196 research outputs found

    Novel synthesis and characterisation of 3,3-dimethyl-50-(2-benzothiazolyl)- spironaphth(indoline-2,30-[3H]naphth[2,1-b] [1,4]oxazine) derivatives

    Get PDF
    Novel modified spirooxazines (SOs) with additional chelating groups were synthesised and the crystal structure of one of these was determined. UV–vis spectroscopic characterization of the photoisomerization of the SO derivatives shows that the photochromic behaviour is altered with Zn2+ coordination. In particular, addition of a group as in carboxylic acid 5 to the indole section of the SO increases the lifetime of the merocyanine Zn 2+ complex by 20-fold compared to the methylated indole 6

    Layered zeolitic materials: an approach to designing versatile functional solids

    Full text link
    Relevant layered zeolites have been considered in this perspective article from the point of view of the synthesis methodologies, materials characterization and catalytic implications, considering the unique physico-chemical characteristics of lamellar materials. The potential of layered zeolitic precursors to generate novel lamellar accessible zeolites through swelling, intercalation, pillarization, delamination and/ or exfoliation treatments is studied, showing the chemical, functional and structural versatility exhibited by layered zeolites. Recent approaches based on the assembly of zeolitic nanosheets which act as inorganic structural units through the use of dual structural directing agents, the selective modification of germanosilicates and the direct generation of lamellar hybrid organic inorganic aluminosilicates are also considered to obtain layered solids with well-defined functionalities. The catalytic applications of the layered zeolites are also highlighted, pointing out the high accessibility and reactivity of active sites present in the lamellar framework.The authors thank financial support to Spanish Government by Consolider-Ingenio MULTICAT CSD2009-00050, MAT2011-29020-C02-01 and Severo Ochoa Excellence Program SEV-2012-0267.Díaz Morales, UM.; Corma Canós, A. (2014). Layered zeolitic materials: an approach to designing versatile functional solids. Dalton Transactions. 43(27):10292-10316. https://doi.org/10.1039/c3dt53181cS10292103164327Mallouk, T. E., & Gavin, J. A. (1998). Molecular Recognition in Lamellar Solids and Thin Films. Accounts of Chemical Research, 31(5), 209-217. doi:10.1021/ar970038pSuslick, K. S., & Price, G. J. (1999). APPLICATIONS OF ULTRASOUND TO MATERIALS CHEMISTRY. Annual Review of Materials Science, 29(1), 295-326. doi:10.1146/annurev.matsci.29.1.295Du, X., Zhang, D., Gao, R., Huang, L., Shi, L., & Zhang, J. (2013). Design of modular catalysts derived from NiMgAl-LDH@m-SiO2 with dual confinement effects for dry reforming of methane. Chemical Communications, 49(60), 6770. doi:10.1039/c3cc42418aLi, H., Zhang, D., Maitarad, P., Shi, L., Gao, R., Zhang, J., & Cao, W. (2012). In situ synthesis of 3D flower-like NiMnFe mixed oxides as monolith catalysts for selective catalytic reduction of NO with NH3. Chemical Communications, 48(86), 10645. doi:10.1039/c2cc34758jWang, H., Zhang, D., Yan, T., Wen, X., Shi, L., & Zhang, J. (2012). Graphene prepared via a novel pyridine–thermal strategy for capacitive deionization. Journal of Materials Chemistry, 22(45), 23745. doi:10.1039/c2jm35340gZhang, D., Yan, T., Shi, L., Peng, Z., Wen, X., & Zhang, J. (2012). Enhanced capacitive deionization performance of graphene/carbon nanotube composites. Journal of Materials Chemistry, 22(29), 