704 research outputs found

    Peripheral blood mononuclear cell secretome for tissue repair

    Get PDF
    For almost two decades, cell-based therapies have been tested in modern regenerative medicine to either replace or regenerate human cells, tissues, or organs and restore normal function. Secreted paracrine factors are increasingly accepted to exert beneficial biological effects that promote tissue regeneration. These factors are called the cell secretome and include a variety of proteins, lipids, microRNAs, and extracellular vesicles, such as exosomes and microparticles. The stem cell secretome has most commonly been investigated in pre-clinical settings. However, a growing body of evidence indicates that other cell types, such as peripheral blood mononuclear cells (PBMCs), are capable of releasing significant amounts of biologically active paracrine factors that exert beneficial regenerative effects. The apoptotic PBMC secretome has been successfully used pre-clinically for the treatment of acute myocardial infarction, chronic heart failure, spinal cord injury, stroke, and wound healing. In this review we describe the benefits of choosing PBMCs instead of stem cells in regenerative medicine and characterize the factors released from apoptotic PBMCs. We also discuss pre-clinical studies with apoptotic cell-based therapies and regulatory issues that have to be considered when conducting clinical trials using cell secretome-based products. This should allow the reader to envision PBMC secretome-based therapies as alternatives to all other forms of cell-based therapies.(VLID)348919

    Retinotopic Activation in Response to Subjective Contours in Primary Visual Cortex

    Get PDF
    Objects in our visual environment are arranged in depth and hence there is a considerable amount of overlap and occlusion in the image they generate on the retina. In order to properly segment the image into figure and background, boundary interpolation is required even across large distances. Here we study the cortical mechanisms involved in collinear contour interpolation using fMRI. Human observers were asked to discriminate the curvature of interpolated boundaries in Kanizsa figures and in control configurations, which contained identical physical information but did not generated subjective shapes. We measured a spatially precise spin-echo BOLD signal and found stronger responses to subjective shapes than non-shapes at the subjective boundary locations, but not at the inducer locations. The responses to subjective contours within primary visual cortex were retinotopically specific and analogous to that to real contours, which is intriguing given that subjective and luminance-defined contours are physically fundamentally different. We suggest that in the absence of retinal stimulation, the observed activation changes in primary visual cortex are driven by intracortical interactions and feedback, which are revealed in the absence of a physical stimulus

    DNase1L2 Degrades Nuclear DNA during Corneocyte Formation

    Get PDF
    The removal of keratinocyte (KC) nuclear DNA by deoxyribonucleases (DNases) is an important step in the formation of normal stratum corneum (SC). However, the molecular identity of the DNA-degrading enzymes has so far remained elusive. Here we show that the endonuclease DNase1-like 2 (DNase1L2) is preferentially expressed in the epidermis and that its expression correlates with terminal differentiation of KC in vitro and in vivo. In biopsies of normal skin, DNase1L2 mRNA was regularly found in suprabasal KC and DNase1L2 protein was highly abundant in the stratum granulosum. In contrast to normal skin, DNase1L2 expression was downregulated in parakeratotic epidermis such as in psoriatic lesions. When DNase1L2 gene expression was knocked down by small interfering RNA in a human skin equivalent model, nuclei were maintained through all layers of the SC. Taken together, our data demonstrate that DNase1L2 plays an essential role in DNA degradation during terminal differentiation of epidermal KC

    Di‐ and Tetracyano‐Substituted Pyrene‐Fused Pyrazaacenes: Aggregation in the Solid State

    Get PDF
    Means to stream: Five di- and tetracyano-substituted pyrene-fused pyrazaacenes were synthesized and studied as potential electron acceptors in the solid state. Single crystals of all compounds were grown, and the crystal packing was studied by XRD and DFT calculations of transfer integrals and reorganization energies with a view to their possible use as n-type semiconductors. Five di- and tetracyano-substituted pyrene-fused pyrazaacenes were synthesized and studied as potential electron acceptors in the solid state. Single crystals of all compounds were grown and the crystal packing studied by DFT calculations (transfer integrals and reorganization energies) to get insight into possible use for semiconducting charge transport

    Quinoxalinophenanthrophenazine Based Cruciforms

    Get PDF
    Quinoxalinophenanthrophenazines (QPPs) and related structures are an emerging class of stable fused N-heteropolycyclic aromatics. By vertical attachment of aromatic substituents at the pyrene core, cruciform QPPs are accessible, which open new opportunities to adjust HOMO and LUMO levels of the QPPs nearly independent from each other. A series of cruciform aryl-substituted quinoxalinophenanthrophenazine derivatives (QPPs) was synthesized through Suzuki-Miyaura cross-coupling of a 2,7-diborylated pyrene tetraketal building block. The QPPs were analyzed for their optoelectronic properties by absorption and emission spectroscopy, cyclic voltammetry and quantum-chemical calculations. The solid-state packing was investigated as well and evaluated for its charge transport properties by calculated charge transfer integrals

