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Abstract

A micro/nano spheroidal conducting particle embedded in a fluid of a uniform ambient temperature

is considered for its temperature and  the induced velocity fields due to thermoosmosis. The particle

is assumed to be uniformly heated using for example continuous light irradiation by a conventional

laser. This is a model problem of thermoplasmonics, where nano or micro particles are used for heat

storage and release as in medical therapy and imaging purposes. The temperature field is governed

by the Poisson heat diffusion equation and the self-induced thermoosmotic flow (STOF) field is

taken as a Stokes type. Analytical closed solutions are derived for both the temperature distributions

(inside and outside the particle) as well as for the STOF in the solute  for both prolate and oblate

configurations.  They  are  based  on using  spheroidal  harmonics  expressed  in  terms  of  Legendre

functions, where owing to orthogonality only a few terms are needed to fully prescribe the entire

field. The analytical solutions thus obtained are also numerically verified for few selected cases.

  Results for conducting spheroidal particles with inner thermal conductivities lower or higher than

the  outer  medium’s  conductivity  are  analysed.  It  is  shown that  the  surface  temperature  of  the

particle is always highest at the tip nearest to the spheroid's centre. However, the  location of the

peak of the surface heat flux depends on the precise ratio between the inner and outer thermal

conductivities,  where it peaks at the nearest tip for a low inner thermal conductivity and at the

farthest tip for a high inner thermal conductivity. Plots of temperature and heat flux distributions

over the surface of both prolate and oblate spheroidal particles as well as the thermoosmotic (Soret)

induced velocity, vorticity and stream-function in the liquid phase are given and analysed.
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List of symbols:

An - Coefficient in the Legendre series solution for Tin in the prolate spheroidal particle

Bn - Coefficient in the Legendre series solution for Tout outside the prolate spheroidal particle

A*
n - Coefficient in the Legendre series solution for Tin in the oblate spheroidal particle

B*
n - Coefficient in the Legendre series solution for Tout outside the oblate spheroidal particle

c - Parameter in the spheroidal coordinates

DT - Thermal (Soret) transport parameter

D - Spheroid’s length

d - Spheroid’s diameter

Gk - Coefficient of the function Ik in the induced velocity solution

h - Scale factor of the spheroidal coordinates

Ik - Elliptic integral function in the induced velocity solution

k - Thermal conductivity

n -  Normal to the particle’s surface

Pn - Legendre function of the first kind
~
Q0 - Overall heat source in the particle

Qn - Legendre function of the second kind

q0 - Heat density inside the particle

R - Sphere’s radius

r - Radial distance

T - Temperature

u - Velocity

x - The spheroid's major axis containing the length D

y and z - The spheroid's minor axes containing the diameter d
m - Spheroidal coordinate that is parallel to the spheroid's surface
x - Prolate spheroidal coordinate that is normal to the spheroid's surface
z - Oblate spheroidal coordinate that is normal to the spheroid's surface
F - Velocity potential
f - Polar angle
w - Vorticity
y - Stream-function

Subscripts:

ave - Particle's surface-averaged property

equ - Property of the equivalent sphere, i.e. having the same volume as the spheroid

in - Property that is inside the particle

out - Property that is outside the particle
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1. Introduction

The  temperature  fields  within  and  over  the  surface  of  nano  and  micro  particles  has  received

considerable interest since the Soret effect was discovered in the nineteen century, when it was

found that an imposed ambient temperature gradient can be used to transport small heat-conducting

particles [1, 2]. This phenomenon, which is also related to thermal diffusion or thermophoresis, has

a range of applications from aerosols to microgravity manufacturing [2]. The transport of small

particles  under  the  influence  of  an  ambient  temperature  gradient  can  be  modelled  using  the

linearized forced heat  diffusion equation and the assumption of Stokes flow in the liquid phase due

to the very low Reynolds number, while the continuum assumption still holds [2].

  Modelling thermophoresis  usually  concentrated on the case of an isolated conducting particle

while assuming an imposed uniform ambient temperature gradient and no heat sources both inside

or outside the particle. Closed analytical solutions were found for the perfectly symmetric case of a

spherical  particle  [2].  The  configuration  of  a  spheroidal  particle  was  also  investigated  where

analytical  solution  for  the temperature  field  was sought  using a  series  expansion based on the

Legendre  functions  [3].  A  similar  approach  can  also  be  used  to  solve  for  the  self-induced

thermoosmotic flow  (STOF) velocity field in the solute around the particle due to light irradiation

(internal  Joule  heating).  This  results  in  a  non-uniform pressure  distribution  over  the  particle’s

surface,  or  a  Soret-type surface slip  velocity,  which  may lead  to  a  finite  mobility  under  some

symmetry-breaking effects. Numerical solutions for non-spherical configurations, can also be based

on employing a series expansion of the Legendre functions or other common numerical approaches

as  finite  difference  and  finite  element.  For  further  details  on  thermophoresis  studies  using

analytical, experimental and computational means, the reader is referred to Refs [1] and [2].

