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The removal of keratinocyte (KC) nuclear DNA by deoxyribonucleases (DNases) is an important step in the
formation of normal stratum corneum (SC). However, the molecular identity of the DNA-degrading enzymes
has so far remained elusive. Here we show that the endonuclease DNase1-like 2 (DNase1L2) is preferentially
expressed in the epidermis and that its expression correlates with terminal differentiation of KC in vitro and
in vivo. In biopsies of normal skin, DNase1L2 mRNA was regularly found in suprabasal KC and DNase1L2 protein
was highly abundant in the stratum granulosum. In contrast to normal skin, DNase1L2 expression was
downregulated in parakeratotic epidermis such as in psoriatic lesions. When DNase1L2 gene expression was
knocked down by small interfering RNA in a human skin equivalent model, nuclei were maintained through all
layers of the SC. Taken together, our data demonstrate that DNase1L2 plays an essential role in DNA degradation
during terminal differentiation of epidermal KC.
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INTRODUCTION
Normal terminal differentiation of epidermal keratinocytes
(KC) leads to the loss of all cellular organelles, including the
nucleus during the conversion of living cells to corneocytes
(Haake and Holbrook, 1999). At the transition of the granular
layer KC into stratum corneum (SC), nuclear DNA is degraded
in a manner that resembles DNA breakdown during
apoptosis. Both processes occur within less than 6 hours and
involve the formation of double-strand DNA breaks that are
detectable by labeling of the free 30-OH termini using the
terminal deoxynucleotidyl transferase-mediated fluorescein-
dUTP nick-end labeling assay (Gavrieli et al., 1992; Hol-
brook, 1994). Defective breakdown of nuclear DNA during
terminal KC differentiation is a characteristic feature of
diseases such as psoriasis and chronic dermatitis and
manifests histologically as parakeratosis. Yet, the regulation
of this process and the molecular identity of the deoxyribo-
nucleases (DNases) involved have remained unknown.

Distinct DNases are active in various physiological and
pathological settings (Thompson, 1995; Nagata, 2005;
Samejima and Earnshaw, 2005). Extracellular DNA in the
alimentary tract and in blood is degraded primarily by
DNase1, also known as pancreatic DNase. Lack of DNase1
causes antichromatin autoimmunity and glomerulonephritis
(Napirei et al., 2000). Intracellular DNA degradation is a
critical part of various forms of programmed cell death. In the
context of apoptosis, DNA breakdown is initiated by cell-
autonomous DNases within the nucleus of the dying cell
(Samejima and Earnshaw, 2005). After the apoptotic cell is
phagocytosed by a macrophage or a neighboring cell,
lysosomal DNases finish the degradation of DNA (Samejima
and Earnshaw, 2005). The most prominent member of cell-
autonomous apoptotic DNases is caspase-activated DNase
(CAD) (Nagata 2005; Samejima and Earnshaw, 2005). In
addition, endonuclease G (EndoG), Nm23-H1, and DNase1-
like 3 (DNase1L3) have been shown to degrade nuclear DNA
in apoptotic cells (Li et al., 2001; Shiokawa and Tanuma,
2001; Fan et al., 2003). DNA breakdown in phagocytes is
mediated by DNase2 (Krieser et al., 2002). Cell type-specific
forms of programmed cell death such as terminal differentia-
tion of erythroid precursor cells and enucleation of cells in
the eye lens deviate from the two-step process active during
apoptosis. The nucleus of erythroid precursors is expelled and
phagocytosed by macrophages in which DNase2 digests the
DNA (Kawane et al., 2001). In fiber cells of the eye lens,
nuclear breakdown occurs completely in a cell-autonomous
manner and is mediated by DNase2-like acid DNase (DLAD),
an enzyme almost exclusively expressed in eye lens fiber
cells (Nishimoto et al., 2003). This process is critical for organ
function as evidenced by the development of cataracts of the
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nucleus lentis in mice deficient for DLAD (Nishimoto et al.,
2003).

We hypothesized that (I) DNA degradation in KC of the
upper stratum granulosum was, similar to the enuclea-
tion process in lens fiber cells, mediated by a specific DNase
and (II) expression of this DNase was associated with
terminally differentiated KC. A screening strategy devised
on the basis of these assumptions allowed us to identify
DNase1-like 2 (DNase1L2) as a likely candidate DNase.
Comparative analysis of orthokeratotic and parakeratotic skin
supported an involvement of DNase1L2 in terminal differ-
entiation of KC and short interfering RNA (siRNA)-mediated
knockdown of DNase1L2 expression in an in vitro human
skin equivalent (SE) model demonstrated its essential role
for DNA degradation in the course of orthokeratotic SC
formation.