    DNase 2 Is the Main DNA-Degrading Enzyme of the Stratum Corneum

    Get PDF
    The cornified layer, the stratum corneum, of the epidermis is an efficient barrier to the passage of genetic material, i.e. nucleic acids. It contains enzymes that degrade RNA and DNA which originate from either the living part of the epidermis or from infectious agents of the environment. However, the molecular identities of these nucleases are only incompletely known at present. Here we performed biochemical and genetic experiments to determine the main DNase activity of the stratum corneum. DNA degradation assays and zymographic analyses identified the acid endonucleases L-DNase II, which is derived from serpinB1, and DNase 2 as candidate DNases of the cornified layer of the epidermis. siRNA-mediated knockdown of serpinB1 in human in vitro skin models and the investigation of mice deficient in serpinB1a demonstrated that serpinB1-derived L-DNase II is dispensable for epidermal DNase activity. By contrast, knockdown of DNase 2, also known as DNase 2a, reduced DNase activity in human in vitro skin models. Moreover, the genetic ablation of DNase 2a in the mouse was associated with the lack of acid DNase activity in the stratum corneum in vivo. The degradation of endogenous DNA in the course of cornification of keratinocytes was not impaired by the absence of DNase 2. Taken together, these data identify DNase 2 as the predominant DNase on the mammalian skin surface and indicate that its activity is primarily targeted to exogenous DNA

    How should novelty be valued in science?

    Get PDF
    <p>Box plot analysis of serum concentrations of sRAGE (A), esRAGE (B), S100A9 (C) and HMGB1 (D) in patients with CTEPH (n = 26) and controls (n = 33). Independent Student’s t-test was used to compare groups. <i>RAGE</i> receptor for advanced glycation endproducts, <i>sRAGE</i> soluble RAGE, <i>esRAGE</i> endogenous secretory RAGE, <i>S100A9</i> member of S100 family of Ca+ binding proteins, <i>HMGB1</i> high mobility group box1, <i>CTEPH</i> chronic thromboembolic pulmonary hypertension.</p

    Stromal Expression of Heat-Shock Protein 27 Is Associated with Worse Clinical Outcome in Patients with Colorectal Cancer Lung Metastases

    Get PDF
    Pulmonary metastases are common in patients with primary colorectal cancer (CRC). Heat- shock protein 27 (Hsp27) is upregulated in activated fibroblasts during wound healing and systemically elevated in various diseases. Cancer-associated fibroblasts (CAFs) are also thought to play a role as prognostic and predictive markers in various malignancies includ- ing CRC. Surprisingly, the expression of Hsp27 has never been assessed in CAFs. There- fore we aimed to investigate the expression level of Hsp27 in CAFs and its clinical implications in patients with CRC lung metastases

    Clinical Relevance of Elevated Soluble ST2, HSP27 and 20S Proteasome at Hospital Admission in Patients with COVID-19

    Get PDF
    Although, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) represents one of the biggest challenges in the world today, the exact immunopathogenic mechanism that leads to severe or critical Coronavirus Disease 2019 (COVID-19) has remained incompletely understood. Several studies have indicated that high systemic plasma levels of inflammatory cytokines result in the so-called “cytokine storm”, with subsequent development of microthrombosis, disseminated intravascular coagulation, and multiorgan-failure. Therefore, we reasoned those elevated inflammatory molecules might act as prognostic factors. Here, we analyzed 245 serum samples of patients with COVID-19, collected at hospital admission. We assessed the levels of heat shock protein 27 (HSP27), soluble suppressor of tumorigenicity-2 (sST2) and 20S proteasome at hospital admission and explored their associations with overall-, 30-, 60-, 90-day- and in-hospital mortality. Moreover, we investigated their association with the risk of ventilation. We demonstrated that increased serum sST2 was uni- and multivariably associated with all endpoints. Furthermore, we also identified 20S proteasome as independent prognostic factor for in-hospital mortality (sST2, AUC = 0.73; HSP27, AUC = 0.59; 20S proteasome = 0.67). Elevated sST2, HSP27, and 20S proteasome levels at hospital admission were univariably associated with higher risk of invasive ventilation (OR = 1.8; p < 0.001; OR = 1.1; p = 0.04; OR = 1.03, p = 0.03, respectively). These findings could help to identify high-risk patients early in the course of COVID-19

    Mononuclear cell secretome protects from experimental autoimmune myocarditis

    Get PDF
    Aims Supernatants of serum-free cultured mononuclear cells (MNC) contain a mix of immunomodulating factors (secretome), which have been shown to attenuate detrimental inflammatory responses following myocardial ischaemia. Inflammatory dilated cardiomyopathy (iDCM) is a common cause of heart failure in young patients. Experimental autoimmune myocarditis (EAM) is a CD4+ T cell-dependent model, which mirrors important pathogenic aspects of iDCM. The aim of this study was to determine the influence of MNC secretome on myocardial inflammation in the EAM model. Methods and results BALB/c mice were immunized twice with an alpha myosin heavy chain peptide together with Complete Freund adjuvant. Supernatants from mouse mononuclear cells were collected, dialysed, and injected i.p. at Day 0, Day 7, or Day 14, respectively. Myocarditis severity, T cell responses, and autoantibody formation were assessed at Day 21. The impact of MNC secretome on CD4+ T cell function and viability was evaluated using in vitro proliferation and cell viability assays. A single high-dose application of MNC secretome, injected at Day 14 after the first immunization, effectively attenuated myocardial inflammation. Mechanistically, MNC secretome induced caspase-8-dependent apoptosis in autoreactive CD4+ T cells. Conclusion MNC secretome abrogated myocardial inflammation in a CD4+ T cell-dependent animal model of autoimmune myocarditis. This anti-inflammatory effect of MNC secretome suggests a novel and simple potential treatment concept for inflammatory heart disease
    corecore