26 research outputs found

    Expressed in the yeast Saccharomyces cerevisiae, human ERK5 is a client of the Hsp90 chaperone that complements loss of the Slt2p (Mpk1p) cell integrity stress-activated protein kinase

    Get PDF
    ERK5 is a mitogen-activated protein (MAP) kinase regulated in human cells by diverse mitogens and stresses but also suspected of mediating the effects of a number of oncogenes. Its expression in the slt2Delta Saccharomyces cerevisiae mutant rescued several of the phenotypes caused by the lack of Slt2p (Mpk1p) cell integrity MAP kinase. ERK5 is able to provide this cell integrity MAP kinase function in yeast, as it is activated by the cell integrity signaling cascade that normally activates Slt2p and, in its active form, able to stimulate at least one key Slt2p target (Rlm1p, the major transcriptional regulator of cell wall genes). In vitro ERK5 kinase activity was abolished by Hsp90 inhibition. ERK5 activity in vivo was also lost in a strain that expresses a mutant Hsp90 chaperone. Therefore, human ERK5 expressed in yeast is an Hsp90 client, despite the widely held belief that the protein kinases of the MAP kinase class are non-Hsp90-dependent activities. Two-hybrid and protein binding studies revealed that strong association of Hsp90 with ERK5 requires the dual phosphorylation of the TEY motif in the MAP kinase activation loop. These phosphorylations, at positions adjacent to the Hsp90-binding surface recently identified for a number of protein kinases, may cause a localized rearrangement of this MAP kinase region that leads to creation of the Hsp90-binding surface. Complementation of the slt2Delta yeast defect by ERK5 expression establishes a new tool with which to screen for novel agonists and antagonists of ERK5 signaling as well as for isolating mutant forms of ERK5

    UCS protein function is partially restored in the Saccharomyces cerevisiae she4 mutant with expression of the human UNC45-GC, but not UNC45-SM

    Get PDF
    A dedicated UNC45, Cro1, She4 (UCS) domain-containing protein assists in the Hsp90-mediated folding of the myosin head. Only weak sequence conservation exists between the single UCS protein of simple eukaryotes (She4 in budding yeast) and the two UCS proteins of higher organisms (the general cell and striated muscle UNC45s; UNC45-GC and UNC45-SM, respectively). In vertebrates, UNC45-GC facilitates cytoskeletal functions, whereas the 55% identical UNC45-SM assists assembly of the contractile apparatus of cardiac and skeletal muscles. A Saccharomyces cerevisiae she4Δ mutant, totally lacking any UCS protein, was engineered to express as its sole Hsp90 either the Hsp90α or the Hsp90β isoforms of human cytosolic Hsp90. A transient induction of the human UNC45-GC, but not UNC45-SM, could rescue the defective endocytosis in these she4Δ cells at 39 °C, irrespective of whether they possessed Hsp90α or Hsp90β. UNC45-GC-mediated rescue of the localisation of a Myo5-green fluorescent protein (GFP) fusion to cortical patches at 39 °C was more efficient in the yeast containing Hsp90α, though this may relate to more efficient functioning of Hsp90α as compared to Hsp90β in these strains. Furthermore, inducible expression of UNC45-GC, but not UNC45-SM, could partially rescue survival at a more extreme temperature (45 °C) that normally causes she4Δ mutant yeast cells to lyse. The results indicate that UCS protein function has been most conserved-yeast to man-in the UNC45-GC, not UNC45-SM. This may reflect UNC45-GC being the vertebrate UCS protein that assists formation of the actomyosin complexes needed for cytokinesis, cell morphological change, and organelle trafficking-events also facilitated by the myosins in yeast

    Mechanisms of resistance to Hsp90 inhibitor drugs: a complex mosaic emerges

    Get PDF
    The molecular chaperone Hsp90 holds great promise as a cancer drug target, despite some of the initial clinical trials of Hsp90 inhibitor drugs having not lived up to expectation. Effective use of these drugs will benefit greatly from a much more detailed understanding of the factors that contribute to resistance, whether intrinsic or acquired. We review how cell culture studies have revealed a number of different mechanisms whereby cells can be rendered less susceptible to the effects of Hsp90 inhibitor treatment. A major influence is Hsp90 inhibition causing strong induction of the heat shock response, a stress response that increases cellular levels of prosurvival chaperones such as Hsp27 and Hsp70. Another problem seems to be that these inhibitors do not always access the Hsp90 proteins of the mitochondrion, forms of Hsp90 that-in cancer cells-are operating to suppress apoptosis. It should be possible to overcome these drawbacks through the appropriate drug redesign or with the combinatorial use of an Hsp90 inhibitor with a drug that targets either heat shock factor or the chaperone Hsp70. Still though, cells will often differ in the key antiapoptotic versus proapoptotic activities that are dependent on Hsp90, in the key steps in their apoptotic pathways responsive to Hsp90 inhibition or Hsp70 level, as well as the extents to which their survival is dependent on oncogenic tyrosine kinases that are clients of Hsp90. A systems approach will therefore often be required in order to establish the most prominent effects of Hsp90 inhibition in each type of cancer cell. © 2011 by the authors; licensee MDPI, Basel, Switzerland

