850 research outputs found

    Non-Lorentzian Field Theories with Maximal Supersymmetry and Moduli Space Dynamics

    Get PDF
    We present gauge theories in 2+1 and 4+1 dimensions with 16 supersymmetries which are invariant under rotations and translations but not boosts. The on-shell conditions reduce the dynamics to motion on a moduli space of BPS states graded by a topologically conserved quantity. On each component of the moduli space only half the supersymmetry is realised. We argue that these theories describe M2-branes and M5-branes which have been infinitely boosted so that their worldvolume `time' has become null.Comment: Minor corrections including an extra term in the susy variation of G_{ij

    A critical multimodal discourse analysis of German language motivation in Deutsche Welle's website media and its relation to soft power

    Get PDF
    The body of work analyses the design choices of a German language education webpage. Design considerations around webpage design and projection of soft power are analysed by applying three analytical frameworks in order to better understand their influence on user experience and L2 motivation. The first two analyses are technical and consider the design of the webpage; webpage composition is analysed through Garrett’s (2011) web-design guide on user-centred design principles, and the multimodal analysis of the aesthetics and functionality of interactivity (the affordance of a text being acted upon) is applied from Adami’s (2015) Social semiotic framework. The third analysis is literary and studies the narrative elements of production through Ringo and Kashyap’s (2021) fiction analysis framework. The three analyses provide a comprehensive, multimodal understanding of the webpage design in order to determine the critical success factors that support L2 motivation and the projection of national soft power. The analysis found that the technical frameworks provided effective tools for webpage analysis due to their comprehensive articulation of webpage composition. The added value of combining Garrett’s (2011) and Adami’s (2015) respective work on webpage design and interactivity has provided a means of assessing the overall viability of a webpage as a learning aid. Garrett’s (2011) principles brought into question the design choices made and their effect on the user. Adami’s (2015) framework affirmed the importance of the appropriate interface for the type of webpage. Lastly, selected aspects from Ringo and Kashyap’s (2021) elements of literature composition enabled a user perspective of the effective motivational aspects of the production. Standards for webpage design enable a prescribed impact on the user experience and inform on the aims of the designer, where the implementation of various factors can support or be detrimental to effective L2 motivation. The analysis on website media has demonstrated the challenges that education organisations face when designing multimodal education media and how one such organisation goes about making use of success factors within webpage and narrative design that best harness soft power and contribute toward nation attractiveness for effective L2 motivation

    The Role of Differential Ablation and Dynamic Detachment in Driving Accelerating Mass Loss From a Debris-Covered Himalayan Glacier

    Get PDF
    Sustained mass loss from Himalayan glaciers is causing supraglacial debris to expand and thicken, with the expectation that thicker debris will suppress ablation and extend glacier longevity. However, debris-covered glaciers are losing mass at similar rates to clean-ice glaciers in High Mountain Asia. This rapid mass loss is attributed to the combined effects of; (a) low or reversed mass balance gradients across debris-covered glacier tongues, (b) differential ablation processes that locally enhance ablation within the debris-covered section of the glacier, for example, at ice cliffs and supraglacial ponds, and (c) a decrease in ice flux from the accumulation area in response to climatic warming. Adding meter-scale spatial variations in supraglacial debris thickness to an ice-flow model of Khumbu Glacier, Nepal, increased mass loss by 47% relative to simulations assuming a continuous debris layer over a 31-year period (1984–2015 CE) but overestimated the reduction in ice flux. Therefore, we investigated if simulating the effects of dynamic detachment of the upper active glacier from the debris-covered tongue would give a better representation of glacier behavior, as suggested by observations of change in glacier dynamics and structure indicating that this process occurred during the last 100 years. Observed glacier change was reproduced more reliably in simulations of the active, rather than entire, glacier extent, indicating that Khumbu Glacier has passed a dynamic tipping point by dynamically detaching from the heavily debris-covered tongue that contains 20% of the former ice volume

    Microbial use of low molecular weight DOM in filtered and unfiltered freshwater:Role of ultra-small microorganisms and implications for water quality monitoring

