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Abstract

An analytical framework is presented for calculating the self-induced thermophoretic velocity of a

laser-heated  Janus  metamaterial  micro-particle,  consisting  of  two  conducting  hemispheres  of

different thermal and electric conductivities. The spherical Janus is embedded in a quiescent fluid of

infinite expanse and is exposed to a continuous light irradiation by a defocused laser beam. The

analysis  is  carried  under  the  electrostatic  (Rayleigh)  approximation  (radius  small  compared  to

wave-length). The linear scheme for evaluating the temperature field in the three phases is based on

employing a Fourier-Legendre approach, which renders rather simple semi-analytic expressions in

terms of  the relevant physical parameters of the titled symmetry-breaking problem. In addition to

an  explicit  solution  for  the  self-thermophoretic  mobility  of  the  heated  Janus,  we  also  provide

analytic  expressions  for  the  slip-induced  Joule  heating  streamlines  and  vorticity  field  in  the

surrounding  fluid,  for  a  non-uniform  (surface  dependent)  Soret  coefficient.  For  a  ‘symmetric’

(homogeneous) spherical particle, the surface temperature gradient vanishes and thus there is no

self-induced thermophoretic velocity field. The ‘inner’ temperature field in this case reduces to the

well-known solution for a laser-heated spherical conducting colloid. In the case of a constant Soret

phoretic  mobility,  the  analysis  is  compared  against  numerical  simulations,  based  on  a  tailored

collocation method for some selected values of the physical parameters. Also presented, are some

typical temperature field contours and heat-flux vectors prevailing in the two-phase Janus as well as

light-induced velocity and vorticity fields in the ambient solute, and a new practical estimate for the

self-propelling velocity.
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1. Introduction

   The subject of self-propelled autonomous micro/nano motors and micro-swimmers has recently

gained much attention due to its vast applications in various fields such as nanotechnology, biology

and medicine [1]. Self-propulsion mechanism in micro systems is generally associated with the

conversion of some local chemical (catalytic) energy source [2] or with different means of external

incitements, such as imposed electric and magnetic fields, ambient concentration and temperature

gradients,  ultrasonic  and  acoustic  waves  as  well  as  light-induced  Joule  heating  [3,  4].  Much

attention has been devoted to laser-heated or light–induced thermophoretic transport of catalytic [5,

6, 7] and non-catalytic micro-motors (see recent reviews [8-11]). Achieving a finite thermophoretic

velocity  of  a  light-activated  homogeneous  symmetric  colloid  (e.g.  sphere),  is  possible  by

introducing  some  sort  of  physical/chemical  ‘symmetry-breaking’  effect.  For  active-catalytic

particles, it may arise from imposing a non-uniform chemical reaction on its surface [2] or from a

genuine metamaterial asymmetry such as a ‘two-phase’ hot Janus particle (JP), e.g. [12-15].

   Thermophoresis is generally a process where a particle is propelled by an imposed temperature

gradient  in  the  solute  [16-22]  or  by  a  Soret-type  force  due  to  temperature  variations  (non-

uniformity)  over  its  surface.  Joule  heating  enhancement  can  be  also  achieved  under  localized

thermoplasmonic  resonance  conditions  [4,  23-25].  The  induced  temperature  variation  over  the

colloid  surface,  results  in  a  thermoosmotic  velocity  slippage,  where  the  tangential  velocity  is

proportional to the surface temperature gradient (Soret effect) and to a prescribed surface-dependent

mobility coefficient. Integrating this velocity over the wetted smooth particle surface, leads to a

finite thermophoretic velocity [21, 26-28].

   For  practical  reasons,  much  attention  is  directed  towards  ‘self-thermophoresis’,  where  the

temperature variation along the particle is not caused by imposing an external temperature gradient,

but  rather due to some material  or physio-chemical asymmetry (symmetry-breaking) within the

particle itself or along its surface in the case of catalytic colloids [7]. One way to achieve this is to

use photoactive (light-activated) spherical JP’s, consisting of two hemispheres of different thermal

and electric conductivities, which is the focus of this study. The term of ‘self-thermophoresis’, was

first coined in [12], which examined a spherical JP by half-coating its surface with a thin layer of

metal (Ag).  The concept of self-thermophoresis is similar in many ways to ‘self-dielectrophoresis’

[29] and ‘self-diffusiophoresis’ [30], whereby a non-uniform electric field is generated by a material

Janus asymmetry exposed to an ambient uniform  electric field, resulting in a finite colloid mobility.

   The present analysis is related and complements the recent works of [7] and [16] on thermotaxis

of a light-activated JP by considering a non-catalytic Janus and in trying to analytically determine

its thermophoretic mobility and thermoosmotic flow field in terms of the corresponding physical
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parameters using first principles. For comparison, the temperature field on the JP surface in [15] is

assumed to be induced by a nearby heat source (modelled by a highly conducting gold nanoparticle

of 250 nm). The surface temperature gradient is then evaluated numerically (Comsol) assuming a

piecewise constant Soret slip and the resulting thermophoretic velocities (linear and angular) and

JP’s trajectories are found. However, we consider here the fundamental problem of a non-catalytic

JP  with  a  surface-dependent  (non-uniform)  mobility,  where  symmetry  breaking  results  from

disparate Joule heating effects or temperature distributions existing within the two hemispheres (of

different thermal and electric conductivities). We thus consider JP ‘point’ heating by a defocused

laser, in accordance with Rayleigh’s assumption [4] and are able to obtain explicit expressions for

the temperature field in the three-phases as well as for the velocity field around the JP, determining

its thermosphoretic mobility. Note that due to the axially symmetric temperature field induced in the

JP, there is no dependence on laser directionality (no JP rotation). It is also worth mentioning that in

the current analysis the asymmetric temperature distribution induced on the JP surface, does not

depend on any external forcing and is instead generated due to internal Joule heating mechanisms

within each hemisphere. Different temperature fields are thus induced in the (two) solid and fluid

phases, depending on the corresponding values of the thermal and electric conductivity of each

phase as well as on the amount of light irradiation (laser power). We are thus able to obtain a rather

simple  and  functional  new  analytic  solution  for  the  fundamental  problem  involving  self-

thermophoretic mobility of a photoactive JP in terms of the relevant physical parameters, using the

common thermal boundary conditions and Soret-type slip, enforced on the various JP interfaces.  