14696. doi:10.1039/c2jm31393fRavishankar, R., Joshi, P. N., Tamhankar, S. S., Sivasanker, S., & Shiralkar, V. P. (1998). A Novel Zeolite MCM-22: Sorption Characteristics. Adsorption Science & Technology, 16(8), 607-621. doi:10.1177/026361749801600803Roth, W. J., & Dorset, D. L. (2011). Expanded view of zeolite structures and their variability based on layered nature of 3-D frameworks. Microporous and Mesoporous Materials, 142(1), 32-36. doi:10.1016/j.micromeso.2010.11.007Roth, W. J., & Čejka, J. (2011). Two-dimensional zeolites: dream or reality? Catalysis Science & Technology, 1(1), 43. doi:10.1039/c0cy00027bLeonowicz, M. E., Lawton, J. A., Lawton, S. L., & Rubin, M. K. (1994). MCM-22: A Molecular Sieve with Two Independent Multidimensional Channel Systems. Science, 264(5167), 1910-1913. doi:10.1126/science.264.5167.1910Lawton, S. L., Fung, A. S., Kennedy, G. J., Alemany, L. B., Chang, C. D., Hatzikos, G. H., … Woessner, D. E. (1996). Zeolite MCM-49:  A Three-Dimensional MCM-22 Analogue Synthesized byin SituCrystallization. The Journal of Physical Chemistry, 100(9), 3788-3798. doi:10.1021/jp952871eKennedy, G. J., Lawton, S. L., Fung, A. S., Rubin, M. K., & Steuernagel, S. (1999). Multinuclear MAS NMR studies of zeolites MCM-22 and MCM-49. Catalysis Today, 49(4), 385-399. doi:10.1016/s0920-5861(98)00444-1Santos Marques, A. L., Fontes Monteiro, J. L., & Pastore, H. O. (1999). Static crystallization of zeolites MCM-22 and MCM-49. Microporous and Mesoporous Materials, 32(1-2), 131-145. doi:10.1016/s1387-1811(99)00099-2Vuono, D., Pasqua, L., Testa, F., Aiello, R., Fonseca, A., Korányi, T. I., & Nagy, J. B. (2006). Influence of NaOH and KOH on the synthesis of MCM-22 and MCM-49 zeolites. Microporous and Mesoporous Materials, 97(1-3), 78-87. doi:10.1016/j.micromeso.2006.07.015Corma, A., Corell, C., Pérez-Pariente, J., Guil, J. M., Guil-López, R., Nicolopoulos, S., … Vallet-Regi, M. (1996). Adsorption and catalytic properties of MCM-22: The influence of zeolite structure. Zeolites, 16(1), 7-14. doi:10.1016/0144-2449(95)00084-4Ravishankar, R., Sen, T., Ramaswamy, V., Soni, H. S., Ganapathy, S., & Sivasanker., S. (1994). Synthesis, Characterization and Catalytic properties of Zeolite PSH-3/MCM-22. Zeolites and Related Microporous Materials: State of the Art 1994 - Proceedings of the 10th International Zeolite Conference, Garmisch-Partenkirchen, Germany, 17-22 July 1994, 331-338. doi:10.1016/s0167-2991(08)64131-2Güray, I., Warzywoda, J., Baç, N., & Sacco, A. (1999). Synthesis of zeolite MCM-22 under rotating and static conditions. Microporous and Mesoporous Materials, 31(3), 241-251. doi:10.1016/s1387-1811(99)00075-xWang, Y.-M., Shu, X.-T., & He, M.-Y. (2001). 02-P-34 - Static synthesis of zeolite MCM-22. Zeolites and Mesoporous Materials at the dawn of the 21st century, Proceedings of the 13th International Zeolite Conference,, 194. doi:10.1016/s0167-2991(01)81373-2Chan, I. Y., Labun, P. A., Pan, M., & Zones, S. I. (1995). High-resolution electron microscopy characterization of SSZ-25 zeolite. Microporous Materials, 3(4-5), 409-418. doi:10.1016/0927-6513(94)00050-6Camblor, M. A., Corma, A., Díaz-Cabañas, M.-J., & Baerlocher, C. (1998). Synthesis and Structural Characterization of MWW Type Zeolite ITQ-1, the Pure Silica Analog of MCM-22 and SSZ-25. The Journal of Physical Chemistry B, 102(1), 44-51. doi:10.1021/jp972319kAguilar, J., Corma, A., Melo, F. V., & Sastre, E. (2000). Alkylation of biphenyl with propylene using acid catalysts. Catalysis Today, 55(3), 225-232. doi:10.1016/s0920-5861(99)00250-3Camblor, M. A., Corell, C., Corma, A., Díaz-Cabañas, M.