RESULTS
DNase1L2 mRNA is preferentially expressed in the skin and is
upregulated during KC differentiation in vitro

To screen for DNases that are upregulated during differentia-
tion of epidermal KC, we compared the mRNA expression
levels of nine DNases in human KC undergoing spontaneous
differentiation in vitro. Differentiation was induced by
maintaining cells in progressively confluent culture for up
to 5 days. These culture conditions had previously been
shown to induce expression of filaggrin, loricrin, involucrin,
and caspase-14 (Lee et al., 1998; Eckhart et al., 2000). Real-
time PCR quantification revealed that the mRNA levels of
most DNases remained either unchanged (DNase1, DNa-
se1L1, DNase2, EndoG) or were even reduced (CAD, Nm23-
H1) in day 3 and day 5 postconfluent KC as compared to
preconfluent KC (Figure 1a). The expression of DLAD was
low in preconfluent KC and fell below the detection limit in
differentiated KC (not shown). DNase1L3 mRNA was
increased on the third day after KC had reached confluence,
but decreased in abundance later. DNase1L2 was the only
DNase that was upregulated at both time points analyzed.
Expression of DNase1l2 increased stronger than the expres-
sion of any other DNase during confluent KC culture and
finally reached a level approximately 100-fold higher than
that found in preconfluent KC (Figure 1a). These screening
results prompted us to focus our further investigations on
DNase1L2.

Reverse transcription-PCR amplification of the open-read-
ing frame of DNase1L2 revealed that only the large splice
variant of DNase1L2 (Shiokawa et al., 2004) was expressed in
human KC (not shown). Western blot analysis confirmed that
DNase1L2 was also strongly upregulated at the protein level,
relative to the product of the housekeeping gene glyceralde-
hyde-3-phosphate dehydrogenase in differentiated KC (Figure
1b). Next, we determined the expression level of the
DNase1L2 gene in skin and in various human tissues. Using
real-time PCR, abundance of DNase1L2 mRNA was found to
be at least 16 times higher in the skin than in any other organ
tested (Figure 1c). Together, these data suggested that
DNase1L2 represented a likely candidate for a specific
function during terminal differentiation of KC.
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Figure 1. DNase1L2 expression is stronger in skin than in other tissues

in vivo and is associated with terminal KC differentiation in vitro. (a) The

expression levels of different DNases were determined by real-time PCR in KC

on days 3 and 5 after reaching confluence. Experiments were performed in

quadruplicates. The results were normalized to the expression of ALAS1 and

the mean values were displayed in relation to preconfluent KC on a

logarithmic scale. (b, upper left panel) DNase1L2 protein was detected by

Western blot with a rabbit anti-DNase1L2 antiserum. The specificity of the

antiserum was evaluated by preincubating the antiserum with recombinant

DNase1L2 (control), which largely reduced the intensity of the band at the

size predicted for DNase1L2 but did not alter the signal intensity of an

unspecific band (asterisk). (b, right panel) Quantification of DNase1L2 protein

relative to glyceraldehyde-3-phosphate dehydrogenase was performed by

densitometric analysis after (b, lower left panel) re-probing the blot with

anti-glyceraldehyde-3-phosphate dehydrogenase antibody. Expression of

DNase1L2 mRNA was analyzed in a panel of human tissues by quantitative

real-time PCR. (c) The results were normalized to PBG-D expression in the

respective tissues and displayed in relation to skin.
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DNase1L2 is expressed in suprabasal KC in normal human
epidermis

To localize DNase1L2 expression in human skin, we
analyzed normal human skin by in situ hybridization and
immunohistochemistry. DNase1L2 mRNA expression in the
epidermis was weak in basal layer cells, but strongly
increased toward the granular layer (Figure 2a). Immuno-
staining with anti-DNase1L2 antiserum showed that DNa-
se1L2 protein was highly abundant in the stratum granulosum
but neither in less-differentiated KC nor in other cell types
of the skin (Figure 2c). Immunoreactivity in the SC was weak
to negative. DNase1L2 was also detected in the cortex of
hair follicles (Figure 2e) and in sebaceous glands (Figure 2g).
The detection of DNase1L2 was completely blocked by
preincubation of the anti-DNase1L2 antiserum with recom-

binant DNase1L2 (Figure 2d, f, h), but not with purified
DNase1 (not shown).

