126 research outputs found

    Sound Scattering and Its Reduction by a Janus Sphere Type

    Get PDF
    Copyright © 2014 Delyia Kim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Sound scattering by a Janus sphere type is considered. The sphere has two surface zones: a soft surface of zero acoustic impedance and a hard surface of infinite acoustic impedance. The zones are arranged such that axisymmetry of the sound field is preserved. The equivalent source method is used to compute the sound field. It is shown that, by varying the sizes of the soft and hard zones on the sphere, a significant reduction can be achieved in the scattered acoustic power and upstream directivity when the sphere is near a free surface and its soft zone faces the incoming wave and vice versa for a hard ground. In both cases the size of the sphere’s hard zone is much larger than that of its soft zone. The boundary location between the two zones coincides with the location of a zero pressure line of the incoming standing sound wave, thus masking the sphere within the sound field reflected by the free surface or the hard ground. The reduction in the scattered acoustic power diminishes when the sphere is placed in free space. Variations of the scattered acoustic power and directivity with the sound frequency are also given and discusse

    Self-thermophoresis of Laser-heated spherical Janus particles

    Get PDF
    An analytical framework is presented for calculating the self-induced thermophoretic velocity of a laser-heated Janus metamaterial micro-particle, consisting of two conducting hemispheres of different thermal and electric conductivities. The spherical Janus is embedded in a quiescent fluid of infinite expanse and is exposed to a continuous light irradiation by a defocused laser beam. The analysis is carried under the electrostatic (Rayleigh) approximation (radius small compared to wave-length). The linear scheme for evaluating the temperature field in the three phases is based on employing a Fourier-Legendre approach, which renders rather simple semi-analytic expressions in terms of the relevant physical parameters of the titled symmetry-breaking problem. In addition to an explicit solution for the self-thermophoretic mobility of the heated Janus, we also provide analytic expressions for the slip-induced Joule heating streamlines and vorticity field in the surrounding fluid, for a non-uniform (surface dependent) Soret coefficient. For a ‘symmetric’ (homogeneous) spherical particle, the surface temperature gradient vanishes and thus there is no self-induced thermophoretic velocity field. The ‘inner’ temperature field in this case reduces to the well-known solution for a laser-heated spherical conducting colloid. In the case of a constant Soret phoretic mobility, the analysis is compared against numerical simulations, based on a tailored collocation method for some selected values of the physical parameters. Also presented, are some typical temperature field contours and heat-flux vectors prevailing in the two-phase Janus as well as light-induced velocity and vorticity fields in the ambient solute, and a new practical estimate for the self-propelling velocity

    Tsunamis Induced by Submarine Slumpings off the Coast of Israel

    Get PDF
    In the course of history several extreme changes in the sea level along the coast of the Levant have occurred. As these events have always been associated with earthquakes they were often described as tsunami or seismic sea waves. Reviewing the historical descriptions of such events at Israel’s coast, one finds more often a recession of the sea than a flooding of the shore. Such events may have been caused by slumpings on the continental slope. Based on data of actual submarine scars, a quantitative evaluation of this hypothesis was made. It was found that the slumping of a mass 6 km long, 2 km wide and about 50 m deep would cause the formation of a shock-induced solitary wave of about 10 m in height at the edge of the continental slope. The accompanying draw-down of the sea level at the coast would last aboul hours, and lay the sea floor bare for a distance of about ½-1½ km, in agreement with some historical descriptions. Though possibly occurring only once or twice in a millennium, earthquake-induced slumpings may constitute a danger to nuclear power plants, and not just to maritime vessels and installations

    The effect of a finite roll rate on the miss-distance of a bank-to-turn missile

    Get PDF
    AbstractWe consider a three-dimensional pursuit-evasion situation where a highly maneuverable evader, which we model as a “pedestrian” á la Isaacs, is engaged by a faster-pursuer. The pursuer has limited maneuverability, that is, the pursuer has a minimal turning radius, and in order to change the spatial direction of his velocity vector, he must first re-align his thrust vector in a similar manner to a bank-to-turn missile. The state space of the ensuing differential game is three-dimensional and its complexity is intermediate between Isaac's [1] classical “Homicidal Chauffeur” and “Two Car” differential games. This new DG is solved as a game of kind, and a capture criterion for a faster but less maneuverable pursuer is analytically established in terms of the game parameters

    Sound Scattering by an Elastic Spherical Shell and its Cancellation using a Multi-pole Approach