-J., Nicolopoulos, S., González-Calbet, J. M., & Vallet-Regí, M. (1996). A New Microporous Polymorph of Silica Isomorphous to Zeolite MCM-22. Chemistry of Materials, 8(10), 2415-2417. doi:10.1021/cm960322vNicolopoulos, S., González-Calbet, J. M., Vallet-Regi, M., Camblor, M. A., Corell, C., Corma, A., & Diaz-Cabañas, M. J. (1997). Use of Electron Microscopy and Microdiffraction for Zeolite Framework Comparison. Journal of the American Chemical Society, 119(45), 11000-11005. doi:10.1021/ja963703iMillini, R., Perego, G., Parker, W. O., Bellussi, G., & Carluccio, L. (1995). Layered structure of ERB-1 microporous borosilicate precursor and its intercalation properties towards polar molecules. Microporous Materials, 4(2-3), 221-230. doi:10.1016/0927-6513(95)00013-yKhouw, C. B., & Davis, M. E. (1995). Catalytic Activity of Titanium Silicates Synthesized in the Presence of Alkali-Metal and Alkaline-Earth Ions. Journal of Catalysis, 151(1), 77-86. doi:10.1006/jcat.1995.1010Wu, P., Tatsumi, T., Komatsu, T., & Yashima, T. (2001). A Novel Titanosilicate with MWW Structure: II. Catalytic Properties in the Selective Oxidation of Alkenes. Journal of Catalysis, 202(2), 245-255. doi:10.1006/jcat.2001.3278Wu, P., Tatsumi, T., Komatsu, T., & Yashima, T. (2001). A Novel Titanosilicate with MWW Structure. I. Hydrothermal Synthesis, Elimination of Extraframework Titanium, and Characterizations. The Journal of Physical Chemistry B, 105(15), 2897-2905. doi:10.1021/jp002816sWu, P., & Tatsumi, T. (2001). Extremely high trans selectivity of Ti-MWW in epoxidation of alkenes with hydrogen peroxide. Chemical Communications, (10), 897-898. doi:10.1039/b101426iSasidharan, M., Wu, P., & Tatsumi, T. (2002). Epoxidation of α,β-Unsaturated Carbonyl Compounds over Various Titanosilicates. Journal of Catalysis, 205(2), 332-338. doi:10.1006/jcat.2001.3440Wu, P., & Tatsumi, T. (2002). Uniquetrans-Selectivity of Ti-MWW in Epoxidation ofcis/trans-Alkenes with Hydrogen Peroxide. The Journal of Physical Chemistry B, 106(4), 748-753. doi:10.1021/jp0120965Wu, P., & Tatsumi, T. (2002). Preparation of B-free Ti-MWW through reversible structural conversion. Chemical Communications, (10), 1026-1027. doi:10.1039/b201170kFan, W., Wu, P., Namba, S., & Tatsumi, T. (2004). A Titanosilicate That Is Structurally Analogous to an MWW-Type Lamellar Precursor. Angewandte Chemie International Edition, 43(2), 236-240. doi:10.1002/anie.200352723Kim, S. J., Jung, K.-D., & Joo, O.-S. (2004). Synthesis and Characterization of Gallosilicate Molecular Sieve with the MCM-22 Framework Topology. Journal of Porous Materials, 11(4), 211-218. doi:10.1023/b:jopo.0000046348.23346.ddTeixeira-Neto, A. A., Marchese, L., Landi, G., Lisi, L., & Pastore, H. O. (2008). [V,Al]-MCM-22 catalyst in the oxidative dehydrogenation of propane. Catalysis Today, 133-135, 1-6. doi:10.1016/j.cattod.2007.11.012Wu, Y., Wang, J., Liu, P., Zhang, W., Gu, J., & Wang, X. (2010). Framework-Substituted Lanthanide MCM-22 Zeolite: Synthesis and Characterization. Journal of the American Chemical Society, 132(51), 17989-17991. doi:10.1021/ja107633jIkeda, T., Akiyama, Y., Oumi, Y., Kawai, A., & Mizukami, F. (2004). The Topotactic Conversion of a Novel Layered Silicate into a New Framework Zeolite. Angewandte Chemie International Edition, 43(37), 4892-4896. doi:10.1002/anie.200460168Dorset, D. L., & Kennedy, G. J. (2004). Crystal Structure of MCM-65:  An Alternative Linkage of Ferrierite Layers. The Journal of Physical Chemistry B, 108(39), 15216-15222. doi:10.1021/jp040305qTsunoji, N., Ikeda, T., Ide, Y., Sadakane, M., & Sano, T. (2012). Synthesis and characteristics of novel layered silicates HUS-2 and HUS-3 derived