  An interesting approach of achieving thermophoresis of spheroidal micro/nano particles without

imposing  external   temperature  gradient,  i.e.  having  a  uniform temperature  very  far  from the

particle, was proposed by Miloh & Nagler [4]. Instead of having the non-uniformity in the pressure

caused by the ambient conditions, it is caused by non-uniformity of the two-face Janus particle. The

particle was proposed to be built by two halves (Janus) having different thermal conductivities,

which results in a material symmetry breaking. The particle can be heated using for example light

irradiation by a common (e.g. Helium-Neon) laser. This will cause a heat source (Joule heating)

inside the particle, a non-uniform temperature distribution over the particle’s surface, a Soret-type

surface slip velocity, an induced flow field around the particle and a non-uniform pressure field that

can propel the particle. Spheroidal particles were considered, where again the Poisson heat equation

was simply used as the governing equation for the internal temperature field. The external STOF
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field was  taken to be of a Stokes type (ignoring inertia versus viscous effects). Analytical solutions

based on Legendre functions were then derived to investigate the particle’s mobility resulting in

simplified expressions for its mobility velocity.

  Experimental  observation  of  the  self  thermophrosis  of  a  spherical  Janus  micro  particle  was

reported by Jiang et al [5]. Half-metal particles were exposed to laser irradiation causing a local

temperature gradient, yielding a non-symmetric thermal slip velocity and turning the particles to

colloidal  swimmers.  Modelling  based  on  spherical  harmonics  was  also  suggested.  Further

experimental evidence of the self propulsion of Janus particles was given by Moyses et al [6], who

looked at the motion near a flat glass, revealing sinusoidal rosette-type patterns. A theoretical model

was derived by treating the particle as point of singularly. Wei and Jan [7] proposed a generalised

model for the motion of a pair of particles based on a multipole expansion for the Stokes flow field.

Several time scales were discovered and the stability of the particle’s motion was discussed.

  The  studies  noted  above  brings  us  to  the  case  studied  in  this  paper,  where  a  conducting

homogeneous (symmetric) spheroidal particle is uniformly heated  by a laser embedded in a fluid

having a uniform ambient temperature. The particle can be of a prolate spheroidal geometry i.e.

D>d as in Fig 1 illustrating the problem schematics, or it can be of an oblate spheroidal geometry,

i.e.  D<d.  .  This  is  typically  the  case  of  using  particles  for  heat  generation  and  storage  as  in

thermoplasmonics  of   metal  nano  and  micro  particles  [8]  of  arbitrary  shape.  However,  it  is

important  to  note  that  there  is  a  major  difference  between the  case  of  spherical  or  spheroidal

particles. It is well known that for a perfectly symmetric spherical shape the self-induced surface

temperature gradient is uniform and thus there is no thermophoresis! Nevertheless, interestingly ,

the self-induced surface temperature for spheroidal particles is not uniform and thus there is a finite

temperature gradient on the surface which results in a finite Soret slip that drives a non-zero STOF

in the liquid phase. Such a phenomenon is of interest due to potential applications in several fields

ranging from medical cancer therapy, drug and gene delivery, heat-assisted magnetic recording to

photoacoustic and photo-thermal imaging [8].

  A  review  on  heat  generation  using  illuminated  nano  particles  was  given  by  Govorov  and

Richardson [9]. A model based on a spherical particle was presented and the heat generation was

perceived to be affected by the accumulative effect of the particles and by the Coulomb interaction.

An experimental and theoretical study was reported by Richardson et al [10]. It showed that the

efficiency of light- to- heat conversion was close to one, resulting in a temperature rise by a few

Celsius  using a small common laser illuminating a large concentration of particles. A more recent
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review was provided by Pustovalov [11] for the heat generation by laser irradiated metal particles.

An intesting model was suggested for an assembly of particles,  starting from a single spherical

particle then accounting for other particles while making clear separation between the various time

scales for the transient problem. The use of heat-releasing nano particles for medical treatment was

reviewed by Jaque et al [12]. Finally, it is worth mentioning that plasmonic heating of nanoparticles

and metamaterials, is not necessarily restricted to laser illumination and can be also attained by

sunlight, in connection for example with solar energy harvesting and solar vapour generation [13,

14].

  At the heart of the modelling of the problem, it is assumed as in the case of thermophoresis, that

the heat equation governs the temperature field and the flow field induced due by the temperature

field is of Stokes type [8,13]. Hence the equations for the temperature fields inside and outside the

particle are simply taken under the assumption that heat diffusion is the governing effect and heat

convection can be ignored due to small thermoosmotic velocities, as [8];;

k in∇
2T in=−q0 , (1)

∇
2T out=0 . (2)

Eq (1) holds inside the particle and Eq (2) holds in the medium outside of the particle. Commonly,

the thermal conductivities kin and kout, as well as the heat density source q0 are taken as uniform [8,

13]. This is an acceptable approximation due to the small variation of the temperature and the small

size of the particle and in accordance with the Rayleigh quasi-static assumption.

