-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by RERO DOC Digital Library

European Heart Journal (2015) 36, 676—685 BASIC SCIENCE
EUROFEAN doi:10.1093/eurheartj/ehs459

SOCIETY OF
CARBHOLOGY ®

Mononuclear cell secretome protects from
experimental autoimmune myocarditis

Konrad Hoetzenecker!?, Matthias Zimmermann'2, Wolfram Hoetzenecker3,
Thomas Schweiger!2, Dagmar Kollmann4, Michael Mildner®, Balazs Hegedus',
Andreas Mitterbauer'2, Stefan Hacker?%, Peter Birner’, Christian Gabriel?,
Mariann Gyongyosi®, Przemyslaw Blyszczuk!%11) Urs Eriksson1%11

and Hendrik Jan Ankersmit'2*

1Depar‘tment of Thoracic Surgery, Medical University Vienna, Vienna, Austria; 2Christian Doppler Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Wiahringer
Girtel 18-20, 1090 Vienna, Austria; 3Harvard Skin Disease Research Center, Brigham and Women’s Hospital, Boston, MA, USA; HInstitute of Pathophysiology, Medical University
Vienna, Vienna, Austria; 5Depar’cment of Dermatology, Medical University Vienna, Vienna, Austria; 6Department of Plastic and Reconstructive Surgery Medical University of Vienna,
Vienna, Austria; "Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria; 8Red Cross Transfusion Service for Upper Austria, Linz, Austria; 9Depar‘tment of
Cardiology, Medical University Vienna, Vienna, Austria; "Division of Cardioimmunology, Cardiovascular Research and Zurich Center for Integrative Human Physiology, Institute of
Physiology, University of Zurich, Zurich, Switzerland; and 11Department of Medicine, GZO, Zurich Regional Health Center, Wetzikon, Switzerland

Received 4 July 2012; revised 18 November 2012; accepted 5 December 2012; online publish-ahead-of-print 15 January 2013
This paper was guest edited by Filippo Crea, Direttore, Dipartimento di Scienze Cardiovascolari, Universita Cattolica Rome, Rome, Italy.

See page 650 for the editorial comment on this article (doi:10.1093/eurheartj/eht050)

Aims Supernatants of serum-free cultured mononuclear cells (MNC) contain a mix of immunomodulating factors (secretome),
which have been shown to attenuate detrimental inflammatory responses following myocardial ischaemia. Inflammatory
dilated cardiomyopathy (iDCM) is a common cause of heart failure in young patients. Experimental autoimmune myo-
carditis (EAM) is a CD4+ T cell-dependent model, which mirrors important pathogenic aspects of iDCM. The aim of this
study was to determine the influence of MNC secretome on myocardial inflammation in the EAM model.

Methods BALB/c mice were immunized twice with an alpha myosin heavy chain peptide together with Complete Freund ad-

and results juvant. Supernatants from mouse mononuclear cells were collected, dialysed, and injected i.p. at Day 0, Day 7, or Day
14, respectively. Myocarditis severity, T cell responses, and autoantibody formation were assessed at Day 21. The
impact of MNC secretome on CD4+ T cell function and viability was evaluated using in vitro proliferation and
cell viability assays. A single high-dose application of MNC secretome, injected at Day 14 after the first immunization,
effectively attenuated myocardial inflammation. Mechanistically, MNC secretome induced caspase-8-dependent apop-
tosis in autoreactive CD4+ T cells.

Conclusion MNC secretome abrogated myocardial inflammation in a CD4+ T cell-dependent animal model of autoimmune
myocarditis. This anti-inflammatory effect of MNC secretome suggests a novel and simple potential treatment
concept for inflammatory heart diseases.
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Introduction . progressive heart failure, arrhythmia, and sudden death."” The
. cause of myocarditis often remains unknown in the individual

Myocarditis denotes inflammation of the heart muscle. Clinical pre- o patient, but virus-triggered autoimmunity is thought to play an im-

sentations include subclinical disease to fatal courses with : portant role in disease development. Immunosuppressive regimens
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have failed to improve functional outcomes in large clinical trials of
acute myocarditis,%5 but are beneficial during chronic phases of
disease in patients without evidence of viral genomes in heart
muscle biopsies.®