Expression of DNase1L2 is strongly reduced in parakeratotic
epidermis of psoriasis lesions and in Bowen’s disease lesions

As compared to normal skin (Figure 3a) and non-involved
skin adjacent to psoriasis lesions (Figure 3b), DNase1L2
immunoreactivity was strongly downregulated in lesional
psoriatic epidermis with parakeratosis (Figure 3b). Essentially
the same pattern was observed in and around parakeratotic
lesions in Bowen’s disease (Figure 3c). In other skin diseases
associated with aberrant KC differentiation such as common
warts and eczema, expression of DNase1L2 was in most but
not all cases reduced (not shown). In normal skin and in
all diseased skin samples, DNase1L2 localized primarily
to the cytoplasm of KC and rare, nuclear staining was
strictly confined to terminally differentiated KC in areas of
orthokeratotic SC formation.

Knockdown of DNase1L2 induces parakeratosis in a human SE
model

To characterize the function of DNase1L2 in terminal
differentiation of KC, we knocked down the expression of
this gene by RNA interference (RNAi). Proliferating KC were
transfected with DNase1L2-specific siRNAs and appropriate
control small interfering RNAs. Subsequently, the transfected
cells were cultured as the epidermal component of an in vitro
SE model in which KC undergo the full program of terminal
differentiation (Rendl et al., 2002). After 7 days of culture, the
SEs were analyzed for the expression of DNase1L2 by
Western blot and immunohistochemistry. Nuclear DNA
was visualized on thin sections by hematoxylin staining and
labeling with Hoechst dye, respectively. RNAi suppressed
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Figure 2. DNase1L2 expression by human KC in vivo correlates with their

differentiation status. Human skin sections were subjected to (a, b)

DNase1L2-specific in situ hybridization or (c–h) immunostaining using mouse

anti-DNase1L2 antiserum. (a) In situ hybridization with DNase1L2 antisense

probe detected DNase1L2 mRNA in the epidermis with increasing abundance

towards the granular layer, (b) whereas the control reaction with the sense

probe was negative. (c) Immunostaining detected DNase1L2 protein in the

stratum granulosum. DNase1L2 was also detected within the (e) cortex of the

hair follicle and in (g) terminally differentiated sebocytes in the center of

sebaceous glands. (d, f, h) The specificity of the staining was demonstrated by

preabsorption of the first step antibody with recombinant DNase1L2, which

blocked the staining. (e, f) Unspecific staining within the hair follicle is

marked by an asterisk. Bars¼ (c, d) 10 mm, (a, b, g, h) 40 mm, and (e, f) 80 mm.
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Figure 3. Epidermal DNase1L2 expression is downregulated in parakeratotic

epidermis of psoriasis lesions and Bowen’s disease. Expression of DNase1L2

was detected by immunofluorescence labeling in (a) normal skin,

(b) psoriasis, and (c) Bowen’s disease. Note the coincidence of DNase1L2

expression and orthokeratosis in normal and non-lesional skin and the lack of

DNase1L2 in parakeratotic (pk) lesions. Dotted lines indicate the border of the

SC. Bars¼ 40 mm.
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DNase1L2 expression to less than 5% of the normal level
as estimated by semiquantitative Western blot analysis
(Figure 4a). At least 90% of the corneocytes were free of
nuclear DNA in SEs consisting of KC treated with control
siRNA, reflecting efficient DNA degradation (Figure 4b).

By contrast, the SC of siRNA-treated SEs contained nuclear
DNA in virtually the same density as present in the living
layers of the epidermal compartment, suggesting that DNA
breakdown was inhibited by knockdown of DNase1L2
(Figure 4c). Essentially the same results were obtained with
two additional DNase1L2-specific siRNAs (not shown),
whereas neither of the control siRNAs induced parakeratosis
(Figure 4b and results not shown). The expression pattern of
the late differentiation marker loricrin was unaffected by the
treatment of KC with the DNase1L2 siRNA and by control
siRNAs (Figure 4i, h), which confirmed the specific effect of
RNAi in this system. Taken together, these data demonstrate
that DNase1L2 is required for the degradation of nuclear
DNA in terminally differentiated KC.