  The temperature fields Tin and Tout are matched at the particle’s surface by requiring continuity in

both the temperature and  the heat flux normal to the particle’s surface [8];

T in=T out , (3)

k in

∂T in

∂n
=kout

∂Tout

∂n
, (4)

where n is the normal to the particle’s surface. A simple analytical solution of Eqs (1-4) ,can then be

derived for a spherical particle with a radius R [8];

T in=

~Q0

8π k in R [1+2
k in

kout

−( r
R )

2

] , r⩽R , (5)

T out=

~
Q0

4π k out

R
r

, r⩾R , (6)

where  
~
Q0  denotes the total  heat source inside the particle i.e.  ~

Q0=4 q0π R3
/3 and r is the

radial  distance  from  the  particle’s  centre.  The  ambient  temperature  was  taken  as  zero,  i.e.
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T out(r→∞)=0 , without losing any generality in the solution because of the linear nature of the

problem. Interestingly, Tout does not depend on the particle’s thermal conductivity kin and this also

means that the temperature on the surface of the particle does not depend on kin due to the continuity

of the temperature on the particle’s surface. There is no induced flow field outside of the particle

because of the uniformity of the temperature on the particle’s surface. Since the surface temperature

over the sphere is constant there is no surface gradient and hence no slip-velocity to drive STOF in

the solute about a spherical particle.

  The situation for non-spherical shapes is somewhat different. A general analytical solution for a

triaxial  ellipsoidal  particle  embedded  in  a  medium  with  a  uniform  ambient  temperature  was

recently derived by Miloh [15] using Làme functions. The non-spherical geometry was shown to

cause a temperature variation along the surface of the particle and hence a thermoosmotic flow field

was induced around it. An analytical solution for the induced velocity field was derived using a

decomposition of ellipsoidal harmonics and the use of elliptic integral functions. The limiting case

of a spheroid was considered for its surface-averaged temperature.

  The thermoosmotic Soret slip velocity over the particle’s surface is commonly taken as linearly

relative  to  the  temperature  gradient  along the surface,  i.e.  u⃗slip=−DT ∇s T ,  where  DT is  the

thermopheretic  mobility.  Brenner  [16]  suggested  for  example  the  following  expression

DT=γ (1+2 k in /kout )  for non-inert  particles,  where  γ is the product of the diffusivity and the

thermal expansion of the surrounding fluid.  Yet, another simple explicit expression for the thermal

mobility term for the case of  a charged particle immersed in an electrolyte, is provided by Wurger

[17],  in  terms of the particle's  surface  zeta  potential.   The above linear  slip-velocity  model,  is

generally  valid for uncharged or weakly charged  nano/micro particles  such that the interaction

extent  between the colloid and surrounding liquid,   is  on a length scale  small  compared to the

characteristic size of the particle.  In the context of thermophoresis or termoelectric (Seebeck) effect

in the presence of an electric double layer, this is equivalent to the assumption of a small Debye

scale [17], which is also  supported by various molecular simulations [18].

  In this study we seek to extend and simplify the above analytical solution for both prolate and

oblate spheroidal configurations. Solutions based on the more familiar Legendre functions will be

derived to show a closed form of analytic solution and will also be numerically verified. The ratio

of the thermal conductivities kin/kout between the two phases, can considerably vary where typically

the surrounding medium is of water, yielding kout=0.6 (W/m K). The spheroid's thermal conductivity
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kin can vary from 0.04 W/(m K) for polystyrene to 8 W/(m K) for Beryllium copper, 35 W/(m K)

for  lead  and  even  400  W/(m  K)  for  gold.  In  this  case  we  will  concentrate  on  e  particles  of

polystyrene  and Beryllium copper,  where higher  values  of kin as  of lead resulted  in  a physical

behaviour similar to that of the Beryllium copper case. The solution methodology is derived in the

next section, followed by results and analysis and concluded by a summary section. 

2. Solution methodology

As noted in the introduction, the problem consists of a prolate or an oblate spheroid embedded in a

medium with a constant uniform ambient temperature.  For simplicity we will take that ambient

temperature  as  zero  without  losing  the  generality  of  the  problem  due  to  the  linearity  of  the

governing equations (1) to (4). The spheroid has a thermal conductivity k in that is different than that

of  the  surrounding  medium’s  kout.  Uniform  heat  density  q0 is  assumed  inside  the  spheroid  as

expressed in Eq (1) and no heat source is applied for the surrounding medium as expressed in Eq

(2). It results in a Poisson equation for Tin the temperature inside the spheroid and in a Laplace

equation for Tout the temperature outside the spheroid. The induced velocity field is assumed to

follow Stokes flow due to the very low Reynolds number, while the continuum assumption still

holds.

  Firstly, the analytical solution for the temperature fields is presented. Its derivation is similar to

that  of  Key  &  Chang  [3]  and  Miloh  &  Nagler  [4],  but  a  simplification  is  achieved  due  the

assumption of a  uniform ambient  temperature.  Secondly,  the analytical  solution  of  the  induced

termoosmotic velocity field is presented. Its derivation relies on the approach of Miloh [15] for a

general  triaxial  ellipsoid,  where  again  a  significant  simplification  is  achieved  because  of  the

axisymmetry of the spheroid case. Finally, the numerical approach used for the verification of the

analytical solutions is presented.

2.1 The temperature field solution

The prolate spheroid case can be dealt with using the following spheroidal coordinates (xmf)

[7];

x=cm x , y+ iz=c√(1−m2
)(x

2
−1)eif , (7)

where x is the Cartesian direction of the major axis containing the spheroid's length D, (y,z) are

Cartesian  directions  of  the  minor  axes  containing  the  spheroid's  diameter  d  and  i2=-1.  The

spheroidal coordinates are bounded as; x⩾1 , −1⩽m⩽1 , 0⩽f<2π . The spheroidal surface is
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at x0=1/√1−d2
/D2 , where c=D / x0 denotes half the distance between the two foci and D>d.