The idea of using conditioned medium as a therapeutic agent
evolved in the field of stem cell research. Many of the regenerative
effects seen after administration of stem cells were rather
mediated via paracrine signalling than by direct cellular interac-
tions.” Conditioned culture medium containing the secretome of
mesenchymal stem cells is rich in angiogenic and chemotactic
factors.® Besides, there is growing evidence that stem cell condi-
tioned medium has immunomodulating features as well.>1°

We have recently shown that a high-dose application of the
secretome of peripheral blood mononuclear cells (PBMC) directly
influences the endogenous inflammatory response after acute
myocardial infarction (AMI). In a porcine closed-chest reperfusion
infarction model, an i.v. injection of PBMC secretome effectively
suppressed inflammatory responses and tissue damage.”’13
Moreover, we were able to show that PBMC secretome also
attenuates microvascular obstruction, inhibits platelet aggregation,
and causes vasodilation in a NOS-dependent manner." On the
basis of these observations, we specifically addressed immunomo-
dulatory features of MNC secretome and tested its anti-
inflammatory effects in a model of autoimmune myocarditis.

Experimental autoimmune myocarditis (EAM) can be induced in
susceptible mouse strains by immunization with a heart muscle
myosin-specific peptide (MyHC-og14_629) together with a strong
adjuvant. The majority of immunized mice develops myocarditis
peaking 21 days after the first immunization.”® Experimental auto-
myocarditis represents a CD44 cell-mediated

disease,'®"” accordingly, depletion of CD4+ cells effectively pre-
18-20

immune

vents disease development.

Here, we provide for the first time evidence that high-dose applica-
tion of MNC secretome attenuates EAM. Mechanistically, the secre-
tome induces apoptosis of autoreactive CD4+ T cells.

Methods

Generation of murine and human
mononuclear cell secretome

Spleens from donor Balb/c mice were removed and homogenized
under sterile conditions. Splenocytes were resuspended in UltraCul-
ture serum-free medium (Cambrex Corp., North Brunswick, NJ,
USA; 1 x 10° cells/mL). After incubation for 24 h supernatants were
dialysed against ammonium acetate (at a concentration of 50 mM,
cut-off 3.5kD), sterile filtered, frozen, lyophilized, and kept frozen at
—80°C until further used. Mononuclear cell secretome pooled from
10 different donor mice were used for further experiments. For
some experiments, PBMC obtained from young healthy volunteers
(ethics committee vote: 2010/034) were used for the production of
MNC secretome. The mononuclear cell fraction was separated from
venous whole-blood samples by Ficoll density-gradient centrifugation.
Mononuclear cell secretome was produced according to the protocol
described above. The content of mouse and human MNC secretome
(obtained from 25 x 10° cells) was analysed using commercially avail-
able cytokine arrays (Proteome Profiler Arrays obtained from R&D,
MN, USA) following the manufacturer’s instructions.

Experimental autoimmune myocarditis
induction

Animal experiments were approved by the University of Vienna,
Austria  (GZ66.009/0055-11/10b/2010).  Experimental autoimmune
myocarditis was induced in 6—8-week-old Balb/c mice by subcutane-
ous injection of 150 g of the MyHC-a (MyHC-ag14-629:
Ac-SLKLMATLFSTYASAD) or ovalbumin emulsified 1:1 in PBS/CFA
(1 mg/mL, H37Ra) with a 7-day interval between injections (on Day
0 and Day 7, respectively).”! Supernatant of 4 x 10° syngeneic,
murine MNC cultures was ip. injected at different time points
(Day 0, Day 7, and Day 14). Injections of lyophilized culture
medium served as a negative control. Mice were sacrificed on Day
21 (climax of inflammation) and hearts were evaluated for myocardial
infiltrates.

Histopathological evaluation

Haematoxylin-eosin stained heart sections were scored according to a
semi-quantitative scale (0, indicated no inflammatory infiltrates; 1, small
foci of inflammatory cells between myocytes; 2, larger foci of >100
inflammatory cells; 3, <10% of a cross-section involved; 4, >30% of
a cross-section involved), as previously described.”