   A somewhat similar approach for a coated JP, has been employed in [13], by arguing that the

temperature variations  inside the particle,  is  uniform and by utilizing  an  ad-hoc jump function

across the particle’s inner interface. An approximate solution for the temperature field was then

obtained for two limiting cases, namely for ‘thin’ and ‘thick’ coatings. A Fourier-Legendre (FL)

series was also used to model the temperature and induced- velocity fields in the fluid (assuming a

creeping flow). The JP mobility was then found to depend only on the bipolar term of the external

temperature series. In the process of obtaining the approximate solution, it was assumed that the

thermal  conductivity  of the JP and the ambient solute are  the  same and no dependence on the

electrical conductivity of the two phases was taken into account. However, our solution is exact in

the sense that it analytically determines the non-uniform temperature field within the JP and it also

accounts for the disparity between the thermal and electric conductivities existing in the three-phase

problem.

    The self-thermophoretic problem of a half-coated JP with a layer of a different material at the low

salinity limit has been  also considered in [31] , by employing again the inner ‘uniform’ temperature

assumption  of  [13].  Solutions  for  the  temperature  fields  were  derived  analytically  and
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computationally using a finite element method. The case of a photoactive spheroidal JP, assuming a

large-contrast  (i.e.  ideally  dielectric  and  perfectly  conducting  halves)  has  been  analytically

discussed in [15].  Both inner and outer temperature fields were explicitly obtained under  these

restrictive conditions and the JP’s mobility, depending on its eccentricity was also obtained.    The

present work can be considered as a generalization of [15] by providing an analytic solution for the

thermotaxis problem of a spherical JP by considering a full three-phase configuration with different

physical/chemical  parameters,  and  by applying  the  proper  thermal  boundary  conditions  on  the

relevant  JP interfaces.  It  is  interesting to  note that  the  self-induced thermophoretic  mobility  of

orthotropic (e.g. sphere, spheroid, ellipsoid) homogeneous light-activated particles is always null!

Nevertheless,  except  for  a  perfectly  symmetric  sphere,  laser-heated  spheroidal  and  ellipsoidal

shapes generally induce finite dipole-type (symmetric) thermoosmotic velocity and vorticity fields

in the surrounding electrolyte [32].

    An experimental study of self-propelled JP’s was pursued by [33], by using a homogeneous

spherical particle having a cube of another material attached to it. Trajectory loops were created

using  a  diverging  laser  beam.  An  interesting  Janus-like  configuration  was  also  proposed  [34],

having pairs of spherical particles, where each pair consisted of two particles of different materials

and providing estimates for the thermophoretic forces and velocities. This brings us to the idea of

designing special micro-motors based on the JP concept (e.g., [8]), where particles are integrated

with shells of different material or manufactured layer by layer to achieve the desired JP asymmetry.

Partly coated particles were also manufactured by [35], who experimentally used laser irradiation to

demonstrate control on the collective behaviour of such particles.

   Despite the current growing research activity in self-thermophoresis of JP’s, there are still some

open  research  questions  that  affect  our  understanding  and  ability  to  optimally  manufacture

autonomous micro-motors based on the JP concept. Commonly, a uniform temperature distribution

inside the different zones of the JP is assumed along with an ad-hoc jump function to account for

the different zones’ temperatures. Such an approximate solution clearly does not fulfil the physical

boundary conditions ensuring continuity of both temperature and heat flux across the different JP

interfaces. In addition, these approximations do not specifically depend on the various thermal and

electric parameters of the corresponding three distinct phases. Thus, there is a pressing need for

developing a more general analytical solution that can affectedly account for the large disparity

between the different physical coefficients of the three-phase media, while preserving the proper

physical (thermal) interfacial boundary conditions.  

   As  demonstrated  by  [36]  for  laser-heated  homogeneous  spheroidal  particles,  the  difference

between the particle’s  thermal  conductivity  and the surrounding conductivity  of the liquid,  can

much affect the patterns of the surface heat flux and the induced-thermoosmotic flow. Therefore,
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one expects that a sharp contrast between the thermal conductivities of the JP hemispheres should

have a considerable effect on both the ‘inner’ and ‘outer’ temperature distributions and as a result

also on the induced self-thermophoretic velocity field. For this goal, we have looked at a single

freely  suspended  spherical  JP  composed  of  two  halves  with  different  material  properties  as

illustrated in Fig 1. The Fourier-Legendre (FL) series technique, that was proven useful in previous

studies, was used here as well to determine the temperature fields in each hemisphere The linearized

‘symmetry-breaking’ physical  model  is  first  discussed  in  Section  2  by  specifying  the  different

governing equations in each phase and the thermal boundary conditions applied on the various

interfaces. Details of using the FL methodology are next outlined in Section 3 and the appendices.

Some discussions of the analytic results  and numerical simulations thus found are presented in

Sections 4&5, followed by a conclusion section. 

2.  The linearized ‘symmetry-breaking’ physical model

   We consider  a  spherical  JP of  radius  a consisting  of  two hemispheres  of  different  thermal

conductivities (k1, k2) and corresponding heat sources (q1, q2), as illustrated in Fig 1. The particle is

freely  suspended in  a  dielectric  medium with  a  thermal  conductivity  kO with  no  external  heat

source. The axis of symmetry x is taken to be normal to the interior JP interface . Using spherical

(axisymmetric)  coordinates  (r ,θ ), x=rcosθ,  the  interior  circular  interface  between  the  two

hemispheres is given by μ=cosθ=0  and  0⩽ r⩽ a.

