day for 5 weeks using 1 N force (peak-to-

peak) at 5 Hz to the right arm, and left arm data was used as a contralateral control.  The loading 

condition was determined based on our previous studies with joint loading (20, 24, 25).  For the 

non-loading groups, sham loading was conducted in which animals were placed on the loading 

device but no actual loads were applied.  

  

X-ray imaging. We conducted X-ray imaging using micro-computed tomography (Skyscan 

1172 microCT scanner; Bruker-MicroCT, Kontich Belgium). The harvested bone samples were 

wrapped in parafilm to maintain hydration and placed in a plastic tube and oriented vertically.  
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Scans were performed at pixel size 6 μm.  Using manufacturer-provided software and the 

microCT setting (26), the images were reconstructed (nRecon v1.6.9.18) and rotated 

(DataViewer v1.5.0).  The bone mineral density (volumetric BMD) of the volume of interest (the 

region covering the trochlear notch, and the region distal to the trochlear notch) was measured by 

calculating the mean attenuation coefficient after calibration using two hydroxyapatite phantoms 

with 0.25 and 0.75 g/cm3 densities.  We also determined BV/TV, in which BV = bone volume, 

and TV = total volume. 

 

Histology.  Histology was conducted using the procedure previously described (24).  In brief, 

mice were given an intraperitoneal injection of calcein (Sigma, St. Louis, MO, USA), a 

fluorescent dye, at 30 μg/g body mass in weeks 3 and 4. After euthanasia, the isolated ulnae were 

cleaned of soft tissues, and the distal and proximal ends were cleaved to allow infiltration of the 

fixatives with 10% neutral buffered formalin. Specimens were dehydrated in a series of graded 

alcohols and embedded in methyl methacrylate (Aldrich Chemical Co., Milwaukee, WI, USA). 

The transverse sections were removed from the proximal ulna, ~5 mm distant from the proximal 

end and mounted on a slide. 

 

Finite element (FE) analysis. FE analysis was conducted using ANSYS workbench 17.1 

(ANSYS, Canonsburg, PA, USA) for a mouse ulna sample.  Using microCT images, the 

proximal ulna was segmented and meshed with MIMICS 16 (Materialise, Leuben, Belgium) 

using the procedure previously described (27).  The proximal ulna was meshed into ~110,000 

tetrahedral elements.  A lateral load of 1 N was applied to the proximal end of the ulna (elbow 

loading). The deformations and stresses resulting from the applied loads were computed. In this 
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analysis, we employed Young’s modulus of 8.9 GPa and Poisson’s ratio of 0.35 for bone (27, 

28), and 0.5 MPa and 0.45 for soft tissue considering material properties of the skin and muscle 

of rodents (29-31).  We employed three loading and boundary conditions in response to elbow 

loading with 1-N loads: lateral loads applied at two opposing locations; lateral loads applied at a 

single site on one side and three supporting sites on the other side; and lateral loads on a pair of 

soft disks that sandwiched the elbow. 

 

Statistical consideration. Statistical significance among groups was examined using one-way 

analysis of variance, and post hoc tests were conducted using Fisher’s protected least significant 

difference for pairwise comparisons.  Statistical significance was assumed at p < 0.05.  The 

single, double, and triple asterisks indicate p < 0.05, p < 0.01, and p < 0.001, respectively.       
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Results 

Elbow loading and its effect on BMD on the proximal ulna 

Using µCT images, we first examined whether the proximal ulna is sensitive to ovariectomy 

surgery, which is considered to mimic postmenopausal osteoporosis, and thus present reduction 

in BMD (Fig. 1C).  In the trochlear notch region in the proximal ulna (Fig. 2A), our X-ray 

measurement showed that OVX mice had significantly reduced BMD (p < 0.001; N = 10) (Fig. 