Enzyme-linked immunosorbent assays

To characterize the impact of MNC secretome on the systemic inflam-
matory state, enzyme-linked immunosorbent assays (ELISA) were per-
formed. IL-1B, IL-6, TNF-a, IFN-y, IL-10, IL-17 and TGF-B1 were
analysed in plasma samples obtained on Day 21 using commercially
available kits (R&D, MN, USA). Formation of MyHC-a specific anti-
bodies was determined by a solid phase ELISA, coating plates with
5 pg/mL MyHC-a. Since the original peptide sequence is hydrophobic,
four lysine residues were added to the N-terminus to make the
peptide water soluble (KKKKRSLKLMATLFSTYASADR). Plasma was
diluted 1:10 for IgM, 1:50 for 1gG1, 1:10 for 1gG2a and IgG2b, and
1:50 for 1gG3 and bound antibodies were detected with monoclonal
rat anti-mouse IgM, 1gG1, 1gG2a, IgG2b, and 1gG3 antibodies (Pharmin-
gen, CA, USA) diluted 1:1000 and a HRP-coupled goat anti-rat anti-
serum (Amersham, Biosciences, UK) diluted 1:2000. The substrate
for HRP was ABTS [60 mM/L citric acid, 77 mM/L Na,HPO,4 x
2H,0, 1.7 mM/L ABTS (Sigma, MO, USA), 3 mM/L H,O,]. The
content of sFAS, sFASL, sCD40, and sCD40L in MNC preparations
was measured by commercially available ELISA kits (R&D Systems,
Minneapolis, MN, USA).

Flow cytometry

Isolated mouse splenocytes and human PBMC were analysed for
amounts of CD4+ T cells, CD8+ T cells, B cells, and monocytes.
Mouse spleens were dissected and passed through a 40 mm cell strain-
er (BD Biosciences). Cells were washed with PBS and remaining ery-
throcytes were lysed with a commercially available haemolysis buffer
(Morphisto, Frankfurt am Main, Germany). Isolated splenocytes and
human PBMC were washed and analysed using the following
fluorescence-labelled monoclonal antibodies: fluorescein isothiocyan-
ate (FITC)-anti-CD4, phycoerythrin (PE)-anti-CD8 and PE-anti-CD19.
All antibodies were obtained from Biozyme (Oldendorf, Germany). Ap-
propriate isotype controls were included and gates were set according
to isotype-matched controls. The content of monocytes was deter-
mined by placing a gate in the forward/side scatter dot blot. Analysis
was performed on a FACSCalibur flow cytometer (BD Biosciences),
and data were evaluated using the FlowJo software (Tree Star,
Ashland, OR, USA). To test the CD4+/CD8+ cell ration in vivo, whole-
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blood samples were obtained from mice sacrificed 12 and 36 h after
MNC secretome or medium control treatment on Day 14. Erythro-
cytes were lysed and cell pellets were stained with anti-CD4,
anti-CD8 (both Acris, Herford, Germany) and 7-Aminoactinomycin
D (7-AAD; Beckman Coulter, CA, USA). Numbers of CD4+ and
CD8+ cells, CD4+/CD8+ ratio, and amount of 7-AAD positive
CD4+ cells were determined by flow cytometry.

Proliferation assays

Spleens were homogenized and splenocytes (1 x 10°) were cultured
for 5 days with different concentrations of water-soluble MyHC-a.
CD4+ cells were purified from spleens or human peripheral mono-
nuclear cells obtained from healthy volunteers using the MACS bead
system (Miltenyi Biotec, Bergisch Gladbach, Germany). 1x10° cells
per well were either stimulated with phytohaemagglutinin (PHA,
7 pg/mL, Sigma, MO, USA) or a monoclonal antibody to CD3
(10pg/mL, Becton Dickinson, NJ, USA) in 96-well round-bottom
plates. Human MNC secretome was added in different concentrations.
Plates were incubated for 5 days and then pulsed for 18 h with
3[H]-thymidine. Proliferation of splenocytes and CD4+ cells was mea-
sured in a liquid scintillation counter.

Detection of apoptosis

Purified human CD4+ T cells, JURKAT cells (ATCC, VA, USA), or
murine T cell lymphoma cells (CLS, Eppelheim, Germany) were incu-
bated in a humidified atmosphere with or without human MNC secre-
tome of 1.1 x 10° cells. Cell viability was monitored by Annexin
V-fluorescein/propidium iodide (FITC/Pl) co-staining (Becton Dickin-
son, Franklin Lakes, NJ, USA) at different time points (0, 6, 12, 24 h)
or by determination of released histones (18 h) using a commercially
available kit (Roche Molecular Biochemicals, Penzberg, Germany). Al-
ternatively, purified CD4+ cells were pre-incubated for 30 min with
20 uM of different caspase inhibitors (Z-VAD, Z-DEDV, Z-IETD,
Z-LEHD; purchased from R&D, MN, USA) before adding MNC secre-
tome or lyophilized medium control. For antibody-blocking experi-
ments, CD4+ cells were pre-incubated with antibodies directed
against CD40L, FASL, VEGF, IL8, ENA78, MMP9, isotype control (all
R&D, MN, USA), TRAIL1T or TRAIL2 (both Adipogen, Liestal, Switzer-
land) for 30 min. Mononuclear cell secretome of 1.1 x 10° cells was
added and after 18 h of incubation, histone release was monitored.