The potential solution of Eqs (1) and (2) can then be written using a Legendre series [4];

T in(x ,m)=−
q0 c2

6
(x2
+m

2 )+
q0 c2

6
∑
n=0

An Pn(x)Pn(m) , 1⩽x⩽x0 , (8)

T out(x ,m)=
q0 c2

6
∑
n=0

Bn Pn(m)Qn(x) , x0⩽x , (9)

where An and Bn are coefficients to be determined.

  Using  the  orthogonality  properties  of  the  Legendre  polynomial  Pn(m)  and  the  identity

m2=2P2(m)/3+1/3 [19, 20], it can be shown  by virtue of the explicit (first) term  on the right hand

side of Eq (8), that the only prevailing (non-vanishing) terms in (8) and (9) correspond to (A 0, A2)

and (B0, B2). Using the boundary conditions of Eqs (3) and (4) that match the temperature and the

heat flux at the spheroid’s surface, one gets;

A0=(x0
2
+

1
3 )−

2x0 Q0(x0)

Q̇0(x0)

k in

kout

, B0=−
2x0

Q̇0(x0)

k in

kout

, (10)

A2=
2 /3

P2(x0)−
Ṗ2(x0)Q2(x0)

Q̇2(x0)

k in

k out

, B2=
−2/3

Q2(x0)−
Q̇2(x0)P2(x0)

Ṗ2(x0)

k in

k out

, (11)

where the definitions of the Legendre functions Pn and Qn can be found for example in Lamb [19]

and Chatjigeorhiou [20]. The dot over the Q2, I1 and I2 means differentiation with respect to x. 

  The oblate spheroid case can be similarly dealt using the following coordinates (zmf) [7];

x=cm z , y+iz=c √(1−m2
)(z

2
+1)e if , (12)

where  z⩾0 , −1⩽m⩽1 , 0⩽f<2π ,  z0=1/√d2
/D2

−1 , c=D /z0  and  D<d.  The

temperature field can be written as;

T in(x ,m)=−
q0 c2

6
(x2
−m

2 )−
q0 c2

6
∑
n=0

An
* Pn(i z)Pn(m) , 0⩽z⩽z0 , (13)

T in(x ,m)=
−q0 c2

6
∑
n=0

Bn
* Pn(m)Qn(i z ) , z0⩽z . (14)

  Again only the terms that correspond to n=0 and 2 exist. Matching the inner and outer temperature

fields using Eqs (3) and (4) leads to;

A0
*
=( 1

3
−z0

2)+
2z0Q 0(iz0)

Q̇0(z0)

k in

kout

, B0
*
=

2z0

Q̇0(i z0)

k in

k out

, (15)
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A2
*
=

2/3

P2(i z0)−
Ṗ2(i z0)Q2( iz0)

Q̇2(i z0)

k in

kout

, B2
*
=B2

* Ṗ2(i z0)

Q̇2(iz0)

k in

kout . (16)

The definitions of Pn(iz) and Qn(iz) are also given in Lamb [19] and Chatjigeorhiou [20]. The dot

over the Q2, I1 and I2 means differentiation with respect to z. 

2.2 The induced velocity field

The general solution for a triaxial ellipsoid was given by Miloh [15]. Here simplification for the

lengthy expressions are sought for the prolate and oblate spheroids. The induced velocity can be

written for the prolate spheroid as;

u⃗=DT [∑
k=1

3

Gk xk
2
∇ I k (x)−∇F] , (17)

where DT represents the thermopheretic mobility and F is an harmonic function to be found along

with the coefficients Gk. The subscript k denotes the rectangular axis, where k=1 is the axis of

symmetry. Because of axisymmetry G2=G3 and I2=I3. The functions Ik are defined, following Miloh

[15], as;

I1(x)=Q1(x)/x , I 2(x)=Q1
1
(x)/P1

1
(x) . (18)

Eqs (17) and (18) can also hold for the oblate spheroid by simply replacing xwith iz. In order to

show that Eq (17) indeed satisfies the continuity equation (∇⋅u⃗=0) ,  all we need to show as

already discussed in Miloh [15], is that ∇⋅[xk
2
∇ I k (x)]=0   (for any k=1,2,3), since F in Eq (17)

is  harmonic.  To prove this  identity  we first  note  that xk
2
∂ Ik /∂ xi=xk∂(xk I k )/∂ x i−δuk xk I k (no

sum  over  k),  where  δuk denotes  the  Kronecker  symbol.  Finally,  the  above  divergence–free

relation is easily verified by recalling that xk I k (x)  is also harmonic for k=1,2,3 [15], leading to

Eq (18).