from a SiO2–choline hydroxide–NaOH–H2O system. Journal of Materials Chemistry, 22(27), 13682. doi:10.1039/c2jm31872eIkeda, T., Kayamori, S., Oumi, Y., & Mizukami, F. (2010). Structure Analysis of Si-Atom Pillared Lamellar Silicates Having Micropore Structure by Powder X-ray Diffraction. The Journal of Physical Chemistry C, 114(8), 3466-3476. doi:10.1021/jp912026nXu, H., Yang, B., Jiang, J., Jia, L., He, M., & Wu, P. (2013). Post-synthesis and adsorption properties of interlayer-expanded PLS-4 zeolite. Microporous and Mesoporous Materials, 169, 88-96. doi:10.1016/j.micromeso.2012.10.005Schreyeck, L., Caullet, P., Mougenel, J.-C., Guth, J.-L., & Marler, B. (1995). A layered microporous aluminosilicate precursor of FER-type zeolite. Journal of the Chemical Society, Chemical Communications, (21), 2187. doi:10.1039/c39950002187Schreyeck, L., Caullet, P., Mougenel, J. C., Guth, J. L., & Marler, B. (1996). PREFER: a new layered (alumino) silicate precursor of FER-type zeolite. Microporous Materials, 6(5-6), 259-271. doi:10.1016/0927-6513(96)00032-6Schreyeck, L., Caullet, P., Mougenel, J. C., Guth, J. L., & Marler, B. (1997). A new layered (alumino) silicate and its transformation into a FER-type material by calcination. Progress in Zeolite and Microporous Materials, Preceedings of the 11th International Zeolite Conference, 1949-1956. doi:10.1016/s0167-2991(97)80659-3Corma, A., Diaz, U., Domine, M. E., & Fornés, V. (2000). AlITQ-6 and TiITQ-6: Synthesis, Characterization, and Catalytic Activity. Angewandte Chemie International Edition, 39(8), 1499-1501. doi:10.1002/(sici)1521-3773(20000417)39:83.0.co;2-0Ikeda, T., Kayamori, S., & Mizukami, F. (2009). Synthesis and crystal structure of layered silicate PLS-3 and PLS-4 as a topotactic zeolite precursor. Journal of Materials Chemistry, 19(31), 5518. doi:10.1039/b905415dYang, B., Jiang, J., Xu, H., Liu, Y., Peng, H., & Wu, P. (2013). Selective skeletal isomerization of 1-butene over FER-type zeolites derived from PLS-3 lamellar precursors. Applied Catalysis A: General, 455, 107-113. doi:10.1016/j.apcata.2013.01.024Burton, A., Accardi, R. J., Lobo, R. F., Falcioni, M., & Deem, M. W. (2000). MCM-47:  A Highly Crystalline Silicate Composed of Hydrogen-Bonded Ferrierite Layers. Chemistry of Materials, 12(10), 2936-2942. doi:10.1021/cm000243qMillini, R., Carluccio, L. C., Carati, A., Bellussi, G., Perego, C., Cruciani, G., & Zanardi, S. (2004). ERS-12: A new layered tetramethylammonium silicate composed by ferrierite layers. Microporous and Mesoporous Materials, 74(1-3), 59-71. doi:10.1016/j.micromeso.2004.06.007García, R., Gómez-Hortigüela, L., Díaz, I., Sastre, E., & Pérez-Pariente, J. (2008). Synthesis of Materials Containing Ferrierite Layers Using Quinuclidine and 1-Benzyl-1-methylpyrrolidine as Structure-Directing Agents. An Experimental and Computational Study†. Chemistry of Materials, 20(3), 1099-1107. doi:10.1021/cm702098jAndrews, S. J., Papiz, M. Z., McMeeking, R., Blake, A. J., Lowe, B. M., Franklin, K. R., … Harding, M. M. (1988). Piperazine silicate (EU 19): the structure of a very small crystal determined with synchrotron radiation. Acta Crystallographica Section B Structural Science, 44(1), 73-77. doi:10.1107/s0108768187009820Rollmann, L. D., Schlenker, J. L., Lawton, S. L., Kennedy, C. L., & Kennedy, G. J. (2002). MCM-69, a novel layered analogue of EU-19. Microporous and Mesoporous Materials, 53(1-3), 179-193. doi:10.1016/s1387-1811(02)00338-4Zanardi, S., Alberti, A., Cruciani, G., Corma, A., Fornés, V., & Brunelli, M. (2004). Crystal Structure Determination of Zeolite Nu-6(2) and Its Layered Precursor