   When the JP is irradiated by a defocused laser at a wave-length much larger than the particle’s

radius (Rayleigh’ assumption), the temperature field in each JP phase can be estimated using the

following linear Poisson equation [13, 23, 32];

∇ 2T i=−q i, (1)

where q i≡ σ i / (k i V )| E0 |2 and i=1, 2. Here σ i denotes the electrical conductivity of each hemisphere,

V  is the volume of the spherical particle, and |E0| is the amplitude of the electric field (laser)

which is assumed to be uniform inside the micron-sized JP.

   The  thermal  conductivities  and  internal  heat  sources  of  the  JP hemispheres,  are  generally

different, hence T1 differs from T2. Both temperature fields must fulfil continuity in temperature and

heat  flux  across  the  interior  JP  interface  leading  to  the  following  boundary  conditions  at

μ=0 , 0⩽ r⩽ a:

T 1=T2, (2)
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k1

∂T 1

∂ μ
=k2

∂ T 2

∂ μ
.

(3)

      Next, assuming that the outer fluid domain is practically non-conducting, implies that the outer

temperature TO is harmonic, i.e.  ∇ 2T O=0. Yet, on the JP surface  r=a, one also needs to satisfy

continuity in the temperature and heat flux normal to the surface on each hemisphere [36];

T O=T i, (4)

kO

∂ TO

∂ r
=k i

∂ T i

∂ r
,

(5)

where i=1,2.

   The  resulting  non-uniform temperature  field  along the  JP surface,  will  generate  an induced

thermophoretic velocity field around the particle. The induced slip velocity v⃗S over the  particle’s

surface, following the boundary layer approximation of Anderson [19], is related to the temperature

gradient surface gradient (∇ S) by the Soret-type slip condition [12, 16, 18, 19, 30, 32 ];

v⃗S=−DT∇ ST O. (6)

The surface-dependent parameter DT,  represents the thermophoretic mobility (Soret coefficient). It

can depend on the temperature and composition of the JP surface [26]. Jiang et al [12] argued for

approximating it as a constant for JP due to a small temperature variation over the JP surface. In

Sections  3 and 4,  we follow this  suggestion  and approximate  DT as  constant.  Nevertheless,  in

Appendix B a full solution is given for the velocity field for a variable DT depending on the polar

angle. Furthermore in Section 5, when a comparison is made to literature available experimental

results of a JP created by thin coating on one of the hemisphere, it is shown that DT varies by up to

20% (around the average) for the extreme case of a JP composed by gold and polystyrene. This

supports the approximation of DT as constant for the JP of Beryllium-Copper and polystyrene in

Section 4. The induced-thermoosmotic velocity field in the surrounding liquid, is taken as Stokes-

type due to the low Reynolds number caused by the small mobility and dimension of the JP.

3. Solution methodology

    Both the temperature and velocity fields are axisymmetric, because  ki,  qi and  kO are taken as

constants. The temperature distribution inside each JP hemisphere is expressed in terms of a FL

series by distinguishing between odd and even terms as follows, where R=r/a;
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T 1 (R ,μ)=T 1 (R , μ )+∑
n=0

∞

A2n R2 n P2 n (μ )+∑
n=0

∞

A2 n+1 R2n+1 P2 n+1 (μ),
(7)

T 2 (R , μ)=T 2 (R , μ )+∑
n=0

∞

A2n R2 n P2 n (μ )+
k1

k2
∑
n=0

∞

A2 n+1 R2n+1 P2 n+1 (μ ),
(8)

where

T 1 (R ,μ)=−a2

6
[q1 R2+D+(q1−q2)R2 P2 (μ)], (9)

T 2 (R ,μ)=−a2

6
[q2 R2+D+(q2−q1 )R2 P2 (μ)], (10)

D=−q1(1
2
+

k1

kO
)−q2(12 + k2

kO
), (11)

and  Pn (μ) are the Legendre polynomials. The expressions in Eqs (7) to (11) fulfil the governing

equation (1)  for  the temperature field  inside  the particle.  Also note  that  since  P2n+1 (μ=0)=0,  

P2 (μ=0)=−1/2 and the way the series was split between the odd and even modes, Eqs. (7) and (8)

automatically fulfil the JP interface thermal boundary conditions, as expressed in Eqs (2) & (3).

   The external harmonic temperature field TO can be expressed accordingly as;

T O(R , μ )=∑
n=0

∞

C2 n R−(2n+1) P2n (μ)+∑
n=0

∞

C2 n+1 R−2(n+1) P2 n (μ).
(12)

The unknown series coefficients A2n, A2n+1, C2n and C2n+1 are calculated using the collocation method

[37]. The JP surface is divided into  N  elements and the boundary conditions of Eqs (4) and (5)

requiring continuity in both temperature and heat flux normal to the surface to be matched at the

centre point of each element, yielding a matrix equation of the same order. The matrix equation can

be symbolically written as M⋅ s=b, where the vector s contains the coefficients A2n, A2n+1, C2n and

C2n+1.   The matrix equation can be solved by the well-known LU decomposition procedure [38].

   A similar procedure but in the spectral space is outlined in Appendix  A, with three interesting

results  that  are  repeated here.  First,  is  an analytic  expression for  C0,  as  expressed in  Eq (A1).

Second, an explicit closed-form solution for the temperature fields in the case k1=k2, but still with

q1≠ q2,  as  expressed in Eqs (A13) and (A14).  Third,  is  an explicit  simple two-term (truncated)

approximation for the ‘mobility’ coefficient C1 as expressed in Eq (A16). The approximate solution

thus  found,  yields  about  10% difference  between the  ‘precise’ C1 computed  by the  collocation

method.  This  is  of  particular  importance,  as  the  coefficient  C1 controls  the  self-thermophoretic

velocity of the laser-heated JP as seen later in Eq (13). Thus, one can easily estimate the magnitude
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and direction of the self-induced mobility of the hot JP in terms of the corresponding thermal and

electrical parameters of the titled problem.