    Get PDF
    Dissolved organic matter (DOM) plays a central role in regulating productivity and nutrient cycling in freshwaters. It is therefore vital that we can representatively sample and preserve DOM in freshwaters for subsequent analysis. Here we investigated the effect of filtration, temperature (5 and 25 °C) and acidification (HCl) on the persistence of low molecular weight (MW) dissolved organic carbon (DOC), nitrogen (DON) and orthophosphate in oligotrophic and eutrophic freshwater environments. Our results showed the rapid loss of isotopically-labelled glucose and amino acids from both filtered (0.22 and 0.45 μm) and unfiltered waters. We ascribe this substrate depletion in filtered samples to the activity of ultra-small (< 0.45 μm) microorganisms (bacteria and archaea) present in the water. As expected, the rate of C, N and P loss was much greater at higher temperatures and was repressed by the addition of HCl. Based on our results and an evaluation of the protocols used in recently published studies, we conclude that current techniques used to sample water for low MW DOM characterisation are frequently inadequate and lack proper validation. In contrast to the high degree of analytical precision and rigorous statistical analysis of most studies, we argue that insufficient consideration is still given to the presence of ultra-small microorganisms and potential changes that can occur in the low MW fraction of DOM prior to analysis

    Variation in dissolved organic matter (DOM) stoichiometry in UK freshwaters:Assessing the influence of land cover and soil C:N ratio on DOM composition

    Get PDF
    Dissolved organic matter (DOM) plays an important role in freshwater biogeochemistry. To investigate the influence of catchment character on the quality and quantity of DOM in freshwaters, forty-five sampling sites draining subcatchments of contrasting soil type, hydrology and land cover within one large upland-dominated and one large lowland-dominated catchment, were sampled over a one-year period. Dominant land cover in each subcatchment included: arable and horticultural, blanket peatland, coniferous woodland, improved-, unimproved-, acid- and calcareous-grasslands. The composition of the C, N, and P pool was determined as a function of the inorganic nutrient species (NO3-, NO2-, NH4+, PO43-) and dissolved organic nutrient (DOC, DON and DOP) concentrations. DOM quality was assessed by calculation of the molar DOC:DON and DOC:DOP ratios and specific ultraviolet absorbance (SUVA254). In catchments with little anthropogenic nutrient inputs, DON and DOP typically comprised >80% of the TDN and TDP concentrations. By contrast, in heavily impacted agricultural catchments DON and DOP typically comprised 5-15% of TDN and 10-25% of TDP concentrations. Significant differences in DOC:DON and DOC:DOP ratios were observed between land cover class with significant correlations observed between both the DOC:DON and DOC:DOP molar ratios and SUVA254 (rs = 0.88 and 0.84, respectively). Analysis also demonstrated a significant correlation between soil C:N ratio and instream DOC:DON/DOP (rs = 0.79 and 0.71 respectively). We infer from this that soil properties, specifically the C:N ratio of the soil organic matter pool, has a significant influence on the composition of DOM in streams draining through these landscapes

    Synaptic expression of TAR-DNA-binding protein 43 in the mouse spinal cord determined using super-resolution microscopy

    Get PDF
    Funding: This work was supported by Motor Neurone Disease (MND) Association UK (Miles/Apr18/863-791), Chief Scientist Office, RS Macdonald Charitable Trust, ALS CURE Project, the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Programme (695568 SYNNOVATE), Simons Foundation Autism Research Initiative (529085), and the Wellcome Trust (Technology Development grant 202932).Amyotrophic Lateral Sclerosis (ALS) is characterised by a loss of motor neurons in the brain and spinal cord that is preceded by early-stage changes in synapses that may be associated with TAR-DNA-Binding Protein 43 (TDP-43) pathology. Cellular inclusions of hyperphosphorylated TDP-43 (pTDP-43) are a key hallmark of neurodegenerative diseases such ALS. However, there has been little characterisation of the synaptic expression of TDP-43 inside subpopulations of spinal cord synapses. This study utilises a range of high-resolution and super-resolution microscopy techniques with immunolabelling, as well as an aptamer-based TDP-43 labelling strategy visualised with single-molecule localisation microscopy, to characterise and quantify the presence of pTDP-43 in populations of excitatory synapses near where motor neurons reside in the lateral ventral horn of the mouse lumbar spinal cord. We observe that TDP-43 is expressed in approximately half of spinal cord synapses as nanoscale clusters. Synaptic TDP-43 clusters are found most abundantly at synapses associated with VGLUT1-positive presynaptic terminals, compared to VGLUT2-associated synapses. Our nanoscopy techniques showed no difference in the subsynaptic expression of pTDP-43 in the ALS mouse model, SOD1G93a, compared to healthy controls, despite prominent structural deficits in VGLUT1-associated synapses in SOD1G93a mice. This research characterizes the basic synaptic expression of TDP-43 with nanoscale precision and provides a framework with which to investigate the potential relationship between TDP-43 pathology and synaptic pathology in neurodegenerative diseases.Publisher PDFPeer reviewe