DISCUSSION
Although the molecular machinery that build up the
cornified envelope has been characterized well in recent
years (Candi et al., 2005), astonishingly little is known about
the simultaneous processes that remove KC components,
which are characteristic for living cells, for example, DNA,
RNA, ribosomes, mitochondria, and a plethora of metabolic
enzymes. Our study identifies the first DNase, and actually
the first degradative enzyme at all, which is essential for this
special form of KC programmed cell death.

The present study shows that terminal differentiation of
epidermal KC involves a change in the expression of DNases.
The apoptosis-associated enzyme CAD is downregulated in
KC differentiating in vitro, whereas an essentially epidermis-
specific DNase, that is, DNase1L2, is strongly upregulated.
This expression pattern gives support to the postulates of
previous reports (Gandarillas et al., 1999; Lippens et al.,
2000; Rendl et al., 2002) that the differentiation-associated
death of KC does not depend on the molecular machinery of
apoptosis but rather on a specific set of enzymes. The
physiological role of suppression of CAD and NM23-H1
expression as well as of the upregulation of DNase1L3 in the
early phase of differentiation will be subject to further
investigations in our laboratory.

Our data demonstrate that DNase1L2 is tightly controlled
at the transcriptional level. We found that DNase1L2 mRNA
is expressed in the epidermis at much higher levels than in
any other organ analyzed and that it is strongly upregulated in
terminally differentiated KC. The increase in mRNA expres-
sion was consistently associated with an increase in the
abundance of the DNase1L2 protein. These findings extend
information provided by two previous studies, which
reported low levels of DNase1L2 mRNA in several human
tissues (Rodriguez et al., 1997; Shiokawa and Tanuma, 2001;
Shiokawa and Tanuma, 2004), as these studies provided no
data on DNase1L2 expression in the skin. DNase1L2 mRNA
was reported to be upregulated by proinflammatory cytokines
in the HaCaT cell line (Shiokawa et al., 2004). Based on this
finding, the authors suggested that DNase1L2 may have a
role in inflammation. Our finding that DNase1L2 is down-
regulated during skin inflammation in vivo, that is, in
psoriatic epidermis, argues against such a role for this
enzyme. In addition, our data clearly demonstrate that KC
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Figure 4. siRNA-mediated knockdown of DNase1L2 in KC results in

parakeratosis. KC were transfected with siRNA specific for DNase1L2 and

control siRNA and used for the establishment of SE models. After 7 days of

differentiation in the SE culture, protein lysates were analyzed by Western

blotting using mouse anti-DNase1L2 antiserum (a). Equal loading of lanes

was confirmed by Ponceau staining of the membrane. SEs were analyzed by

(b–e) hematoxylin and eosin staining as well as immunofluorescence labeling for

(f, g) DNase1L2 and (h, i) loricrin. (d) and (e) represent a higher magnification

of (b) and (c), respectively. (f–i) Nuclei were counterstained with Hoechst

dye. (f–i) Dotted lines indicate the border of the SC. The experiment was

performed three times with identical results. Bars¼ (b, c, f, g, h, i) 40 mm and

(d, e) 10mm.
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differentiation, even in the absence of exogenous inflamma-
tory cytokines, suffices to strongly upregulate DNase1L2
expression.

Knockdown of DNase1L2 in SE results in parakeratosis,
which demonstrates that DNase1L2 is an essential mediator
of nuclear DNA degradation in terminally differentiated KC.
Although it remains to be investigated whether other DNases
are also involved in this process, our data show that the role
of DNase1L2 is non-redundant. The results of our immuno-
histochemical investigation of skin diseases strongly suggest
that in vivo DNase1L2 is also for orthokeratotic KC
differentiation, as its reduction is consistently associated with
parakeratosis. The detection of strong DNase1L2 expression
not only in subcorneal KC of interfollicular epidermis but
also in epidermal appendages, where terminally differen-
tiated KC undergo cell death, namely in hair follicles,
sebaceous glands (this study), and nail units (Jaeger K et al.,
submitted), indicates that DNase1L2 is active in programmed
cell death of several or all differentiation lineages of KC.