  The summation term on the right hand side of Eq (17) does not contribute to the slip velocity on

the spheroid's surface. Hence u⃗slip=−DT ∇sF  , but the slip velocity is also linearly proportional

to  the  surface  temperature  gradient  by  u⃗slip=−DT ∇s T .  Therefore  F is  proportional  to  the

temperature and can be shown to be;

F(x ,m)=−
q0 c2

6 [A2 P2(x0)−
2
3 ]

P2(m)Q2(x)

Q2(x0)
, (19)

for the prolate spheroid. Eq. (19) can still hold for the oblate spheroid by replacing x with iz and A2

with A*
2.  The coefficients  G1 and G2 can be found by imposing a zero normal  velocity  at  the

spheroid's surface. This procedure eventually leads to;
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G1=

−q0[A2 P2(x0)−
2
3 ]Q̇2(x0)

6 x0
2 İ1(x0)Q2(x0)

, G2=

q0[A2 P2(x0)−
2
3 ]Q̇2(x0)

12x0
2 İ2(x0)Q2(x0)

, (20)

for the case of a prolate spheroid. Replacing x with iz and A2 with A*
2 will yield the coefficients for

the oblate spheroid.

2.3 Numerical methodology

The  above  analytical  solutions  were  verified  using  numerical  finite-difference  schemes.  The

temperature field was directly calculated by solving Eqs (1) and (2) using a second order central

differentiation scheme in both (x, m) directions for the prolate spheroid and (z, m) directions for the

oblate spheroid. Due to the symmetry conditions only a segment between the major and minor axes

was  solved  as  given  in  the  contour  plots  of  the  next  section,  i.e.  0<m<1.  In  order  to  avoid

singularities at the major and minor axes as well as at the centre of the spheroid, mid-grid points

were calculated where symmetry boundary conditions were used for the major and minor axes of

the spheroid. First-order one-sided finite difference schemes were used to discretize the boundary

condition matching the heat flux at the spheroid's surface. This approach prevents the generation of

numerical  wiggles  in  the  solution  due  to  the  discontinuity  in  the  temperature  derivative  at  the

spheroid's wall. Far from the spheroid the temperature was assumed to decay as 1/r where r is the

radial distance from the spheroid's centre.

  The discretization yielded a sparse matrix that was solved using the bi-stab and SOR algorithms

[21]. A computational grid of 2572 points was found to be sufficient for the cases studied in Section

3 where the radial length of the computational domain is ten times of the equivalent radius Requ, i.e.

the radius of a sphere with the same volume as of the spheroid. Excellent agreement was found

between  the  analytical  and numerical  temperature  solutions  for  all  studied  cases,  verifying  the

analytical approach for the temperature field.

  The velocity field can be numerically calculated using the stream-function vorticity formulation

[22]. For the steady case, this involves simultaneously solving two elliptic equations for the stream

function  y and the vorticity  w The two equations are coupled through the source of the stream-

function equation and the boundary condition on the spheroid's wall. The latter can be dealt through

Toma’s  approach  [22]  but  the  coupling  between  the  two  equations  will  result  in  an  iterative

procedure that takes much longer than that for the temperature field. Since the numerical solution is

needed only in order to verify the analytical solution, a somewhat simpler approach was used for

this study. The induced velocity field was calculated according to Eq (17) and then was verified to
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fulfil the continuity and momentum equations. This means  ∇⋅u⃗=0 , ∇×∇×w⃗=0  ,where the

equation  for  the  vorticity  accounts  for  the  fact  that  the  spheroidal  coordinates  system  is  not

rectangular but is still orthonormal. Both equations were found to be fulfilled down to the truncation

errors of the operators that were calculated using second-order finite-difference central schemes.

3. Results and discussion

Prolate and oblate spheroids with an equivalent radius Requ = 1 μm were investigated for aspectm were investigated for aspect

ratios of D/d = 2 to 4 for the prolates and the inverse aspect ratios for the oblates. The surrounding

medium’s  thermal  conductivity  was set  to  kout=0.6 W/(m K) as  of  fresh water.  The spheroid’s

thermal  conductivity  was  taken  as  kin=0.04  W/(m  K)  or  8  W/(m  K).  The  lower  value  of  kin

corresponds to that of polystyrene and the higher value corresponds to that of Beryllium copper.

This means that for the polystyrene spheroid, the surrounding water acts as a heat sink while for the

Beryllium copper spheroid the surrounding water acts as an insulator. The uniform heat density q0

inside the spheroid was taken as 1012 W/m3 for all cases.

3.1 The temperature and heat flux fields

Table 1 lists the temperature at the centre of the spheroid, which is also the maximum temperature

and the averaged surface temperature. It is seen that increasing kin from 0.04 W/(m K) to 8 W/(m K)

caused the maximum temperature to considerably decrease. This behaviour can also be seen from

the  spherical  analytical  solution  of  Eq  (5).  Increasing  kin means  the  particle  becomes  a  better

conductor and thus more heat is lost to the surrounding medium.

  On the other hand, the averaged surface temperature is much less affected by the value of k in.

Increasing the spheroid aspect-ratio D/d for the prolate or decreasing it for the oblate, causes the

averaged surface temperature to decrease. This is because as the ratio D/d is shifted away from one

making the spheroid's less spherical, the surface area of the spheroid increases, while the volume of

the spheroid is kept the same. Hence, more heat can be lost through the surface for the same overall

heat source of ~
Q0=4 q0π R3

/3 . Despite the small variation of the averaged surface temperature

with the aspect ratio D/d, excellent agreement was found with Baffou’s ‘fitting’ thermal expression

given in Miloh [15].