    Get PDF
    The scattering and transmission of sound by an elastic spherical shell is considered when it is subject to an incoming monochromatic planar wave. It is aimed to cancel the sound scattering using combinations of multi-pole sources located at the centre of a shell filled with compressible fluid. Assuming linear acoustics and structural dynamics, exact solutions are derived for total elimination of the sound scattering for three cases: a free-space, near a hard ground or near a free-surface, where in the last two cases it is assumed that the incoming wave propagates normal to the interface to maximize sound reflection back unto the source of the incoming wave. An elastic spherical shell of 1 m radius embedded in water and filled with air or oil is analysed to show the dominance of low-mode numbers for frequencies of less than 10 kHz and thus demonstrate the ability of this approach to damp acoustic scattering by means of low-order multi-poles inside the shell. Contour and mode distribution plots are also given and analysed

    Deflection of ice cover caused by an underwater body moving in channel

    Get PDF
    Deflections and strains in an ice cover of a frozen channel caused by an underwater body moving under the ice with a constant speed along the channel are studied. The channel is of rectangular cross section, the fluid in the channel is inviscid and incompressible. The ice cover is clamped to the channel walls. The ice cover is modeled by a thin viscoelastic plate. The underwater body is modeled by a three-dimensional dipole. The intensity of the dipole is related to the speed and size of the underwater body. The problem is considered within the linear theory of hydroelasticity. For small deflections of the ice cover the velocity potential of the dipole in the channel is obtained by the method of images in leading order without account for the deflection of the ice cover. The problem of moving dipole in the channel with rigid walls provides the hydrodynamic pressure on the upper boundary of the channel, which corresponds to the ice cover. This pressure distribution does not depend on the deflection of the ice cover in the leading approximation. The deflections of the ice and strains in the ice plate are independent of time in the coordinate system moving together with the dipole. The problem is solved numerically using the Fourier transform, method of the normal modes and the truncation method for infinite systems of algebraic equations

    The velocity potential and the interacting force for two spheres moving perpendicularly to the line joining their centers

    Full text link
    The velocity potential around two spheres moving perpendicularly to the line joining their centers is given by a series of spherical harmonics. The appropriateness of the truncation is evaluated by determining the residual normal surface velocity on the spheres. In evaluating the residual normal velocity, a recursive procedure is constructed to evaluate the spherical harmonics to reduce computational effort and truncation error as compared to direct transformation or numerical integration. We estimate the lift force coefficient for touching spheres to be 0.577771, compared to the most accurate earlier estimate of 0.51435 by Miloh (1977).Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42701/1/10665_2004_Article_BF00127479.pd

    Recurrence of Primary Sclerosing Cholangitis After Liver Transplant in Children : An International Observational Study

    Get PDF
    Background and Aims Recurrent primary sclerosing cholangitis (rPSC) following liver transplant (LT) has a negative impact on graft and patient survival; little is known about risk factors for rPSC or disease course in children. Approach and Results We retrospectively evaluated risk factors for rPSC in 140 children from the Pediatric PSC Consortium, a multicenter international registry. Recipients underwent LT for PSC and had >90 days of follow-up. The primary outcome, rPSC, was defined using Graziadei criteria. Median follow-up after LT was 3 years (interquartile range 1.1-6.1). rPSC occurred in 36 children, representing 10% and 27% of the subjects at 2 years and 5 years following LT, respectively. Subjects with rPSC were younger at LT (12.9 vs. 16.2 years), had faster progression from PSC diagnosis to LT (2.5 vs. 4.1 years), and had higher alanine aminotransferase (112 vs. 66 IU/L) at LT (all P < 0.01). Inflammatory bowel disease was more prevalent in the rPSC group (86% vs. 66%; P = 0.025). After LT, rPSC subjects had more episodes of biopsy-proved acute rejection (mean 3 vs. 1; P < 0.001), and higher prevalence of steroid-refractory rejection (41% vs. 20%; P = 0.04). In those with rPSC, 43% developed complications of portal hypertension, were relisted for LT, or died within 2 years of the diagnosis. Mortality was higher in the rPSC group (11.1% vs. 2.9%; P = 0.05). Conclusions The incidence of rPSC in this cohort was higher than previously reported, and was associated with increased morbidity and mortality. Patients with rPSC appeared to have a more aggressive, immune-reactive phenotype. These findings underscore the need to understand the immune mechanisms of rPSC, to lay the foundation for developing new therapies and improve outcomes in this challenging population.Peer reviewe
    corecore