An important aim of future investigations will be to clarify
the regulation of DNase1L2 activity. We observed that
DNase1L2 is localized predominantly to the cytoplasm and,
only in few cases, to the nucleus of differentiating KC. This is
in accordance with the previous finding that transient
expression of recombinant DNase1L2 in 293 cells does not
result in nuclear translocation of the enzyme and has no
immediate impact on the integrity of chromosomal DNA
(Shiokawa and Tanuma, 2001). DNase1L2 lacks a nuclear
targeting signal (Shiokawa and Tanuma, 2001) and, therefore,
can gain access to nuclear DNA only after disruption of
nuclear membranes, which in KC presumably occurs in the
course of their transition to the SC. In preliminary investiga-
tions of the mechanism of DNase1L2-mediated DNA
degradation in KC, we could confirm that DNase1L2 is able
to degrade chromatin-associated DNA after permeabilization
of the nuclear membrane (H. Fischer, L. Eckhart and
E. Tschachler, unpublished). The fact that the optimal pH
for DNase1L2 activity, that is, pH 5.6 (Shiokawa and
Tanuma, 2001), corresponds to the acidic milieu within the
SC (Ohman and Vahlquist, 1994) may indicate that full
enzyme activity occurs only during or after conversion of KC
into corneocytes.

Although parakeratosis is a well-recognized diagnostic
feature of many diseases, it is presently not known to what
extent degradation of nuclear DNA during corneocytes
formation is crucial for SC structure and functions. The
identification of DNase1L2 as a critical DNA breakdown
enzyme during this process provides the basis for a better
molecular definition of differentiation-associated KC cell
death and its physiological roles.

MATERIALS AND METHODS
Cell culture

Normal human epidermal KC (Cambrex, San Diego, CA) were

cultured as described previously (Rendl et al., 2002). Cells seeded

into six-well plates (Corning Incorporated, Corning, NY) were

harvested either on the following day at 50–60% confluence or

3–5 days after reaching confluence.

Tissue samples
Normal human skin from mammary reduction surgery was kindly

provided by the Department of Plastic Surgery, Medical University of

Vienna, Austria. Paraffin-embedded specimens of human skin

diseases including psoriasis (n¼ 6), common warts (n¼ 3), Bowen’s

disease (n¼ 3), and eczema (n¼ 7) were obtained from the biopsy

archive of the Department of Dermatology, Medical University

of Vienna, Austria. All experimental procedures were approved

by the Regional Committee for Medical Research Ethics and

were conducted in compliance with the Declaration of Helsinki

Principles.

siRNA-mediated gene silencing in human SEs

A detailed description of the methodology of RNAi in SE and its

validation with established KC target genes will be presented in a

separate report (Mildner et al., 2006). In brief, KC were transfected

with the following siRNAs using Lipofectamine 2000 (Invitrogen,

Carlsbad, CA): DNase1L2-siRNA1, 50-GAGAUCGACGCGCUCUAC

GACGUGU-30; DNase1L2-siRNA2, 50-GACAUGCUGUUCCUGGG

CGACUUCA-30; DNase1L2-siRNA3, 50-CGGCCUGGACCAGACUC

AGGCUCUU-30; control siRNA1 (unrelated sequence), 50-GGCAU

UACAGUGUGUCUCACCCAAA-30; control siRNA2 (scrambled

sequence of DNase1L2-siRNA1), 50-GAGAGCCGCUCGAUCAGCG

CAUUGU-30; and control siRNA3 (scrambled sequence of DNa-

se1L2-siRNA3), 50-CGGAGGUGACCCUCACGGAUCCCUU-30.

siRNAs with chemical modifications according to the StealthTM

RNAi technology (Invitrogen, Carlsbad, CA) were used. Twenty-four

hours after transfection, KC were seeded onto a fibroblast collagen

gel suspension and maintained in culture inserts as described by

Rendl et al. (2002) for 7 days to facilitate differentiation into SEs.

Molecular cloning of DNase1L2

The open-reading frame of DNase1L2 was amplified from KC cDNA

using the primers DNase1L2-s1 (50-TAGGATCTCTGAGCCTCGG-30)

and DNase1L2-a1 (50-CAGCCGACTCTGCCTTG-30) and cloned into

the vector pCR2.1-TOPO (Invitrogen, Carlsbad, CA). For bacterial

expression, full-length DNase1L2 was cloned into pET-23a(þ )