    The thermoosmotic flow field induced around the JP, is affected  by the Soret-type slip velocity

of Eq. (6). The asymmetry between negative and positive x directrions, as illustrated in Fig 1, will

generate a self-propelling velocity UP in the x direction. The mobility uP, can then be calculated by

averaging the component of v⃗S in the x direction over the JP. Substituting TO given in Eq (12) into

Eq (6) and averaging v⃗S over the JP surface, leads to;

U P=−
2 DT

3a
C 1.

(13)

   Eq. (13) shows that the JP velocity depends only on the first odd term of the series solution of TO  .

It extends Bickel et al.’s [13] result that showed that the mobility of a partly-coated JP depends only

on the dipolar- erm of the outer temperature field.

   Once the slip velocity  v⃗S is known, the induced-velocity field can be calculated assuming  a

Stokes-type flow due to the particle’s low Reynolds number [16]. Using Eq. (12) and accounting for

the particle’s self-propelling velocity U P x̂ to derive the axisymmetric velocity field in a moving co-

ordinate frame attached to the JP, one gets the following explicit  expression for the 3D Stokes

stream function ψ;

ψ (r , θ )=
DT a

2
sin 2θ{2

3
C1(a

r )−∑n=2

∞

Cn(a
r )

n−2[1−(a
r )

2] dPn (μ)
dμ },

(14)

and the corresponding expressions for the radial vr and tangential vθ velocity components ;

vr (r , θ)=
2 DT a2

3 r3 C1 cosθ+
DT a

2 r2 ∑
n=2

∞

n (n+1)Cn(a
r )

n−2[1−(a
r )

2]Pn (μ),
(15)

vθ (r ,θ )=
DT a

2 r2 sinθ {23 C1(a
r )−∑n=2

∞

Cn(a
r )

n−2[n−2−n(a
r )

2] dPn(μ)
dμ }. (16)

 Finally,  taking  in  Eqs.  (15)  &  (16)  r=a, leads  to  vr (r=a ,θ )=−UP cosθ and

vθ (r=a , θ)=U P sinθ+ v⃗S⋅θ̂ as expected, in accordance with Eq. (13).

8



4. Results and discussion for the developed JP model of two hemispheres

   The general temperature solution procedure of the collocation method was coded and verified

against  the explicit  solution  given in  Appendix  A  for  the  special  case of  kO<k1=k2 and  q1≠ q2.

Further verification was carried out for the cases of k1 = 8 W/(m K) or 0.04 W/(m K), with, k2 = k1

and  q1≠ q2 against  a  finite-difference  solution  of  the  heat  equation  Eq.(1)  using  a  method  as

described in [36], achieving an excellent agreement.

   The JP was taken as embedded in fresh water with kO = 0.6 W/(m K). Its southern hemisphere

(x<0) was taken as of Beryllium copper with k2 = 8 W/(m K) and the northern hemisphere (x>0)

was taken as polystyrene with k1 = 0.04 W/ (m K) as in the verification exercise. Since the ratio

between the corresponding electric conductivities in this case is rather small (i.e.  σ 1/σ2∼ 10−20), q1

was taken as zero while q2 was normalized to one in order to easily normalise the results shown in

Figs. 2 - 7. For the sake of comparison, the case of k1=k2=8 W/(m K), while keeping q1=0, was also

investigated. The FL series solution generally converged in less than ten coefficients.

   The  temperature  distributions  along  the  axis  of  symmetry  (x)  and  the  normal  axis  (y)  are

illustrated in Fig 2. When k1=k2>kO (solid line), the northern hemisphere acts as a conductor  and

thus  there  is  a  moderate  decrease  in  the  temperature  from the  heated  southern  hemisphere  of

-1<x/a<0  to  the  unheated  northern  hemisphere  of  0<x/a<1.  This  finding  supports  previous

approximations of a uniform temperature distributions inside the different zones of the JP under

similar conditions [11]. However, when k1<kO<k2 (dashed line), the role of the northern hemisphere

as an insulator leads to a smaller surface area, where heat can effectively escape from the southern

hemisphere. Thus, a much higher temperature is observed in the southern hemisphere.

   The outside temperature TO decays approximately as 1/r far away from the JP as illustrated in Fig

2b and thus far from the particle, it converges towards the homogeneous particle solution of Eq

(A12). The highest temperature along the transverse y direction is found on the axis of symmetry

(y=0) as expected. The kinks in the temperature distributions at |x/a| =1 and y/a=1 are due to the

changes in  the thermal  conductivity  from the particle’s  material  to  the surrounding medium. A

similar kink exists at x=0 in Fig 2a for k1<kO<k2 (dashed line) due to the sharp difference between

k1 and k2.

   The contours of the normalized heat flux modulus are depicted in Fig 3. The case of k1=k2>kO, of

Fig 3a, shows that the highest heat flux modulus exists on the boundary of x=0 inside the JP, where

the northern hemisphere acting as a conductor,  serves as an escape route for the heat from the

heated southern hemisphere. On the other hand, the role of the northern hemisphere as an insulator

is  demonstrated  in  Fig  3b  for  the  case  where  k1<kO<k2,.  As  a  result,  the  heat  flux  modulus
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significantly increases between the southern hemisphere and the ambient medium just left of x=0, in

order to compensate over the blocking effect of the northern hemisphere. The points of zero heat

flux along the axis of symmetry (y=0), correspond to the points of maximum temperature as seen

Fig 2a.