Nu-6(1). Angewandte Chemie International Edition, 43(37), 4933-4937. doi:10.1002/anie.200460085Araki, T. (1980). Crystal structure of a cesium aluminosilicate, Cs[AlSi5O12]. Zeitschrift für Kristallographie, 152(3-4), 207-213. doi:10.1524/zkri.1980.152.3-4.207Hughes, R. W., & Weller, M. T. (2002). The structure of the CAS type zeolite, Cs4[Al4Si20O48] by high-resolution powder neutron diffraction MAS and NMR. Microporous and Mesoporous Materials, 51(3), 189-196. doi:10.1016/s1387-1811(01)00476-0Marler, B., Camblor, M. A., & Gies, H. (2006). The disordered structure of silica zeolite EU-20b, obtained by topotactic condensation of the piperazinium containing layer silicate EU-19. Microporous and Mesoporous Materials, 90(1-3), 87-101. doi:10.1016/j.micromeso.2005.10.047Blake, A. J., Franklin, K. R., & Lowe, B. M. (1988). Preparation and properties of piperazine silicate (EU-19) and a silica polymorph (EU-20). Journal of the Chemical Society, Dalton Transactions, (10), 2513. doi:10.1039/dt9880002513Lagaly, G. (1986). Interaction of alkylamines with different types of layered compounds. Solid State Ionics, 22(1), 43-51. doi:10.1016/0167-2738(86)90057-3Roth, W. J., Kresge, C. T., Vartuli, J. C., Leonowicz, M. E., Fung, A. S., & McCullen, S. B. (1995). MCM-36: The first pillared molecular sieve with zeoliteproperties. Catalysis by Microporous Materials, Proceedings of ZEOCAT ’95, 301-308. doi:10.1016/s0167-2991(06)81236-xEder, F., He, Y., Nivarthy, G., & Lercher, J. A. (2010). Sorption of alkanes on novel pillared zeolites; comparison between MCM-22 and MCM-36. Recueil des Travaux Chimiques des Pays-Bas, 115(11-12), 531-535. doi:10.1002/recl.19961151114He, Y. ., Nivarthy, G. ., Eder, F., Seshan, K., & Lercher, J. . (1998). Synthesis, characterization and catalytic activity of the pillared molecular sieve MCM-36. Microporous and Mesoporous Materials, 25(1-3), 207-224. doi:10.1016/s1387-1811(98)00210-8Corma, A., Fornés, V., Martı́nez-Triguero, J., & Pergher, S. B. (1999). Delaminated Zeolites: Combining the Benefits of Zeolites and Mesoporous Materials for Catalytic Uses. Journal of Catalysis, 186(1), 57-63. doi:10.1006/jcat.1999.2503J. Roth, W., C. Vartuli, J., & T. Kresge, C. (2000). Characterization of mesoporous molecular sieves: differences between M41s and pillared layered zeolites. Studies in Surface Science and Catalysis, 501-508. doi:10.1016/s0167-2991(00)80251-7Roth, W. J., & Kresge, C. T. (2011). Intercalation chemistry of NU-6(1), the layered precursor to zeolite NSI, leading to the pillared zeolite MCM-39(Si). Microporous and Mesoporous Materials, 144(1-3), 158-161. doi:10.1016/j.micromeso.2011.04.006Barth, J.-O., Kornatowski, J., & Lercher*, J. A. (2002). Synthesis of new MCM-36 derivatives pillared with alumina or magnesia–alumina. Journal of Materials Chemistry, 12(2), 369-373. doi:10.1039/b104824bBARTH, J., JENTYS, A., ILIOPOULOU, E., VASALOS, I., & LERCHER, J. (2004). Novel derivatives of MCM-36 as catalysts for the reduction of nitrogen oxides from FCC regenerator flue gas streams. Journal of Catalysis, 227(1), 117-129. doi:10.1016/j.jcat.2004.06.021Kornatowski, J., Barth, J.-O., & Lercher, J. A. (2005). New modifications of layered MCM-36 molecular sieve pillared with various mixed oxides: facts and perspectives. Studies in Surface Science and Catalysis, 349-356. doi:10.1016/s0167-2991(05)80228-9Barth, J.