    Emerging variants of canine enteric coronavirus associated with seasonal outbreaks of severe canine gastroenteric disease

    Get PDF
    Canine enteric coronavirus (CECoV) variants have an emerging role in severe outbreaks of canine gastroenteritis. Here we used syndromic health data from a sentinel network of UK veterinary practices to identify an outbreak of severe canine gastroenteritis. Affected dogs frequently presented with vomiting, diarrhoea and inappetence. Data from sentinel diagnostic laboratories showed similar seasonal increases in CECoV diagnosis. Membrane glycoprotein (M) gene sequence analysis implied wide geographical circulation of a new CECoV variant. Whole genome sequencing suggested the main circulating 2022 variant was most closely related to one previously identified in 2020 with additional spike gene recombination; all variants were unrelated to CECoV-like viruses recently associated with human respiratory disease. Identifying factors that drive population-level evolution, and its implications for host protection and virulence, will be important to understand the emerging role of CECoV variants in canine and human health, and may act as a model for coronavirus population adaptation more widely

    Hsp90 inhibition differentially destabilises MAP kinase and TGF-beta signalling components in cancer cells revealed by kinase-targeted chemoproteomics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The heat shock protein 90 (Hsp90) is required for the stability of many signalling kinases. As a target for cancer therapy it allows the simultaneous inhibition of several signalling pathways. However, its inhibition in healthy cells could also lead to severe side effects. This is the first comprehensive analysis of the response to Hsp90 inhibition at the kinome level.</p> <p>Methods</p> <p>We quantitatively profiled the effects of Hsp90 inhibition by geldanamycin on the kinome of one primary (Hs68) and three tumour cell lines (SW480, U2OS, A549) by affinity proteomics based on immobilized broad spectrum kinase inhibitors ("kinobeads"). To identify affected pathways we used the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway classification. We combined Hsp90 and proteasome inhibition to identify Hsp90 substrates in Hs68 and SW480 cells. The mutational status of kinases from the used cell lines was determined using next-generation sequencing. A mutation of Hsp90 candidate client RIPK2 was mapped onto its structure.</p> <p>Results</p> <p>We measured relative abundances of > 140 protein kinases from the four cell lines in response to geldanamycin treatment and identified many new potential Hsp90 substrates. These kinases represent diverse families and cellular functions, with a strong representation of pathways involved in tumour progression like the BMP, MAPK and TGF-beta signalling cascades. Co-treatment with the proteasome inhibitor MG132 enabled us to classify 64 kinases as true Hsp90 clients. Finally, mutations in 7 kinases correlate with an altered response to Hsp90 inhibition. Structural modelling of the candidate client RIPK2 suggests an impact of the mutation on a proposed Hsp90 binding domain.</p> <p>Conclusions</p> <p>We propose a high confidence list of Hsp90 kinase clients, which provides new opportunities for targeted and combinatorial cancer treatment and diagnostic applications.</p

    Emerging Variants of Canine Enteric Coronavirus Associated with Outbreaks of Gastroenteric Disease.

    Get PDF
    A 2022 canine gastroenteritis outbreak in the United Kingdom was associated with circulation of a new canine enteric coronavirus closely related to a 2020 variant with an additional spike gene recombination. The variants are unrelated to canine enteric coronavirus-like viruses associated with human disease but represent a model for coronavirus population adaptation

    From saliva to faeces and everything in between- a guide to biochemical analysis using animal samples for biomarker detection.

    No full text
    Over the last decade, interest in the emotional states and stress levels of animals has grown. These emotional states can have knock on effects for owners, for example if an animal becomes aggressive this can lead to relinquishment or even euthanasia. In addition, long term stressful situations can have serious health impacts upon animals and can affect meat quality in livestock. A variety of methods can be used to investigate biomarkers in animals, and many different samples can be taken to facilitate this. The choice of assay will often depend on the animal under investigation and practicalities of obtaining the sample. The assay choice can also be dependent on testing conditions such as the field vs laboratory, samples taken, costs, and the desired results. There is also the question of the longevity of the investigated response- do you want to test what happened over the last month? Last week? Yesterday? Or within the last hour? This review highlights some of the pros and cons of the different samples, and the different methods for biomarker analysis in animals. Studies can be made or broken based on the type of samples taken, and what aspects are to be investigated, and this simple decision can make a world of difference to the results of an investigation. Careful planning and thought before starting a study, can make the difference between a scientific breakthrough with animal welfare and husbandry implications, or some poor results which are of little use to man nor beast

    A reduced potential for lameness bacterial transmission by Lucilia sericata larvae and flies through metamorphosis.