  A graphical presentation of the temperature variations along the spheroid's major and minor axes

is given for all studied cases in Fig 2. The spherical solution of Eqs (6) and (7) is also shown for the

equivalent sphere. All spheroids show maximum temperatures that are lower than that of the sphere.

Again, this is because the sphere has the smallest ratio of surface area to volume. The spheroids
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corresponding to kin = 0.04 W/(m K) show much steeper variation in the temperature inside the

spheroid than that of kin = 8 W/(m K). It is a result of the better insulation caused by the lower value

of kin, managing to keep a higher temperature around the centre of the spheroid.

  All spheroids also show that the farthest tip has a temperature lower than of the nearest tip. This

means that for the prolate spheroid the temperature at the major axis tip is lower than that at the

minor axis tip and vice versa for the oblate spheroid. The tips can be recognized in Fig 2 as the

points  of  discontinuity  in  the  first  derivative  of  the  temperature  distribution.  The  effect  of  k in

diminishes  as one gets away from the spheroid,  where the temperature  decay converges  to  the

spherical solution of Eq (6). However, unlike the spherical case where kin has no role at all in the

temperature field Tout outside the particle, kin affects Tout near the particle and its decay is not as of

spherical. This zone just outside the spheroid will be called the near field of Tout while the farther

zone where Tout converges to the spherical solution will be called the far field.

  Illustrations of the contours of the temperature field are given in Fig 3 for the prolate spheroid of

D/d=4  and  oblate  spheroid  of  D/d=1/4.  The  contour  lines  follow  loosely  lines  parallel  to  the

spheroid’s geometry, where the difference between the far field Tout and the spheroid's temperature

is  much smaller  for  kin=8 W/(m K) than  for  kin=0.04 W/(m K) as  already  seen  in  Fig  2.  The

temperature Tout along the major axis of the prolate spheroid shows a weaker decay than that along

the minor axis, pointing again to the effect of the near field of Tout that does not exist in the spherical

case. A similar behaviour is seen for the oblate spheroid where the more moderate temperature

decay is at the minor axis instead of the major axis.

  The variations of the heat flux along the major and minor axes of the prolate and oblate spheroids

are shown in Fig 4. As expected, the peak of the heat flux’s distribution along the axis is always at

the spheroid's tip, where there is a discontinuity in the first derivative of the heat flux due to the

difference between kin and kout. The ratio of kin/kout affects whether the maximum of the heat flux is

at the spheroid's tip that is nearest to the centre or at the tip that is farthest. For k in/kout = 0.0667, i.e.

the surrounding acts as a heat sink, the maximum value of the heat flux is at the tip nearest to the

centre, i.e. at the minor axis for the prolate spheroid and at the major axis for the oblate spheroid.

For  kin/kout = 13.333 the situation is opposite and the maximum value for the heat flux is at the

farthest tip of the spheroid, whether it is a prolate or an oblate.

  The effect of the ratio kin/kout is further illustrated in the contour plots of Fig 5 for the heat flux

around the prolate spheroid with an aspect ratio of D/d=4. The minor axis tip area clearly shows the

12



maximum of the heat flux for the case of k in = 0.04 W/(m K), while the major axis tip area shows

the maximum of the heat flux for the case of kin = 8 W/(m K). The shift in the location of the

maximum heat flux from the nearest spheroid’s tip to the farthest when kin was increased from 0.04

W/(m K) to 8 W/(m K) is related to the behaviour of the near field of Tout. This is because the

maximum temperature on the spheroid's surface stays at the nearest tip regardless of the change in

the value of kin and hence if the far field with its 1/r decay in Tout had started straight from the

spheroid's surface, a simple arithmetic operation shows that the maximum heat flux would have

stayed at the location where the maximum surface temperature is located, i.e. at the tip nearest to

the spheroid's centre. Examining again the temperature variations along the major and minor axes in

Fig 2, one can see that for example for the prolate spheroid in Figs 2a and 2b, increasing k in from

0.04 W/(m K) to 8 W/(m K) causes the temperature at the farthest tip to increase and to yield a

steeper decline of Tout in the near field. This results in a sharp increase in the heat flux at that tip as

seen in the corresponding Figs 4a and 4b. Similar behaviour occurs in the oblate spheroid case.

3.2 The induced velocity field in the surrounding medium

The  induced  velocity  vectors  are  shown in  Figs  6  and  7  for  the  prolate  and oblate  spheroids

respectively. For simplicity DT was set as 1 m2/(s K). Any other value will just adjust the magnitude

of the velocity vector due to the linearity of the problem. In all cases the velocity pattern resembles

that  of  stagnation  flow around a corner  except  that  the maximum velocity  magnitude  is  at  the

spheroid's surface and not far from its farthest tip. Because the temperature at the spheroid's nearest

tip is always higher than that at the farthest tip, the slip flow is always from the nearest tip to the

farthest tip.

  Increasing kin from 0.04 W/(m K) to 8 W/(m K) significantly reduced the velocity magnitude as

clearly seen in Figs 6 and 7. This is because of the more uniform temperature over the spheroid's

surface as can be seen in Figs 2 and 3. It results in a lower surface temperature gradient  ∇s T

and thus a lower magnitude for the induced slip velocity.  On the other hand, it was found that

increasing the aspect ratio of D/d for the prolate spheroid or decreasing it for the oblate spheroid

makes the spheroid less spherical and thus increases the temperature variation along the surface.