   The distribution of the normalized heat flux along the axis of symmetry is plotted in Fig 4. For

k1=k2>kO (solid  line)  the  heat  flux  is  negative  for  x/a<-0.6  and  positive  for  x/a>0.6,  where

x /a≈−0.6 is the point of maximum temperature. It shows that heat escapes to the surrounding

medium for x/a<-0.6 while for x/a>-0.6 the heat escapes towards the unheated northern hemisphere

(x>0). However, for k1<kO<k2 (dashed line) the blocking effect of the northern hemisphere causes

the magnitude of the heat flux at x=-a to grow, while it is also accompanied with a significant

increase in the heat flux towards the surrounding medium near the JP boundary at x=0 as seen in

Fig 3b.

    The heat flux direction pattern is further illustrated in the vector plots of Fig 5. The magnitude of

the heat-flux vector field as a whole, was adjusted to provide optimal illustration of the flux pattern.

The role of the northern hemisphere as an efficient heat conductor in Fig 5a for k1=k2>kO , causes a

significant amount of heat to leave the heated southern hemisphere (x<0) towards the unheated

northern hemisphere (x>0). This is in sharp contrast to the pattern seen in Fig  5b for k1<kO<k2  ,

where the insulating effect of the northern hemisphere, causes the heat flux to be redirected towards

the y direction and escaping to the surrounding fluid near (x,y) = (0, a). This has a profound effect

on the induced velocity field, as discussed later. There is also some readjustment in the heat flux

direction in the ambient solute near the JP, as a part of the near and far fields of TO. A similar

behaviour  was already found for homogeneous spheroidal particles [36].

   The contours of the normalized Stokes stream-function are plotted in Fig 6. They are depicted for

the flow field in a moving frame of reference attached to the JP. As there is no flow inside the

particle, the contours are outside the particle. They indicate a circular type of flow from the left of

the figure to the right, i.e. from the hot southern pole of the particle to the cold northern pole, which

is of similar behaviour found for the induced flow from the hot tip to the cold tip of a stationary

spheroidal particle [36]. Strikingly, the case of k1=k2>kO, shows almost symmetric patterns of the

stream-function contours around x=0 in Fig 6a, while the case of k1<kO<k2 shows a slightly tilted

pattern in Fig 6b. The differences between the contour levels of the stream-function in Fig 6b are

much higher than in Fig 6a while still having similar spatial distancing, hence showing much higher

velocity magnitudes for the case of k1<kO<k2 as compared for the case of k1=k2>kO. This behaviour

is also associated with a more profound level of vortical structures as discussed next.
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     Velocity vector plots are shown in Fig. 7 for the two cases. As in the case of the heat flux plots of

Fig 5, the magnitude of the whole field in each case was adjusted for optimal view, so the vector

length should not be compared between Fig.  7a and Fig.  7b, but only between the vectors of the

same field. The velocity field for the case k1<kO<k2  ,  shown in Fig  7b, is much more energetic

compared to the case k1=k2>kO (Fig 7a), as evidenced by the much more visible vortical structures

depicted in Fig 7b. The overall velocity magnitude level of the case k1<kO<k2,   was found to be 15

times larger than that of  k1=k2>kO. The vortex formation observed above the particle around x=0

indicates a high level of heat flux as seen in Fig  5b. It demonstrates how changing the thermal

character of the unheated northern hemisphere, from a conductor in the case of k1=k2>kO to an

insulator in the case of k1<kO<k2,  yields a higher self-propelling velocity  UP which is generally

accompanied with a more profound vortical structure.

5.  Comparison  of  the  JP  model  of  two  different  hemispheres  with  the  metal-coated

hemisphere.

It is instructive to compare the explicit expression obtained for the thermophoretic mobility of a

light-activated spherical JP against some recent experimental measurement of self-induced semi

coated JP.  Consider a JP composing of dielectric (polystyrene) and metallic (gold) hemispheres

corresponding to indices 1 and 2 respectively, and immersed in water. The thermal conductivity of

gold is  k2 =318 W(m K) and that of water is  kO=0.6 W/(m K). The thermal conductivity of the

polystyrene is much lower than of the gold and so is the electric conductivity. Hence, one can take

that σ 1/σ 2 , k1/k2 , k1 /ko≪1 . Thus following Eqs (A16), A(17) and (13) one finds

UP=(5 aDT q2 k2)/(48 k o) . (17)

   The heat power absorbed by a particle can be expressed by the laser power P and the conductive

volume of  the  particle.  Thus  one  can  write  q2k2=λ P/V ,  where  λ=V M /V ,  V is  the

particle’s  overall  volume and  V M  is  the  volume of  the  metallic  (highly  conductive)  phase.

Hence, λ=1  for a homogenous particle, λ=1/2  for the JP of two hemispheres as in Sections

2 to 4 and λ=(3 t)/ (2a)  for a semi-coated NP where a is the radius of the spherical particle and

t is the thickness of the thin metallic coating. The thermophoretic mobility of polystyrene can be

taken as DT,PS = 1.82 (μ m)2/(s K )  and for gold DT,AU = 2.88 (μ m)2/(s K )  [16]. These values

are compatible with the value of DT ~ 3 (μ m)2/(s K )  taken for a dielectric spherical NP [11].

Since the coefficients of the metallic and dielectric phases are of the same order and following

Appendix B, one can approximate for the AU/PS JP as DT = (DT,AU +DT,Ps)/2 = 2.35 (μ m)2/(s K ) .
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   Thus using Eq (17) and q2k2=λ P/V  for spherical practical of radius a, one gets; 

U P=
15

192π
λ DT P

a2 ko

,
(18)

which can serve as a practical approximation for estimating the JP thermal mobility. Note that the

mobility linearly increases with laser irradiation power P and decays with the radius a squared in

agreement  with reported measurements  of  AU/PS [10].  Fig 2b in  Peng et  al.  [10] displays the

mobility of a 5 μ m  semi-coated AU/PS JP irradiated by laser (660 nm) for laser power ranging

between 80-180 mW. For comparison we choose  P = 140 mW,  DT = 2.35 10-6 m2/(s K),  kO=0.6

W/(m K),  a=2.5 μm  and λ=(3 t)/ (2 a) . Since the coating thickness t is not explicitly given

in Ref [10], we refer to a related work on a semi-coated spherical JP with coating thickness of t = 2,

4, 6 nm and same radius [39]. Finally, with t = 4 nm and λ=2.4⋅10−3  we get UP≃5 μ m/ s

which is in excellent agreement with the experimental value under the same condition given in Fig

2b [10].