vector (Novagen, Madison, WI) which allowed the expression of a

fusion protein containing an N-terminal T7-tag and a C-terminal

6xHis-tag. The primers used were DNAse1L2-s2 (50-CGCGGATCCA

TGGGCGGGCCC-30) and DNAse1L2-a2 (50-CCGCTCGAGTCGGT

GGAACTTGAGGGT-30). BamHI and XhoI sites flanking the coding

sequences are indicated in bold. For expression in Pichia pastoris,

DNase1L2 was re-amplified from the vector pET-23a(þ )-DNase1L2,

omitting the putative N-terminal signal sequence of DNase1L2

(amino acids 1–18; Shiokawa and Tanuma, 2001), but including

the C-terminal 6xHis-tag. The sense primer was DNase1L2-s3

(50-CCATCGATAACCGCCGCGCTTCGCATC-30) and the antisense

primer was DNAse1L2-a3 (50-GCTCTAGATCAGTGGTGGTGGTGG

TGGTG-30). ClaI and XbaI sites flanking the coding sequences are

shown in bold. The fragment was cloned in-frame with the a-factor

signal sequence of the P. pastoris expression vector pPICZC

(Invitrogen).

Reverse transcription-PCR and quantitative real-time PCR

RNA from KC and total human skin as well as polyAþ RNA from

multiple human tissues (Clontech, Palo Alto, CA) was reverse-

transcribed using the Gene Amp RNA PCR kit (Applied Biosystems,
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Foster City, CA). Quantitative real-time PCR was performed with the

LightCycler technology (Roche Applied Science, Mannheim, Ger-

many) as described previously (Mrass et al., 2004). The following

primers were used: DNase1-s, 50-CAGGATGCACCAGACACCTA-30;

DNase1-a, 50-ACAATGGCAAACTCCCTGAC-30; DNase1L1-s, GCT

GCAGGAGGTGGTAGACT-30; DNase1L1-a, 50-GGCAAAGACGTC

ATCCTCAT-30; DNAse1L2-s4, 50-ACTCAGACTGCGCCTACGAC-30;

DNAse1L2-a4, 50-CTCGAGTCATCGGTGGAACT-30; DNase1L3-s,

50-ATCAGGATGGAGACGCAGAT-30; DNase1L3-a, 50-CACGTCCG

TGTAGACCTCAA-30; DNase2-s, 50-TCGCCTTCCTGCTCTACAAT-

30; DNase2-a, 50-CCCATCTTCGAGAACTGAGC-30; CAD-s, 50-CAA

TGGCAGCTACTTCGACA-30; CAD-a, 50-GGAATGATGGTGCGTTT

CTT-30; Nm23-H1-s, 50-ACCATCCGTGGAGACTTCTG-30; Nm23-

H1-a, 50-GAAGGAGGGGAAATGGATGT-30; EndoG-s, 50-TGGACG

ACACGTTCTACCTG-30; EndoG-a, 50- CTTGCCGATGACCTGGTA

CT-30; DLAD-s, 50-CATCCCTCAGTTTCCTCCAA-30; and DLAD-a,

50-GCCAGGAATCTCTGATGAGC-30. Relative expression of the

target molecule was normalized to the expression of the house-

keeping genes aminolevulinate synthase 1 (ALAS1), and porphobi-

linogen deaminase (PBG-D), which were amplified using the primer

pairs ALAS1-s 50-CCACTGGAAGAGCTGTGTGA-30, ALAS1-a 50-AC

CCTCCAACACAACCAAAG-30 and PBG-D-s 50-TCGAGTTCAGTG

CCATCATC-30, PBG-D-a 50-CAGGTACAGTTGCCCATCCT-30, res-

pectively. The specificity of the reactions was confirmed by

sequencing of the PCR products.

In situ hybridization

A 595 bp fragment of DNase1L2 was re-amplified from the vector

pET-23a(þ )-DNase1L2 and cloned into the vector pCRII-TOPO

(Invitrogen) in sense and antisense direction downstream of the SP6

promoter. The primers were DNase1L2-s5 (50-GTACAGGAAA

GACGCGGTGT-30) and DNase1L2-a4 (50-CTCGAGTCATCGGTG

GAACT-30). Both sense and antisense probes were generated by in

vitro transcription with SP6 polymerase using the DIG RNA labeling

kit (Roche, Basel, Switzerland). In situ hybridization of paraffin

sections was performed according to a protocol published previously

(Eckhart et al., 2000).