This yields a higher surface temperature gradient and hence a higher induced velocity.

  The vorticity contours are shown in Fig 8 for the prolate spheroid of D/d =4. The vorticity was

numerically calculated from the velocity field using a second order central finite-difference scheme

and the appropriate scale factors h’s for the spheroidal coordinates. In both cases the vorticity peaks

at the spheroid's wall near the farthest tip, but not exactly at the farthest tip due to the symmetry
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condition at that axis. Similar behaviour was found for all other prolate and oblate spheroids. This

peak of the vorticity affects the distribution of the stream function as shown in Fig 9 for the cases

corresponding to Fig 8. The stream function y was calculated according to the following equation

for the prolate system where the appropriate h’s were used [7];

−w=
1

h1h2 [ ∂∂x (
h2

h1 h3

∂y
∂ x )+(

h1

h2 h3

∂y
∂m )] . (21)

The same equation can be used for the oblate case by replacing x with z and using the appropriate

h’s for the oblate spheroidal coordinates system [7].

  The stream-function pattern in Fig 9 is similar to that of flow around a corner. The highest density

of the streamlines is at the area of the vorticity’s peak near the spheroid's farthest tip, showing it to

be corresponding to the maximum velocity magnitude. Similar behaviour was found for all other

studied spheroidal configurations. Fig 9 shows the stream-function field up to 10Requ away from the

spheroid’s  centre.  Further  away  into  the  far  field  the  streamlines  converge  into  close  patterns

although the velocity magnitude is very small. Hence, for the prolate spheroid the flow goes down

along the minor  axis towards  the spheroid until  hitting  its  nearest  tip.  The flow slips over  the

spheroid's surface to its farthest tip and then flows at the positive direction of the major axis away

from the spheroid. The flow turns up in the far field while losing magnitude until it flows back

towards the spheroid in the negative direction of the minor axis. Similar pattern occurs for the

oblate spheroid, but just the roles of the minor and major axes are switched.

4. Conclusion

A micro/nano conducting orthotropic (spheroidal)  particle  uniformly heated by light  (laser)  and

embedded in a uniform low-conducting (liquid) medium, was studied for its temperature variations

and induced velocity field driven by the Soret surface slip-velocity. The temperature fields in both

phases are governed by the Poisson and Laplace linearized heat equations and the velocity field is

assumed to be of Stokes flow.

Analytical solutions were derived under Rayleigh's assumption of even heating for the temperature

and induced velocity fields using Legendre series. The temperature solution depended only on two

modes of  the series.  These analytical  solutions  were  verified using numerical  finite-difference

schemes. 

  As expected, the spheroid's maximum temperature lies always at its centre. The maximum of the

spheroid's  surface  temperature   was  at  the  tip  closest  to  the  centre  for  all  studied  cases.  The
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maximum magnitude of the heat flux was at the spheroid's surface. The peak of the heat flux was at

the spheroid's tip nearest to the centre for kin/kout < 1 and at the farthest tip for kin/kout > 1. The

change in the behaviour of the heat flux was related to the creation of a near field of the surrounding

temperature Tout that showed a temperature decay different than in the far field, which converged to

the spherical solution decay of 1/r. 

  The induced flow field was shown to flow from spheroid's nearest tip to the farthest tip, where

increasing the spheroid aspect ratio for the prolate configuration or reducing the aspect ratio for the

oblate configuration, increased the magnitude of the induced velocity field. The amplitude of the

vorticity peaked (maximum mixing)  on the spheroid's surface and near the farthest tip. Further

away from the spheroid, the flow direction (quadrupole nature) was towards the spheroid's nearest

tip and away from the spheroid's farthest tip where the flow re-circled in the far field from the

farthest tip’s axis to the nearest tip’s axis.

  The model  problem considered here is  indeed ideal  in  terms of assuming uniform (constant)

thermal  conductivities  and  heat  density,  neglecting  the  effects  of  surface  resistivity,  nearby

substrates and particles but nevertheless can be used to get good estimates of the relevant thermal

and  hydro-dynamical  parameters.  For  more  complex  geometries  a  full  numerical  approach  is

probably  needed and further  experimental  studies  in  this  growing field  of  research interest  are

certainly welcome.
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Spheroid geometric  ratio  kin [W/(m K)] Tmax [K] Tav on spheroid surface [K]

1 (sphere) 0.04 4.722 0.5550

2 (prolate) 0.04 4.0748 0.5406

4 (prolate) 0.04 2.9614 0.4902

1/2 (oblate) 0.04 3.9150 0.5425

1/4 (oblate) 0.04 2.4031 0.5148

1 (sphere) 8 0.5764 0.5550

2 (prolate) 8 0.5570 0.5338

4 (prolate) 8 0.5082 0.4761

1/2 (oblate) 8 0.5572 0.5347

1/4 (oblate) 8 0.5090 0.4817

Table 1: The computed values of the maximum temperature inside the spheroid (i.e. at the centre)

and the average temperature on the spheroid’s surface, where kout is 0.6 W/(m K).
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Figure 1: Schematic description of the problem for a prolate spheroidal particle.