-O., Jentys, A., Kornatowski, J., & Lercher, J. A. (2004). Control of Acid−Base Properties of New Nanocomposite Derivatives of MCM-36 by Mixed Oxide Pillaring. Chemistry of Materials, 16(4), 724-730. doi:10.1021/cm0349607Schenkel, R., Barth, J. O., Kornatowski, J., Jentys, A., & Lercher, J. A. (2004). Adsorption of methanol on MCM-36 derivatives with strong acid and base sites. Studies in Surface Science and Catalysis, 1598-1605. doi:10.1016/s0167-2991(04)80683-9Maheshwari, S., Jordan, E., Kumar, S., Bates, F. S., Penn, R. L., Shantz, D. F., & Tsapatsis, M. (2008). Layer Structure Preservation during Swelling, Pillaring, and Exfoliation of a Zeolite Precursor. Journal of the American Chemical Society, 130(4), 1507-1516. doi:10.1021/ja077711iLiu, D., Bhan, A., Tsapatsis, M., & Al Hashimi, S. (2010). Catalytic Behavior of Brønsted Acid Sites in MWW and MFI Zeolites with Dual Meso- and Microporosity. ACS Catalysis, 1(1), 7-17. doi:10.1021/cs100042rCorma, A. (1995). Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions. Chemical Reviews, 95(3), 559-614. doi:10.1021/cr00035a006Wu, P., Kan, Q., Wang, D., Xing, H., Jia, M., & Wu, T. (2005). The synthesis of Mo/H-MCM-36 catalyst and its catalytic behavior in methane non-oxidative aromatization. Catalysis Communications, 6(7), 449-454. doi:10.1016/j.catcom.2005.04.002Lallemand, M., Rusu, O. A., Dumitriu, E., Finiels, A., Fajula, F., & Hulea, V. (2008). NiMCM-36 and NiMCM-22 catalysts for the ethylene oligomerization: Effect of zeolite texture and nickel cations/acid sites ratio. Applied Catalysis A: General, 338(1-2), 37-43. doi:10.1016/j.apcata.2007.12.024Lallemand, M., Rusu, O. A., Dumitriu, E., Finiels, A., Fajula, F., & Hulea, V. (2008). Ni-MCM-36 and Ni-MCM-22 catalysts for the ethylene oligomerization. Studies in Surface Science and Catalysis, 1139-1142. doi:10.1016/s0167-2991(08)80087-0Aguilar, J., Pergher, S. B. C., Detoni, C., Corma, A., Melo, F. V., & Sastre, E. (2008). Alkylation of biphenyl with propylene using MCM-22 and ITQ-2 zeolites. Catalysis Today, 133-135, 667-672. doi:10.1016/j.cattod.2007.11.057Zhang, Y., Xing, H., Yang, P., Wu, P., Jia, M., Sun, J., & Wu, T. (2007). Alkylation of benzene with propylene over MCM-36: A comparative study with MCM-22 zeolite synthesized from the same precursors. Reaction Kinetics and Catalysis Letters, 90(1), 45-52. doi:10.1007/s11144-007-4972-0Meloni, D., Dumitriu, E., Monaci, R., & Solinas, V. (2008). Liquid-phase alkylation of phenol with t-Butanol over H-MCM-22, H-ITQ-2 and H-MCM-36 catalysts. Studies in Surface Science and Catalysis, 1111-1114. doi:10.1016/s0167-2991(08)80080-8Dumitriu, E., Fechete, I., Caullet, P., Kessler, H., Hulea, V., Chelaru, C., … Bourdon, X. (2002). Conversion of aromatic hydrocarbons over MCM-22 and MCM-36 catalysts. Impact of Zeolites and other Porous Materials on the new Technologies at the Beginning of the New Millennium, Proceedings of the 2nd International FEZA (Federation of the European Zeolite Associations) Conference, 951-958. doi:10.1016/s0167-2991(02)80123-9Lacarriere, A., Luck, F., Świerczyński, D., Fajula, F., & Hulea, V. (2011). Methanol to hydrocarbons over zeolites with MWW topology: Effect of zeolite texture and acidity. Applied Catalysis A: General, 402(1-2), 208-217. doi:10.1016/j.apcata.2011.06.003Barth, J., Jentys, A., & Lercher, J. A. (2004). Development of novel catalytic additives for the in situ reduction of NOx from fluid catalytic cracking units. Recent Advances in the Science and Technology of Zeolites and Related Materials, Proceedings of the 14th International Zeolite Conference, 2441-2448. doi:10.1016/s0167-2991(04)80509-3Ding, J., Liu, H., Yuan, P., Shi, G., & Bao, X. (2013). Catalytic Properties of a Hierarchical Zeolite Synthesized from a Natural Aluminosilicate Mineral without the Use of a Secondary Mesoscale