6 Conclusions

   An analytical model was developed for obtaining the self-thermophoretic mobility of a light-

activated Joule-heated JP composing of two distinct material hemispheres (different thermal and

electric conductivities) and surface–dependent mobility, embedded in a quiescent conductive liquid.

In particular, we investigated the interior temperature distribution within a two-phase laser-heated

JP under the electrostatic (Rayleigh) framework, depending on the amount of light irradiation.  Also

explicitly  computed,  is  the  thermophoretic  mobility  of  the  heated  JP  and  as  well  as  the

corresponding thermoosmotic Stokes stream function including the detailed velocity and vorticity

fields  prevailing  in  the  surrounding  quiescent  conducting  fluid.  The  temperature,  velocity  and

vorticity fields are governed by the linear Poisson equation and the creeping flow (Stokes) model.

The induced-thermoosmotic flow field is generally driven by a Soret-type slippage with a surface-

dependent mobility parameter.

   The new JP symmetry-breaking analytic solution thus developed is based on using a Fourier-

Legendre (FL) series in each one of the corresponding three-phases that quickly converged for all

the investigated cases. The general analytic procedures outlined in Section 3 and Appendices A&B

is based on using the coefficients of the FL series for the temperature fields in each phase as well as

the variable Soret-type slip,  followed by solving a linear matrix equation in order to find these

unknown coefficients.  The particular case of a two-term piecewise-constant Soret slippage is also

analysed and it is demonstrated that the common assumption of taking the average between these
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two values, holds only when the contrast between the JP conductivities is moderate. A somewhat

simplified (single-parameter) explicit solution for the themophoretic mobility of a light-activated JP

is found by assuming a constant Soret coefficient. This single- parameter is related to the dipolar

term in the FL expansion of the ‘outer’ temperature field. Yet, one can obtain an approximate simple

and practical expression for estimating the self-propelling velocity of a heated JP in terms of its

size, laser amplitude (power) and the distinct (constant) conductivities of the various three phases as

of  Eq  (18).  This  analytic  solution  was  also  compared  against  the  exactly  computed  and

experimental values, and was found to be reasonably accurate.

   A sharp  difference  between  the  two  hemispheres’ thermal  conductivities  led  to  a  sharp

temperature decline in the hemisphere acting as an insulator and the creation of noticeable vortical

structures around the JP. The present solution may be also found useful in the optimal design of

autonomous  light-driven  micro-swimmers  and  for  enhancing  fluid  mixing  by  means  of  opto-

(thermal) procedures. One of the next challenges is to cooperate the developed model as a sub-grid

model into a multi-scale simulation and analysing the collective behaviour of such interacting micro

photoactive JP motors of arbitrary shapes.
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List of Figures:

Figure 1: Schematic description of the Janus particle (JP) problem, where r is the spherical radius,

the JP radius is a and θ is the spherical angle.

Figure 2: The variation of the temperature normalized by T ref=q2a2k2/ (3 ko) along the particle’s (a)

axis of symmetry and (b) the boundary axis between the two Janus particle’s halves, where q1=0,

kO=0.6 W/(m K) as of water and k2=8 W/(m K) as of Beryllium copper.

Figure 3: Contours of the heat flux modulus normalized by q2ak 2/3 and which are plotted for the

Janus particles of Fig 2.

Figure 4: The normalized heat flux that is plotted along the particle’s axis of symmetry x. The rest

of the conditions are as in Fig 3.

Figure 5: Heat flux vectors that are plotted for the cases of Fig 3, where the vector modulus of each

field was scaled for optimal presentation and each vector is located at its tail.

Figure 6: Contours of the stream function normalized by DT T ref /a
3, and which are plotted for the

Janus particles of Fig 5. Tref is also defined in Fig 2.

Figure 7: Velocity vectors that are plotted for the cases of Fig 6, where the vector modulus of each

flow field was scaled for optimal presentation and each vector is located at its tail. The velocity

field is described in a moving co-ordinates attached to the particle.
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Figure 1: Schematic description of the Janus particle problem, where r is the spherical radius and θ

is the spherical angle.
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(a)

(b)

Figure 2: The variation of the temperature normalized by T ref=q2a2k2/ (3 ko) along the particle’s (a)

axis of symmetry and (b) the boundary axis between the two Janus particle’s halves, where q1=0,

kO=0.6 W/(m K) as of water and k2=8 W/(m K) as of Beryllium copper.
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(a)

(b)

Figure 3: Contours of the heat flux modulus normalized by q2ak 2/3 and which are plotted for the

Janus particles of Fig 2.
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Figure 4: The normalized heat flux that is plotted along the particle’s axis of symmetry x. The rest

of the conditions are as in Fig 3.
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(a)

(b)

Figure 5: Heat flux vectors that are plotted for the cases of Fig 3, where the vector modulus of each

field was scaled for optimal presentation and each vector is located at its tail.
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(a)

(b)

Figure 6: Contours of the stream function normalized by DT T ref /a
3, and which are plotted for the

Janus particles of Fig 5. Tref is also defined in Fig 2.
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(a)

(b)

Figure 7: Velocity vectors that are plotted for the cases of Fig 6, where the vector modulus of each

flow field was scaled for optimal presentation and each vector is located at its tail. The velocity

field is described in a moving co-ordinates attached to the particle.
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Appendix A – Fully spectral solution for the temperature solution

We use the FL series for the inner temperature as in Eqs (7) and (8), but we rewrite the external

temperature TO as;

T O (R , μ )= a2

6 kO R
(q1 k1+q2 k2)+

C 0

R
+∑

n=1

∞

Cn R−(n+1)Pn (μ ).
(A1)

Eq. (A1) is identical to the FL solution in Eq (11) except the split in the term of O(1/R). It is shown

here that C0=0 and hence CO of Eq. (11) is CO=a2(q1k1+q2 k2) /(6 kO).