Figure 2: The temperature variations along the major and minor axes that are plotted for the prolate

spheroids of (a) D/d=2 and (b) D/d=4, and the oblate spheroids of (c) D/d=1/2 and (d) D/d=1/4. The

external thermal conductivity is ke=0.6 W/(m K). The distance from the spheroid's centre noted as

the horizontal axis is normalized by the radius Requ of the equivalent sphere, whose solution was

also added. 

Figure 3: The temperature contours in K for the prolate spheroid of D/d= 4 and where the spheroid's

thermal conductivity is (a) ki=0.04 W/(m K) and (b) ki=8 W/(m K). The rest of the conditions are as

in Fig. 2.

Figure  4:  The  heat  flux  magnitude  variations  along  the  major  and  minor  axes  of  the  prolate

spheroids (a) (D/d)=2 and (b) (D/d)=4, and the oblate spheroids (c) (D/d)=1/2 and (d) (D/d)=1/4,

and where the rest of the conditions are as in Fig. 2.

Figure 5: The heat flux contours in in kW/m2 for the prolate spheroid of D/d= 4 and where the

spheroid's thermal  conductivity  is (a)  ki=0.04 W/(m K) and (b) ki=8 W/(m K).  The rest of the

conditions are as in Fig. 2.

Figure 6: Induced velocity vectors that are plotted for the prolate spheroid of  D/d=4 and where the

spheroid's  thermal  conductivity  is  (a)  ki=0.04  W/(m  K)  and  (b)  ki=8  W/(m  K).  The  vector

magnitude has been increased by 10/3 for ki=8 W/(m K) as compared to ki=0.04 W/(m K). The rest

of the conditions are as in Fig 2.

Figure 7: Induced velocity vectors that are plotted for the oblate spheroid of  D/d=1/4 and where the

spheroid's  thermal  conductivity  is  (a)  ki=0.04  W/(m  K)  and  (b)  ki=8  W/(m  K).  The  vector

magnitude has been increased by 10/3 for ki=8 W/(m K) as compared to ki=0.04 W/(m K). The rest

of the conditions are as in Fig 2.

Figure 8: Contours of the vorticity in 1/s that are plotted for the prolate spheroids (a) D/d=4 and

ki=0.04 W/(m K), (b) D/d=4 and ki=8 W/(m K). The rest of the conditions are as in Fig 2.

Figure 9: Contours of the stream-function in m2/s that are plotted for the prolate spheroids (a) D/d=4

and ki=0.04 W/(m K), (b) D/d=4 and ki=8 W/(m K). The rest of the conditions are as in Fig 2.
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Figure 1: Schematic description of the problem for a prolate spheroidal particle.
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(c)

(d)

Figure 2: The temperature variations along the major and minor axes that are plotted for the prolate

spheroids of (a) D/d=2 and (b) D/d=4, and the oblate spheroids of (c) D/d=1/2 and (d) D/d=1/4. The

external thermal conductivity is ke=0.6 W/(m K). The distance from the spheroid's centre noted as

the horizontal axis is normalized by the radius Requ of the equivalent sphere, whose solution was

also added. 

22



(a)

(b)

Figure 3: The temperature contours in K for the prolate spheroid of D/d= 4 and where the spheroid's

thermal conductivity is (a) ki=0.04 W/(m K) and (b) ki=8 W/(m K). The rest of the conditions are as

in Fig. 2.
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(c) 

(d)

Figure  4:  The  heat  flux  magnitude  variations  along  the  major  and  minor  axes  of  the  prolate

spheroids (a) (D/d)=2 and (b) (D/d)=4, and the oblate spheroids (c) (D/d)=1/2 and (d) (D/d)=1/4,

and where the rest of the conditions are as in Fig. 2.
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(a)

(b)

Figure 5: The heat flux contours in in kW/m2 for the prolate spheroid of D/d= 4 and where the

spheroid's thermal  conductivity  is (a)  ki=0.04 W/(m K) and (b) ki=8 W/(m K).  The rest of the

conditions are as in Fig. 2.
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(a)

(b)

Figure 6: Induced velocity vectors that are plotted for the prolate spheroid of  D/d=4 and where the

spheroid's  thermal  conductivity  is  (a)  ki=0.04  W/(m  K)  and  (b)  ki=8  W/(m  K).  The  vector

magnitude has been increased by 10/3 for ki=8 W/(m K) as compared to ki=0.04 W/(m K). The rest

of the conditions are as in Fig 2.
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(a)

(b)

Figure 7: Induced velocity vectors that are plotted for the oblate spheroid of  D/d=1/4 and where the

spheroid's  thermal  conductivity  is  (a)  ki=0.04  W/(m  K)  and  (b)  ki=8  W/(m  K).  The  vector

magnitude has been increased by 10/3 for ki=8 W/(m K) as compared to ki=0.04 W/(m K). The rest

of the conditions are as in Fig 2.
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(a)

(b)

Figure 8: Contours of the vorticity in 1/s that are plotted for the prolate spheroids (a) D/d=4 and

ki=0.04 W/(m K), (b) D/d=4 and ki=8 W/(m K). The rest of the conditions are as in Fig 2.
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(a)

(b)

Figure 9: Contours of the stream-function in m2/s that are plotted for the prolate spheroids (a) D/d=4

and ki=0.04 W/(m K), (b) D/d=4 and ki=8 W/(m K). The rest of the conditions are as in Fig 2.
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