Endocytosis and dendritic cell
activation assays

Blood was obtained from young healthy volunteers and monocytes
were purified by CD14 positive selection using MACS beads (Miltenyi
Biotec, Bergisch Gladbach, Germany). Cells were incubated at concen-
tration of 1 x 10° cells/mL for 5 days with IL-4 (1000 U/mL) and
GM-CSF (50 ng/mL; both Peprotech, NJ, USA). The phenotype of
naive dendritic cells (DCs) was determined by flow cytometry using
CD14, CD1a, CD11c, CD80, CD83, CD86, and human leucocyte
antigen (HLA)-DR specific antibodies (all Beckman Coulter, CA,
USA). Endocytic activity was assessed by flow cytometry after incubat-
ing cells for 1 h with either MNC secretome (obtained from 1.25 x
10° cells) or medium control together with 1 mg/mL FITC-Dextran
(Sigma, MO, USA). In an additional set of experiments, naive DCs
were incubated for 24 h with MNC secretome (obtained from 1.25
x 10° cells) or control medium. Then, 1 wg/mL lipopolysaccharide
(LPS; Sigma, MO, USA) was added and the expression of maturation
markers (CD80, CD83, CD86, HLA-DR) was determined by flow

cytometry.

Statistical analysis

Results are depicted as means + standard error of the mean and levels
of significances were determined by the two-sided student’s t-test,
two-sided Mann—Whitney U test, or ANOVA adjusted by a Bonferroni
correction for multiple testings. Data analysis was performed with
SPSS 18.0 (SPSS, Inc., USA) and GraphPad Prism 5 (GraphPad Soft-
ware, Inc., CA, USA). A P-value <0.05 was regarded as statistically sig-
nificant (*P < 0.05; **P < 0.01; ***P < 0.001).

Results

Mononuclear cell secretome attenuates
experimental autoimmune myocarditis

Mononuclear cell secretome has recently been shown to reduce
the inflammatory response during AMI. We, therefore, tested its
effects in the EAM model, which mirrors important aspects of
human inflammatory dilated cardiomyopathy (iDCM). Myosin
peptide immunized mice were treated i.p. with MNC secretome
at different time points. Secretome treatment during the phase
of immunization (Day 0 or Day 7) had no impact on the extent
of myocardial inflammation as expressed by the myocarditis
score at Day 21 (Day O injection: MNC secretome 2.8 + 0.6;
control medium: 2.3 + 0.6; P=0.606/Day 7 injection: MNC
secretome 3.1 £+ 0.3; control medium: 3.4 + 0.5; P=0.639). In
contrast, injection of MNC secretome on Day 14 almost com-
pletely abrogated myocarditis at Day 21 (MNC secretome:
0.1 + 0.1; control medium: 2.4 + 0.4; P = 0.0089; Figure 1A-D).
Hearts from MNC secretome-treated animals had only sparse
lymphocytic infiltrations and no areas of cardiomyocyte apoptosis
and/or necrosis (Figure 1E), whereas hearts from mice treated with
control medium consistently showed dense inflammatory infil-
trates (Supplementary material online, Figure S1).

Circulating levels of autoantibodies are
only marginally affected by mononuclear
cell secretome

Next, we evaluated the effect of MNC secretome on the forma-
tion of MyHC-a specific antibodies. Lower levels of circulating
IgM and IgG1 were measured in MNC-treated animals, however,
no differences in 1gG2a, 1gG2b, and IgG3 levels were found
between the groups (Figure 2A).