   Using a least-square operation, one gets from the boundary conditions of Eqs. (4) & (5);

∫
−1

0

T 2 (r=a , μ)Pn (μ )dμ+∫
0

1

T 1 (r=a ,μ) Pn (μ)dμ=∫
−1

1

T O (r=a , μ)Pn (μ)dμ,
(A2)

k 2∫
−1

0 ∂ T2 (r=a , μ)
∂ r

Pn (μ)dμ+k1∫
0

1 ∂ T 1 (r=a , μ)
∂r

Pn (μ)dμ=kO∫
−1

1 ∂T O (r=a , μ)
∂ r

Pn (μ)dμ.
(A3)

   When substituting the FL series solutions of Eqs (7), (8) & (A1) into Eqs (A2) & (A3), one can

use the following function;

γ m, n≡∫
0

1

Pm (μ )Pn (μ)dμ=(−1)m+n∫
−1

0

Pm (μ)Pn (μ)dμ,
(A4)

where γ m, n=0 if (m≠ n) and both m and n are either odd or even numbers [39, 40], otherwise;

γ 2m+1,2n=
(−1)m+n+1

4m+n

(2 n) !(2m )!
(n!)2 (m!)2 (2n+2m+2) (2n−2m−1)

.
(A5)

   Eq. (A2), which is the result of requiring continuity of temperature on the particle’s surface yields;

C0=0 , A0=
1
2( k2

k1

−1)∑
n=0

∞

A2 n+1 γ2 n+1,0,
(A6)

and for m>0 we get;

Cm=Am+Fm+(m+1
2)(−1)m(1− k2

k1
)∑

n=0

A2 n+1 γ 2 n+1 ,m,
(A7)

where

Fm=
a2(q1−q2 )

6 [(−1)m(m+ 1
2)(γ m,0+2 γ m,2)−

1
2

δ (m )−δ (m−2)], (A8)
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and δ (m ) is the Dirac delta function.

   Similarly, by using Eq. (A5) which is the result of requiring continuity of heat flux normal to the

JP’s  surface, one gets;

−Cm=
k2

kO

m
m+1

Am+Gm+
2 m+1
m+1

k2

kO
(1− k1

k1
)(−1)m∑

n=0

∞

nA2 n γ2n , m,
(A9)

where

Gm=
a2

6 kO
(q1 k1−q2k2)[(−1)m γm, 0

2 m+1
m+1

−δ (m )]
+a2

6 kO
(q1−q2)[(−1)m 2m+1

m+1
(k1+k2)γ m,2−

2
3

k1q1 δ (m−2)]
.

(A10)

  Next, combining Eqs (A7) and (A9) yields the following matrix equation for the A’s:

(A11)

−(1+ k2

kO

m
m+1)Am=Fm+Gm+(−1)m 2m+1

m+1 (1− k 1

k 2
)[m+1

2
∑
n=0

∞

A2 n+1 γ 2n+1 ,m+
k2

k1
∑
n=0

∞

nA2 n γ 2n , m].
It is also worth noting from Eqs (A8) and (A11) that for m=0 one gets  γ 0,0=1 and thus F0=G0=0.

Hence, Eq (A6) directly follows from Eqs (A7) and (A9).

   One interesting outcome of Eq (A11) is that for the particular case of  k1=k2=k, we get a rather

simple explicit solution  for the A’s and C’s as follows:

Am=−(1+ k
kO

m
m+1)

−1

(Fm+Gm),
(A12)

and according to Eq (A7) one also finds for m>0;

Cm=Am+Fm. (A13)

Next,  assuming  in  addition  that  q1=q2=q,  implies  that  Fm=Gm=0 and also  Am=Cm=0.  Thus,  one

recovers the known temperature solution for a single homogeneous spherical particle [23];

T 1 (r )=T2 (r )=
−q
6 (r2−a2− 2 k a2

kO
), (A14)

T O (r )=
q a3 k
3 kO r

.
(A15)
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  Finally,  by  truncating  the  infinite  series,  one  obtains  a  relatively  simple  and  practical

approximation for C1 which governs the JP self-induced thermophoretic mobility  UP by Eq (13).

The coefficient C1 displays the ‘symmetry-breaking’ effect and depends on the contrast between the

thermal (k1 ≠ k2) and electric (σ 1≠ σ2) conductivities of the two-face JP, as well as the amplitude | E0 |

of light irradiation, where q i≡ σ i / (k i V )| E0 |2, V  is the volume of the spherical particleand i=1,2.

Thus, one finally finds from Eqs (A7) and (A9) that;

C1≃
F1 k1/kO−G1 (1+k1/k2)

1+k1/ko+k1/k2

,
(A16)

where, following Eqs (A8), (A10) and using γ 1,0=1 /2, γ 1,2=1/8 ;

F1=
3 a2

16
(q1−q2)=

3 a2

16
| E0 |2

σ1

k1
(1−σ 2k 1

σ 1k 2
), (A17)

G1=
a2

8 kO
[q2k2−q1 k1+

1
4
(q2−q1)(k1+k2)]=a2 | E0 |2

8 kO [σ2−σ1+
1
4 (σ2

k2

−
σ1

k1
)(k1+k2 )]. (A18)

    Eq. (A16)  can serve as a simple and quick estimate for the amplitude of the self-thermophertic

JP mobility in terms of the relevant physical parameters and also the determines conditions for

velocity reversal (i.e. change of sign). As an example, for the parameters used in Figs 2b and 7b;

(k1,  k2,  kO)  = (0.04,  8,  6) W/(m K) and q1=0,  Eq (A16) renders  C1/T ref=−0.26280,  compared

against the exact numerical value of C1/T ref=−0.29565 where T ref=q2a2k2/ (3ko ).