Template. ChemCatChem, 5(8), 2258-2269. doi:10.1002/cctc.201300049Zhu, J., Cui, Y., Wang, Y., & Wei, F. (2009). Direct synthesis of hierarchical zeolite from a natural layered material. Chemical Communications, (22), 3282. doi:10.1039/b902661dWang, Y. J., Tang, Y., Wang, X. D., Dong, A. G., Shan, W., & Gao, Z. (2001). Fabrication of Hierarchically Structured Zeolites through Layer-by-Layer Assembly of Zeolite Nanocrystals on Diatom Templates. Chemistry Letters, 30(11), 1118-1119. doi:10.1246/cl.2001.1118Rhodes, K. H., Davis, S. A., Caruso, F., Zhang, B., & Mann, S. (2000). Hierarchical Assembly of Zeolite Nanoparticles into Ordered Macroporous Monoliths Using Core−Shell Building Blocks. Chemistry of Materials, 12(10), 2832-2834. doi:10.1021/cm000438yCorma, A., Díaz, U., García, T., Sastre, G., & Velty, A. (2010). Multifunctional Hybrid Organic−Inorganic Catalytic Materials with a Hierarchical System

    Synthesis of the Ti-Silicate Form of BEC Polymorph of B-Zeolite Assisted by Molecular Modeling

    Full text link
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in The Journal of Physical Chemistry C, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://doi.org/10.1021/jp805400u Published Work, see http://pubs.acs.org/page/policy/articlesonrequest/index.html[EN] The K(+) free pure silica form of polymorph C (BEC) of beta-zeolite has been synthesized with a cationic organic structure directing agent (SDA) that was predicted best, out of a series of nine potentials, by means of modeling techniques. On the bases of this synthesis method, the Ti-BEC zeolite has been obtained which owing to the pore topology and dimensions shows a higher epoxidation activity than the Ti-beta-polymorph either with H(2)O(2) or organic peroxides as oxidants.The authors thank the CICYT for financial support (Project MAT 2006-14274-CO2-01). G.S. thanks "Centro de Calculo de la Universidad Politecnica de Valencia" for the use of their computational facilities. M.M. and P.S. thank ITQ for a scholarship. We also thank intramural project CRENATUM.Moliner Marin, M.; Serna Merino, PM.; Cantin Sanz, A.; Sastre Navarro, GI.; Díaz Cabañas, MJ.; Corma Canós, A. (2008). Synthesis of the Ti-Silicate Form of BEC Polymorph of B-Zeolite Assisted by Molecular Modeling. The Journal of Physical Chemistry C. 112(49):19547-19554. https://doi.org/10.1021/jp805400uS19547195541124

    Multipore zeolites: synthesis and catalytic applications

    Full text link
    [EN] In the last few years, important efforts have been made to synthesize so-called "multipore" zeolites, which contain channels of different dimensions within the same crystalline structure. This is a very attractive subject, since the presence of pores of different sizes would favor the preferential diffusion of reactants and products through those different channel systems, allowing unique catalytic activities for specific chemical processes. In this Review we describe the most attractive achievements in the rational synthesis of multipore zeolites, containing small to extra-large pores, and the improvements reported for relevant chemical processes when these multipore zeolites have been used as catalysts.Financial support by the Spanish Government-MINECO through “Severo Ochoa” (SEV 2012-0267), Consolider Ingenio 2010-Multicat, MAT2012-37160, MAT2012-31657 and Intramural-201480I015 is acknowledged.Moliner Marin, M.; Martínez, C.; Corma Canós, A. (2015). Multipore zeolites: synthesis and catalytic applications. Angewandte Chemie International Edition. 54(12):3560-3579. https://doi.org/10.1002/anie.201406344S35603579541
    corecore