Production of recombinant DNase1L2

For the expression of recombinant protein in bacteria, DNase1L2

cDNA was cloned into pET-23a(þ ) (Novagen). Expression of

recombinant DNase1L2 in E. coli BL-21 (DE3) was induced with

isopropyl-b-D-thiogalactopyranoside (1 mM) at 371C for 3 hours.

Inclusion bodies were prepared by lysozyme treatment of cells and

harvested by low-speed centrifugation. DNase1L2 was solubilized

with 10% SDS, dialyzed against phosphate-buffered saline, and

purified by Ni2þ affinity chromatography using the Probond

purification kit (Invitrogen). Recombinant DNase1L2 was also

produced in P. pastoris using the Pichia expression kit (Invitrogen)

according to the manufacturer’s instructions. During expression

DNase1L2 protein was processed at the N-terminus by proteolytic

removal of the a-factor secretion signal. The active enzyme was

purified from the culture supernatant by Ni2þ affinity chromato-

graphy and dialyzed against 0.1� phosphate-buffered saline.

Production of antisera against DNase1L2

Polyclonal antisera against DNase1L2 were produced by immuniz-

ing rabbits and mice with purified recombinant DNase1L2 prepara-

tions derived from E. coli and P. pastoris. The specificity of the

antisera was evaluated by preabsorption with recombinant DNa-

se1L2, which prevented the appearance of Western blot bands at the

size predicted for DNase1L2. Both sera were used in Western blot

analysis with identical results and the mouse anti-DNase1L2 serum

was used for immunohistochemistry and immunofluorescence as

described below.

Immunohistochemistry and immunofluorescence

Diseased and normal human skin as well as SEs were fixed with

phosphate-buffered 4.5% formaldehyde, embedded in paraffin, and

sectioned at 5mm thickness. Immunohistochemical analysis of

paraffin sections was performed according to a protocol published

previously (Weninger et al., 1996). Briefly, paraffin sections were

prepared for staining by heat antigen retrieval consisting of

2� 5 minutes microwave cycles at 500 W in Target Retrieval

Solution (DakoCytomation, Glostrup, Denmark) cooled to room

temperature and incubated with phosphate-buffered saline, pH 7.2,

plus 2% BSA and plus 10% goat serum (DAKO) for 20 minutes to

block nonspecific binding of the secondary antibody. Endogenous

peroxidase was blocked with 0.3% H2O2/methanol. The sections

were incubated with polyclonal mouse anti-DNase1L2 antibody

diluted 1:5000 in phosphate-buffered saline, pH 7.2, plus 2%

BSA overnight at 41C. After washing, slides were incubated

with biotinylated goat anti-mouse IgG (1:200; (Amersham Bio-

sciences, Chalfont, UK) and exposed to streptavidin–biotin complex

(DakoCytomation). 3-Amino-9-ethylcarbazole was used as chromo-

gen (DakoCytomation). The slides were counterstained with

hematoxylin (Merck KGAa). The specificity of the staining was

confirmed by preabsorption of the first step antibody with

recombinant DNase1L2, which blocked the staining and preabsorp-

tion with purified bovine DNase1 (Sigma-Aldrich, St Louis, MO),

which did not decrease immunoreactivity even when used at an

eight-fold higher concentration than DNase1L2. Immunofluores-

cence labeling was performed as described previously (Rendl et al.,

2002). The results were controlled by antigen preabsorption tests

as described for immunohistochemistry. Loricrin was detected

with polyclonal rabbit anti-human antiserum (1:103; Covance,

Berkeley, CA).

Western blot analysis

KC were lysed in phosphate-buffered saline containing 1% NP-40

(Sigma-Aldrich) and complete protease inhibitor cocktail (Roche,

Mannheim, Germany). SEs were lysed in lysis buffer containing

50 mM Tris (pH 7.4), and 2% SDS by sonication. Insoluble cell debris

of lysed KC and SEs were removed by centrifugation and protein

concentration was measured by the BCA (bicinchoninic acid)

method (Pierce, Rockford, IL). Western blot analysis was performed

as described previously (Rendl et al., 2002). The following first step

antibodies were used for the detection of specific antigens: rabbit

polyclonal anti-DNase1L2 (1:103), mouse polyclonal anti-DNase1L2

(1:103), and mouse monoclonal anti-glyceraldehyde-3-phosphate

dehydrogenase (Biogenesis, Poole, UK, 1:200). For semiquantitative

analysis of protein expression, the intensities of Western blot bands

were determined by densitometry.
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