Levels of inflammatory cytokines are
reduced in mononuclear cell
secretome-treated animals

To further characterize the anti-inflammatory effect of MNC
secretome, we analysed plasma for levels of IL-13, IL-6, TNF-c,
IFN-vy, IL-10, IL-17, and TGF-B1. There were no detectable
amounts of TNF-a, IFN-vy, IL-10, IL-17 in the circulation. There
was a trend of lower IL-1, IL-6, and TGF-B1 levels in the treated
group when compared with control animals, however, these
observations did not reach significance (107.9 + 35.5 vs. 43.7 +
19.5 pg/mL; P=0.115/459 +33.7 vs. 9.6+ 3.1pg/mL; P=
0.241/181.4 + 103.7 vs. 12.5 + 0.3 pg/mL; P = 0.083, respective-
ly; Figure 2B).
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Splenocyte proliferation to MyHC-oag14_629
is strongly impaired in mononuclear cell
secretome-treated animals

Previous studies have shown that proliferative responses to the
myosin peptide in vitro are strongly linked to the development of
EAM.2223 We, therefore, isolated splenocytes from immunized
mice, treated with either MNC secretome or control medium
on Day 21. Splenocytes were stimulated with different concentra-
tions of MyHC-a and proliferation was assessed by measuring
3[H]-thymidine uptake. As shown in Figure 2C, proliferation of sple-
nocytes obtained from MNC secretome-treated animals was sig-
nificantly impaired as calculated by ANOVA (Figure 2C).

Mononuclear cell secretome obtained
from mouse splenocytes is comparable
with mononuclear cell secretome
obtained from human peripheral blood
mononuclear cells

As a proof of principle that MNC secretome produced from
mouse splenocyte cultures is comparable with MNC secretome
from human PBMC cultures, we evaluated the distribution of
CD4+ T cells, CD8+ T cells, B cells, and monocytes and per-
formed cytokine arrays with both secretomes. Although spleno-
cytes contained markedly more B cells, levels of secreted
proteins were comparable in both preparation (Supplementary
material online, Figure S2A and B, Figure 3A). Both secretomes con-
tained considerable amounts of IL-1Ra, IL-16, MCP-1, RANTES,
and sICAM-1. All other tested cytokines and chemokines were
only present in low concentrations.

Mononuclear cell secretome suppresses
proliferation of CD4+ T cells in vitro but
has no impact on dendritic cell function

Experimental autoimmune myocarditis is a CD4+ T cell-mediated
disease. We, therefore, investigated the effect of MNC secretome
on CD4+ cell proliferation in vitro. First, purified human CD4+
cells were stimulated either with PHA or with a monoclonal anti-
body to the T cell receptor. The addition of MNC secretome to
the stimulation assays significantly reduced the proliferative re-
sponse in a dose-dependent manner (Figure 3B). Since MNC secre-
tome treatment on Day O and Day 7 had no impact on the
development of myocarditis and dendritic cells (DCs) are consid-
ered pivotal during this sensitization process, we sought to further
highlight the role of MNC secretome on DC function. Although
the maturation of monocyte-derived dendritic cells seemed to
be slightly impaired by MNC secretome treatment, endocytosis ac-
tivity was not influenced (Supplementary material online, Figure
S3A and B).

Mononuclear cell secretome induces
apoptosis in CD4+ T cells, JURKAT, and
murine T cell lymphoma cells

Next, we evaluated the effect of MNC secretome on cell viability.
Co-incubation of unstimulated CD4+ T cells, a JURKAT cell line

or a mouse lymphoma cell line with MNC secretome resulted in
an apoptosis induction as determined by Annexin V/Pl co-staining
and by histone release assays (Figure 3C and E, Supplementary ma-
terial online, Figure S2C). To exclude direct cytotoxic effects of
MNC secretome, we pre-incubated cells with a pan-caspase inhibi-
tor. Induction of apoptosis was inhibited by adding Z-VAD to the
experimental setting (MNC secretome: 1.56 + 0.11 O.D.; MNC
secretome + Z-VAD 20 mM: 0.09 + 0.07 O.D,; P = 0.008; MNC
secretome + Z-VAD 100 mM: 0.01 +0.01 O.D; P =0.005;
Figure 3D).

Caspase blocking experiments

To define whether apoptosis is mediated through external or
mitochondrial pathways, we selectively blocked caspase-9,
caspase-8, and caspase-3. Pre-incubation of purified CD4+ T
cells with caspase-8 and caspase-3 but not caspase-9 inhibitors
resulted in a significantly reduced Annexin staining (Figure 3F).
These observations indicate that the external pathway is involved
in MNC secretome-mediated apoptosis. Consequently, we evalu-
ated known apoptosis-inducing factors in the secretome. As illu-
strated in Figure 3G, TNF-a, sCD40L, sFASL, and sFAS were only
present in low concentrations in the MNC secretome. These find-
ings suggest that the pro-apoptotic capacity is largely mediated by
still unknown factor(s) or by a not yet understood interplay
between several specific factors within the secretome.