    Land cover and nutrient enrichment regulates low-molecular weight dissolved organic matter turnover in freshwater ecosystems

    Get PDF
    Dissolved organic matter (DOM) is a complex mixture of carbon-containing compounds. The low-molecular weight (LMW) fraction constitutes thousands of different compounds and represents a substantial proportion of DOM in aquatic ecosystems. The turnover rates of this LMW DOM can be extremely high. Due to the challenges of measuring this pool at a molecular scale, comparatively little is known of the fate of LMW DOM compounds in lotic systems. This study addresses this knowledge gap, investigating the microbial processing of LMW DOM across 45 sites representing a range of physicochemical gradients and dominant land covers in the United Kingdom. Radioisotope tracers representing LMW dissolved organic carbon (DOC) (glucose), dissolved organic nitrogen (DON) (amino acid mixture), dissolved organic phosphorus (DOP) (glucose-6-phosphate), and soluble reactive phosphorus (SRP, measured as orthophosphate) were used to measure the microbial uptake of different DOM compounds in river waters. The amount of DOM biodegradation varied between different components (DON ≥ DOC > DOP), with the rate of turnover of all three increasing along a gradient of N and P enrichment across the range of sites. Conversely, the uptake of SRP decreased along this same gradient. This was ascribed to preferential utilization of DOP over SRP. Dominant land cover had a significant effect on DOM use as a resource, due to its control of nutrient enrichment within the catchments. We conclude that nutrient enrichment of river waters will lead to further DOM removal from the water column, increased microbial growth, and a decrease in stream oxygen saturation, exacerbating the effects of eutrophication in rivers

    A 1D microphysical cloud model for Earth, and Earth-like exoplanets. Liquid water and water ice clouds in the convective troposphere

    Full text link
    One significant difference between the atmospheres of stars and exoplanets is the presence of condensed particles (clouds or hazes) in the atmosphere of the latter. The main goal of this paper is to develop a self-consistent microphysical cloud model for 1D atmospheric codes, which can reproduce some observed properties of Earth, such as the average albedo, surface temperature, and global energy budget. The cloud model is designed to be computationally efficient, simple to implement, and applicable for a wide range of atmospheric parameters for planets in the habitable zone. We use a 1D, cloud-free, radiative-convective, and photochemical equilibrium code originally developed by Kasting, Pavlov, Segura, and collaborators as basis for our cloudy atmosphere model. The cloud model is based on models used by the meteorology community for Earth's clouds. The free parameters of the model are the relative humidity and number density of condensation nuclei, and the precipitation efficiency. In a 1D model, the cloud coverage cannot be self-consistently determined, thus we treat it as a free parameter. We apply this model to Earth (aerosol number density 100 cm^-3, relative humidity 77 %, liquid cloud fraction 40 %, and ice cloud fraction 25 %) and find that a precipitation efficiency of 0.8 is needed to reproduce the albedo, average surface temperature and global energy budget of Earth. We perform simulations to determine how the albedo and the climate of a planet is influenced by the free parameters of the cloud model. We find that the planetary climate is most sensitive to changes in the liquid water cloud fraction and precipitation efficiency. The advantage of our cloud model is that the cloud height and the droplet sizes are self-consistently calculated, both of which influence the climate and albedo of exoplanets.Comment: To appear in Icaru
    • …
    corecore