2B).  We next examined whether elbow loading contributed to prevention of OVX-induced 

reduction in BMD.  Interestingly, the result revealed that regardless of ovariectomy, the loaded 

groups presented larger BMD than the non-loaded groups (Fig. 2C).  Furthermore, in the 

comparison of right (loaded) vs. left (non-loaded) ulnae in the same group, loaded limbs showed 

higher BMD than non-loaded limbs (Fig. 2D).  The observed reduction in BMD by ovariectomy 

as well as its elevation by elbow loading was also evident in the distal olecranon region - the 

zone of the proximal ulna that includes the cortical bone region ~1 mm distal to the trochlear 

notch (Fig. 3). Besides BMD in µCT images, bone volume (BV) was also reduced in the OVX 

mice (Fig. 4A) and increased by elbow loading (Fig. 4B).  We further examined BMD at two 

circular regions (1 and 2), which were in contact with the applied load.  The result showed that 

BMD in region 2 was marginally but statistically significantly greater in loaded limbs than non-

loaded limbs (p = 0.02, N = 5; Fig. 4C). 

 

Strain distribution in response to 1 N loads with elbow loading 

Animal experiments clearly showed that elbow loading is capable of elevating BMD in the 

proximal ulna.  Since load-induced strain in bone is one of the factors considered to contribute to 

bone formation, we next conducted FE analysis and estimated strain distributions in the proximal 
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tibia.  In the first FE analysis, a pair of 1 N lateral forces were applied at two opposing locations 

(Fig. 5A&B).  We focused on the minimum principal elastic strain (3rd principal strain), which is 

compressive.  In the medial and lateral surfaces, the regions with strain larger than 0.1% 

(boundary between the green and cyan labels) are concentrated in the area within ~0.5 mm from 

the loaded site.  In the cross-section, the maximum strain appeared on the periosteal surface at 

the loading site.  In the second FE analysis, 1 N loads were applied at a single site on one side 

and three supporting sites on the other side (Fig. 5C&D).  Similar to the results in the first 

analysis, strains exceeding 0.1% (1,000 µstrain) are confined to the vicinity of the loading site 

and supporting points.  Compared to strain at the single loading site, three supporting sites 

significantly reduced the maximum compressive strain by ~10-fold (from ~ 2% in the dark blue 

label to ~ 0.1% in the cyan level). 

 

Compression of the proximal ulna by soft tissue.   

During in vivo loading, surrounding tissues are expected to further lower the maximum strain 

value.  To evaluate indirect loading to the ulna via soft surrounding tissue, we conducted a third 

FE analysis in which the ulna was sandwiched between a pair of softer disks (0.5 MPa with 

Poison ratio of 0.45; 9 mm in diameter) (Fig. 6A).  Of note, Young’s modulus of bone is 

assumed to be 8.9 GPa with Poison ratio of 0.35 in all FE models.  Application of 1 N loads onto 

the top disk of soft tissue generates strain in soft disks. Compression of a pair of soft tissue disks 

induced multiple strain spots that were widely distributed from the proximal tip to the whole 

elbow joint (Fig. 6B).  The result showed that the maximum strain was significantly smaller than 

0.1% (boundary between the green and cyan indicators) in the trochlear notch and surrounding 

region, except for the loading site on the periosteal surface.  The high strain, ~0.05 to 0.1%, 
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appeared mostly on the restricted surface of the cross-sections, which are indicated with the 

arrow (Fig. 6C). 

 

Evaluation of the predicted strain on the proximal cross-sections. 

To evaluate any linkage of the predicted strain distribution with load-driven bone formation, we 

conducted histological analysis using calcein-labeled cross-sections of the proximal ulna distal to 

the trochlear notch.  Of note, calcein uptake marked newly formed bone on the endosteal and 

periosteal surfaces.  The result revealed that OVX mice consistently presented less label in the 

endosteal surface than the sham OVX mice (Fig. 7A&B).  In both sham OVX and OVX mice, 

the result also showed that elbow loading induced more calcein label on the periosteal surface 

than the endosteal surface.  This observation indicates that the periosteal surface is more 

sensitive to elbow loading than the endosteal surface, possibly because of larger strain values on 

the periosteal surface than the endosteal surface (Fig. 6C).  Focusing on two specific regions (a 

and b in Fig. 7C) that presented high compressive strains on the periosteal surface, we 

determined the length of the calcium-labeled surface with and without elbow loading in sham 

OVX mice.  We defined two regions, a and b, with 4 orthogonal lines, in which two lines 

defined the edge of the bone cavity and two other lines defined the lower portion of ulnar cortical 

bone.  The result showed that calcein label lengths in these two regions were significantly greater 

for the loaded group than the non-loaded group (N = 5; p = 0.04 and 0.007 for regions a and b, 

respectively) (Fig. 7D).    
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Discussion 

