7 research outputs found

    Enzymatic activity and immunoreactivity of Aca s 4, an alpha-amylase allergen from the storage mite Acarus siro

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Enzymatic allergens of storage mites that contaminate stored food products are poorly characterized. We describe biochemical and immunological properties of the native alpha-amylase allergen Aca s 4 from <it>Acarus siro</it>, a medically important storage mite.</p> <p>Results</p> <p><it>A. siro </it>produced a high level of alpha-amylase activity attributed to Aca s 4. This enzyme was purified and identified by protein sequencing and LC-MS/MS analysis. Aca s 4 showed a distinct inhibition pattern and an unusual alpha-amylolytic activity with low sensitivity to activation by chloride ions. Homology modeling of Aca s 4 revealed a structural change in the chloride-binding site that may account for this activation pattern. Aca s 4 was recognized by IgE from house dust mite-sensitive patients, and potential epitopes for cross-reactivity with house dust mite group 4 allergens were found.</p> <p>Conclusions</p> <p>We present the first protein-level characterization of a group 4 allergen from storage mites. Due to its high production and IgE reactivity, Aca s 4 is potentially relevant to allergic hypersensitivity.</p

    Two-dimensional electrophoretic comparison of metastatic and non-metastatic human breast tumors using in vitro cultured epithelial cells derived from the cancer tissues

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Breast carcinomas represent a heterogeneous group of tumors diverse in behavior, outcome, and response to therapy. Identification of proteins resembling the tumor biology can improve the diagnosis, prediction, treatment selection, and targeting of therapy. Since the beginning of the post-genomic era, the focus of molecular biology gradually moved from genomes to proteins and proteomes and to their functionality. Proteomics can potentially capture dynamic changes in protein expression integrating both genetic and epigenetic influences.</p> <p>Methods</p> <p>We prepared primary cultures of epithelial cells from 23 breast cancer tissue samples and performed comparative proteomic analysis. Seven patients developed distant metastases within three-year follow-up. These samples were included into a metastase-positive group, the others formed a metastase-negative group. Two-dimensional electrophoretical (2-DE) gels in pH range 4–7 were prepared. Spot densities in 2-DE protein maps were subjected to statistical analyses (R/maanova package) and data-mining analysis (GUHA). For identification of proteins in selected spots, liquid chromatography-tandem mass spectrometry (LC-MS/MS) was employed.</p> <p>Results</p> <p>Three protein spots were significantly altered between the metastatic and non-metastatic groups. The correlations were proven at the 0.05 significance level. Nucleophosmin was increased in the group with metastases. The levels of 2,3-trans-enoyl-CoA isomerase and glutathione peroxidase 1 were decreased.</p> <p>Conclusion</p> <p>We have performed an extensive proteomic study of mammary epithelial cells from breast cancer patients. We have found differentially expressed proteins between the samples from metastase-positive and metastase-negative patient groups.</p

    Crystal structure and functional characterization of an immunomodulatory salivary cystatin from the soft tick Ornithodoros moubata.

    No full text
    The saliva of blood-feeding parasites is a rich source of peptidase inhibitors that help to overcome the host's defence during host–parasite interactions. Using proteomic analysis, the cystatin OmC2 was demonstrated in the saliva of the soft tick Ornithodoros moubata, an important disease vector transmitting African swine fever virus and the spirochaete Borrelia duttoni. A structural, biochemical and biological characterization of this peptidase inhibitor was undertaken in the present study. Recombinant OmC2 was screened against a panel of physiologically relevant peptidases and was found to be an effective broad-specificity inhibitor of cysteine cathepsins, including endopeptidases (cathepsins L and S) and exopeptidases (cathepsins B, C and H). The crystal structure of OmC2 was determined at a resolution of 2.45 Å (1 Å=0.1 nm) and was used to describe the structure–inhibitory activity relationship. The biological impact of OmC2 was demonstrated both in vitro and in vivo. OmC2 affected the function of antigen-presenting mouse dendritic cells by reducing the production of the pro-inflammatory cytokines tumour necrosis factor α and interleukin-12, and proliferation of antigen-specific CD4+ T-cells. This suggests that OmC2 may suppress the host's adaptive immune response. Immunization of mice with OmC2 significantly suppressed the survival of O. moubata in infestation experiments. We conclude that OmC2 is a promising target for the development of a novel anti-tick vaccine to control O. moubata populations and combat the spread of associated disease
    corecore