    No full text
    Lameness in sheep is one of the most serious issues on farms in the UK and worldwide, affecting over 90% of all UK sheep flocks. Despite its severity and prevalence, there are knowledge gaps regarding transmission routes of bacterial pathogens associated with infectious lameness in sheep. As larvae of Lucilia sericata are commonly found on foot lesions on lame sheep, it was hypothesised that the flies or their larvae could harbour lameness associated bacteria. This study examined the gut contents of larvae obtained from the foot lesions of lame sheep and compared them to control larvae collected from infested cat food on the same farm. Of particular interest, were the presence of three different bacterial genera associated with lameness; Fusobacterium necrophorum, Dichelobacter nodosus and Treponema spp., for which viability was also investigated. Larvae were cultured In vitro and some allowed to metamorphose into flies before specific PCR assays were carried out on the gut contents. Results showed a significant association between the bacteria on the feet of the sheep and those within the larvae. Although the gut contents of all larvae found on sheep feet contained one or more of the lameness bacteria, none of the bacteria were recovered from the adult flies, suggesting a level of gut remodelling during metamorphosis. Interestingly, Treponema spp. and Fusobacterium spp. were viable when isolated from gut contents of larvae. Maintenance of infection from larvae to fly did not occur . However, it still remains important to control both disease and insect populations of farms to maintain animal welfare

    A sensitive bioassay for the mycotoxin aflatoxin B 1, which also responds to the mycotoxins aflatoxin G 1 and T-2 toxin, using engineered baker's yeast

    No full text
    A novel aflatoxin B1 bioassay was created by introducing a Lipomyces kononenkoae α-amylase gene into a strain of S. cerevisiae capable of expressing the human cytochrome P450 3A4 (CYP3A4), and the cognate human CYP450 reductase. This strain and a dextranase-expressing strain were used in the development of a microtitre plate mycotoxin bioassay, which employed methanol as the solvent and polymyxin B nonapeptide as a permeation enhancer. Stable co-expression of the CYP3A4 gene system and of the dextranase and amylase genes in the two bioassay strains was demonstrated. The bioassay signalled toxicity as inhibition of secreted carbohydrase activity, using sensitive fluorimetric assays. The amylase-expressing strain could detect aflatoxin B1 at 2 ng/ml, and was more sensitive than the dextranase-expressing strain. Aflatoxin G1 could be detected at 2 µg/ml, and the trichothecene mycotoxin T-2 toxin was detectable at 100 ng/ml

    A simple yeast-based system for analyzing inhibitor resistance in the human cancer drug targets Hsp90alpha/beta.

    No full text
    Heat shock protein 90 (Hsp90), a highly conserved molecular chaperone, is one of the most promising targets for cancer drug development. Whether any resistance to these Hsp90 inhibitor drugs could arise by Hsp90 mutation is still unknown. Yeast is readily engineered so that its essential Hsp90 function is provided by either isoform of the human cytosolic Hsp90, Hsp90alpha or Hsp90beta. However, its high intrinsic resistance to most drugs poses a major obstacle to the use of such Hsp90alpha- or Hsp90beta-expressing yeast cells as a model system to analyse whether drug resistance might arise by Hsp90 mutation. In order to overcome this problem, we have generated a strain that is both hypersensitive to Hsp90 inhibitors as it lacks multiple drug resistance genes, and in which different heterologous and mutant Hsp90s can be expressed by plasmid exchange. It is not rendered appreciably stress sensitive when made to express Hsp90alpha or Hsp90beta as its sole form of Hsp90. Should there be any development of resistance to the Hsp90 drugs now in cancer clinic trials, this system can provide a rapid initial test of whether any single nucleotide polymorphism appearing within the coding regions of Hsp90alpha or Hsp90beta could be a contributory factor in this resistance. We have used this strain to demonstrate that significant levels of resistance to the Hsp90 inhibitors radicicol and 17-allylamino-demethoxygeldanamycin (17-AAG) are generated as a result of the same single point mutation within the native Hsp90 of yeast (A107N), the human Hsp90alpha (A121N) and the human Hsp90beta (A116N)
    corecore