Elbow loading generates artificial lateral forces that are rarely encountered during routine 

physical activity.  Unlike axial or bending loads with ulna loading or tibia loading, the 

mechanical response of synovial joints, such as the elbow, to lateral loads has not been fully 

characterized.  Using two mouse models (normal and postmenopausal osteoporosis), we applied 

daily loads of 1 N at 5 Hz for 5 min to the left elbow and found that this dynamic loading 

modality is able to increase volumetric BMD in the proximal ulna.  Of note, ulna loading is 

commonly used to stimulate bone formation in mouse ulnae, and FE analysis using ~16-week 

old C57BL/6 mice reported ~1,750 µstrain as a minimum effective strain value in response to 

loads at 0.5 to 3.1 N (32).  While this study employed ~12-week BALB/c mice with 1 N loads, 

the predicted strain value varied in a complex geometry in the elbow with three boundary 

conditions in FE analysis.  When the soft surrounding tissue is modeled in the third analysis, a 

widely distributed strain was observed in the trochlear notch and surrounding area, in which the 

compression strain value was mostly in the yellow zone with < 1,000 µstrain. 

 

In our animal experiment with 4 groups (sham OVX and OVX mice with and without elbow 

loading), ovariectomy surgery reduced BMD by 6% (trochlear notch) and 5% (distal olecranon 

including cortical bone ~1 mm distal to the trochlear notch) in the proximal ulna.  Furthermore, 

elbow loading elevated BMD by 3 to 4% in sham OVX mice and 6 to 8% in OVX mice in two 

separate comparisons: one comparison between the loaded group and non-loaded group, and the 

other comparison between the loaded right and non-loaded left limbs.  In both comparisons, 

OVX mice appeared to be more sensitive to elbow loading than sham OVX mice.  The bone’s 

mechanical sensitivity differs depending on genetic backgrounds and ages, and further 
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quantitative analysis is required to determine efficiency of stimulatory loading effects in control 

and osteoporotic animals (33).  Besides volumetric BMD, bone volume was reduced by 

ovariectomy surgery and increased by elbow loading both in the OVX and sham OVX groups. 

 

In response to lateral loads of 1 N to the elbow, this study predicted the distribution of minimum 

principal elastic strain (the third principal strain) and compressive strain.  Our primary focus was 

detecting regions that presented 1,000 µstrain or more, since pre-clinical data indicate that load-

driven bone formation may require a threshold strain value, minimum effective strain, above 

1,000 µstrain (34).  The minimum effective strain is considered to be a boundary value that 

separates resorption-dominant and formation-dominant bone remodeling.  While this value is 

reported to be ~1,000 µstrain in pre-clinical studies with avian ulna, rat tibia, and mouse tibia, 

the value differs depending on the loaded sites (35). 

 

In the first and second FE analyses with 1 N at the lateral and medial sides, strain larger than 

1,000 µstrain was concentrated in the zone within ~0.5 mm of the plane that included the applied 

forces.  In the third FE analysis in which the proximal ulna was sandwiched between a pair of 

soft tissue disks, the overall strain values were significantly smaller than those in the first and 

second tests.  The maximum compressive strain in the first and second tests was 7.2% and 2.1%, 

respectively, while that in the third test with soft tissues was 0.67%.  These maximum values 

were the result of stress concentrations, and exact values heavily depend on the mechanical 

properties of surrounding tissues.  They may potentially damage loaded bone, although no 

obvious bone defects were detectable in X-ray imaging of harvested bone samples.  The 

prediction in the third test with soft surrounding tissue is expected to be closer to in vivo 
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responses than those in the first and second tests.  Analysis of calcein staining in the regions of 

maximum strain induced by elbow loading found that those regions underwent additional bone 

formation in the loaded mice.  This result suggests that the FE model’s prediction of regions of 

high strain correlates with the observed regions of increased bone formation.   

 

There are limitations in this study.  While our FE analysis was focused on one representative 

bone sample, there are variations in stiffness among animals.  These variations can be affected 

not only by efficacy of elbow loading but also size and geometry of individual samples.  Of note, 

the overall weight of animals was approximately 6% higher in OVX mice than sham OVX mice.  