27



Appendix B – Thermophoresis due to non-uniform slip

For the sake of completeness, we also provide a new explicit solution for the self-thermophoresis

problem of a light activated JP due to a non-uniform Soret-type slip velocity. Towards this goal we

assume that the mobility coefficient DT in Eq (6) varies along the surface of the JP such that;

DT (θ )=∑
m=1

∞

λm

dPm(μ)
d μ

,
(B1)

where  λ m  are  prescribed  coefficients.  For  a  constant  slip,  i.e.  constant  DT,  one  has

λ m=DTδ (m−1) . Substituting Eqs (B1) and (12) in Eq (6) leads to;

V S (θ )=
sinθ

a
∑
n=1

∞

∑
m=1

∞

λm Cn

dPm(μ)
d μ

dPn(μ)
d μ

,
(B2)

   Taking  advantage  of  Bailey’s  [42]  expression  for  the  product  of  two  associated  Legendre

functions, Eq (B2) can also be written as;

V S (θ )=
sinθ

a
∑
n=1

∞

∑
m=1

∞

∑
s=o

min(m−1 , n−1 )

α s(m, n)λm Cn

dPm+n−1−2 s(μ)
d μ

,
(B3)

where

(B4)

α s(m, n)= 2
π
Γ(s+3 /2)Γ(m−s+1/2)Γ(n−s+1/2)(m+n−s)!(m+n−2 s−2)!(2m+2 n−4 s−1)

s!Γ (m+n−s+1/2)(m−s−1)!(n−s−1)!(m+n−2 s)!
,

and Γ(n) denotes the Gamma function.

    Following the hydrodynamic reciprocal theorem [43], the JP mobility can be readily found by

averaging the Soret slip velocity of Eq (B3) over the spherical surface resulting in;

U P=−
2

3 a
∑
n=1

∞

∑
m=1

∞

∑
s=o

min(m−1 , n−1)

α s(m ,n)λm Cnδ (m+n−2 s−2),
(B5)

due to orthogonality of the associated Legendre functions. Note that only combinations of where

m+n or |m-n| is even, contribute to the triple sum in Eq. (B5). A more compact form of Eq. (B5) can

be obtained by substituting Eq. (B4) and executing the delta operation leading to;

U P=−
2

3 a∑n=1

∞

∑
m=1

∞

β (m, n)λm Cn,
(B6)

where 

(B7)
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β (m , n)−β (n ,m)=α s(m, n)δ (m+n−2 s−2)= 3
π
(m+n

2 )(m+n
2

+1)Γ(m−n
2

+ 3
2)Γ(n−m

2
+ 3

2)
(m−n

2 )!(n−m
2 )!(m+n+1)

.

One can easily verify that β (1,1)=1  and letting λ m=DTδ (m−1)  in Eq (B6) reduces to the

constant slip value given in Eq (13).

   By following the same procedure for evaluating the Stokes stream function of Eq (14), one finds

that by virtue of Eq (B3) the generalized stream function under a non-uniform slip can accordingly

be written in a body frames of reference as;

ψ (r ,θ )=−1
2

a2sin 2θ [U P(a
r )+S ], (B8)

S=1
a
∑
n=1

∞

∑
m=1

∞

∑
s=o

min(m−1 ,n−1)

α s(m, n)λm Cn(a
r )

m+n−1−2 s dPm+n−1−2 s(μ )
d μ [( r

a)
2

−1]H (m+n−3−2 s) ,
(B9)

where H(n) denotes the Heaviside’s unit function (H(n)=0 for n<0 and H(n)=1 for n⩾0 ) and the

thermophoretic mobility Up is given in Eq (B6). It is worth mentioning that for the limiting case of a

constant Soret coefficient, i.e. λ m=DTδ (m−1) , by letting m=1 and s=0 in Eqs. (B8) & (B9) we

recover Eq. (14).

   Before concluding this Appendix, let us examine the case of piece-wise continuous slip on a JP,

often discussed in the literature e.g. [16], where for aspherical JP, it is assumed that;

DT(θ )=∑
m=1

∞

λm

dPm(μ)
d μ ={DT

(1) , 0⩽μ⩽1

DT
(2) , −1⩽μ<0},

(B10)

where in general the two constants DT
(1)≠DT

(2) . Multiplying Eq (B10) with (1−μ2)dPn(μ)/d μ

and integrating over the surface of the two JP hemispheres leads to;

∑
m=1

∞

λm∫
−1

1

(1−μ 2)
dPm(μ)

d μ
dPn(μ)

d μ
d μ=DT

(1)∫
0

1

(1−μ2)
dPn(μ)

d μ
dμ +DT

(2)∫
−1

0

(1−μ2)
dPn(μ)

d μ
d μ.

(B11)

After integration by parts we get;

λ m=
1
2
(DT

(1)+DT
(2))+ n(n+1)(2 m+1)

2 m(m+1)
(DT

(1)−DT
(2 ))γ n ,1 ,

(B12)

where  γ n ,m  are  the  auxiliary  functions  defined in  Eqs (A4) & (A5).  Clearly for  a  constant

mobility, i.e. DT
(1)=DT

(2)=DT  one gets as expected λ m=DTδ (m−1) . Hence taking a constant

DT means that only the first term on the right hand side of Eq (B12) is accounted. Finally, it is
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important to note that the presented formulations in this Appendix are accurate for any surface

axisymmetric-dependent Soret-type coefficient.
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