The minimum effective strain value is reported to be dependent on loading frequency, and 

further analysis is needed to evaluate frequency dependence (36, 37).  We observed a tendency 

of large strain values on the calcein-stained periosteal surface, and the regions of higher model-

predicted strain showed more calcein staining in loaded groups. Further quantitative approaches 

are necessary to establish the relationship between these high strain regions and bone formation. 

 

In summary, this study shows that elbow loading with 1 N force is predicted to induce 

compressive strain of < 1,000 µstrain in the trochlear notch and surrounding area, except for the 

restricted periosteal surface near the loading site.  We found that BMD is elevated in cortical 

bone with less than 1,000 µstrain, and calcein staining is increased in bone regions with higher 

predicted strain.  Future structural characterization in response to elbow loading may contribute 

to understanding of the mechanism of load-driven bone formation and suppression of tissue 

inflammation.  
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Figure Legend 
 
Figure 1. Elbow loading and the cross-section of the proximal ulna.  (A&B) Configuration of 
elbow loading with the loading device.   (C) µCT images of the cross-sections of the proximal 
ulna, ~ 1 mm distal to the edge of the trochlear notch.  
 
Figure 2. Loading effect on BMD in the trochlear notch.  The single and triple asterisks indicate 
p < 0.01 and p < 0.001, respectively.  (A) Proximal ulna, covering the trochlear notch.  (B) 
Reduction in BMD by ovariectomy surgery.  (C) Increase in BMD in the loaded group compared 
to the non-loaded group.  (D) Increase in BMD in the loaded limb compared to the non-loaded 
limb. 
 
Figure 3. Loading effect on BMD in the distal olecranon.  The single, double, and triple asterisks 
indicate p < 0.05, p < 0.01 and p < 0.001, respectively.  (A) Distal olecranon including ~ 1 mm 
distal to the edge of the trochlear notch.  (B) Reduction in BMD by ovariectomy surgery.  (C) 
Increase in BMD in the loaded group compared to the non-loaded group.  (D) Increase in BMD in 
the loaded limb compared to the non-loaded limb. 
 
Figure 4. Loading effect on bone volume.  The single and triple asterisks indicate p < 0.01 and p 
< 0.001, respectively.  (A) Reduction in bone volume (BV), normalized by total volume (TV), by 
ovariectomy surgery.  (B) Increase in BV/TV in the loaded group compared to the non-loaded 
group.  (C) BMD at two circular regions (1 and 2; 100 µm in diameter) in the distal olecranon 
(0.75 mm in length) with and without elbow loading in sham OVX mice. 
 
Figure. 5. Strain distribution in response to 1 N lateral forces. (A) Meshing of the proximal ulna 
with two loading sites with the red arrows.  (B) Minimum principal strain distribution on the 
surface and cross-section of the proximal ulna with a single point support.  Strain larger than 
0.1% (boundary between the green and cyan labels) is concentrated in the area within 0.5 mm 
from the loaded site. (C) Loading configuration with a three-point support.  (D) Minimum 
principal strain distribution on the side of 1 N application (plane x) and on the other side with 
three supporting points (plane y) with a three-point support. 
 
Figure. 6. Compression of the proximal ulna with a pair of soft tissues.  (A) Configuration of the 
ulna, sandwiched by a pair of soft disks.  The top disk moves downward (plane x), while the 
bottom disk is stationary (plane y).  (B) Minimum principal strain distribution on the proximal 
ulna by compression with a pair of soft tissue disks. The compressive strain in the distal to the 
trochlear notch is significantly smaller than 0.1% (boundary between sky blue and navy blue 
indicators).  (C) Minimum principal strain distribution of the cross-sections, 1, 1.5, 1.75, and 2 
mm distal to the proximal edge of the trochlear notch.  The arrow indicates the region with high 
strain. 
 
Figure 7. Calcein-stained cross-sections of the proximal ulna distal to the trochlear notch.  (A) 
Sections from sham OVX mice with and without elbow loading.  (B) Sections from OVX mice 
with and without elbow loading.  (C&D) Calcein-stained length in the regions, a and b, with and 
without elbow loading for sham OVX mice.  Two regions were defined with 4 orthogonal lines.  
Of note, length of the double-stained surface was multiplied by two. 
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