Blocking antibodies against known
pro-apoptotic are ineffective in reversing
CD4+ T cell apoptosis

To characterize the role of known pro-apoptotic factors in the
apoptosis-inducing capacity of MNC secretome we co-incubated
purified CD4+ T cells with blocking antibodies directed against
CDA40L, TRAIL1, TRAIL2, and FASL. Antibodies directed against
different chemokines without an apoptosis-inducing capacity
(VEGF, IL8, ENA78, and MMP9) served as control. Histone
release of MNC secretome-treated CD4+ cells was not
reduced by blocking these factors, indicating that MNC secretome
display its cell death inducing feature aside commonly accepted
pathways (Figure 3H).

CD4/CD8 cell ratio is reduced in
mononuclear cell secretome-treated
animals

On the basis of our in vitro findings, we measured CD4+ and
CD8+ cells 12 and 36 h after treating EAM animals with MNC
secretome or control medium. The CD4/CD8 ratio was reduced
in mice receiving the treatment when compared with control
animals although this trend reached significance only at the 36 h
timepoint (12h: 2.1 £ 03 vs. 1.7 + 04; P=0441; 36 h: 29 +
0.2 vs. 20 + 0.1; P =0.007; Table 7). In parallel, the number of
7-AAD positive circulating CD4+ cells was increased in MNC
secretome-treated animals when compared with the control

group.


http://eurheartj.oxfordjournals.org/lookup/suppl/doi:10.1093/eurheartj/ehs459/-/DC1
http://eurheartj.oxfordjournals.org/lookup/suppl/doi:10.1093/eurheartj/ehs459/-/DC1
http://eurheartj.oxfordjournals.org/lookup/suppl/doi:10.1093/eurheartj/ehs459/-/DC1
http://eurheartj.oxfordjournals.org/lookup/suppl/doi:10.1093/eurheartj/ehs459/-/DC1
http://eurheartj.oxfordjournals.org/lookup/suppl/doi:10.1093/eurheartj/ehs459/-/DC1
http://eurheartj.oxfordjournals.org/lookup/suppl/doi:10.1093/eurheartj/ehs459/-/DC1

682

K. Hoetzenecker et al.

A Human
1004 Bl Mouse
804
B
=
8
o 601
b
=
[}
2
T 401
B
204
o'unguqqqqoonwhhdi @ g w o [T ©
T e dIgaTENTTNLZ SdW STHL S0 20
T — — — - I R [ e | A a
el #g====gk “2g2 B2G g2 §8
4 2 Do (O
B —_— , _
PHA stimulation Anti-CD3 stimulation
P=0.913 P=0.004
! P=0.121 i P=0.015 !
P<0.001 1 P<0.001
1004 1004
c c
2 Rl
® s
L L
S S
5 501 5 504
ES ES
0- 0
) © N o ©
Q.b\\)é\ (\\‘0 ,\Q} \é \Q n=5 6\‘) &ﬁo +\Q' ;\@ \Q n=5
& @c;p N ?‘+ r£3+ W@ Qgcp N p‘+ ‘f’+
% B Q< % Q<
c D Histone release
CD4+cells 20 P=0.005
40 ] P=0.005
W
@ - MNC secretome
o 304 4 Medium
E
a 204
£
=
@
£ 10+
w
ES
0 T T T T
Oh Bh 12h 24h n=8 n=2

Figure 3 Results of cytokine arrays of mononuclear cell secretome obtained from cultured mouse splenocytes and mononuclear cell secre-
tome obtained from cultured human peripheral blood mononuclear cell are depicted in (A). Both preparations were comparable regarding their
secreted products. (B) The proliferative response of purified human CD4+ cells in the presence or absence of mononuclear cell secretome.
CD4+ cells stimulated with phytohaemagglutinin or anti-CD3 showed lower proliferation rates when treated with mononuclear cell secre-
tome. Unstimulated, purified CD4+ cells or a commercially available T cell line JURKAT) undergo apoptosis in the presence of mononuclear
cell secretome as shown by flow cytometry (C and E) and by histone release assay (D). This effect was partially reversible by pre-incubation with
a caspase-3 and a caspase-8 inhibitor, indicating an external pathway-mediated effect (F). Interestingly, known pro-apoptotic cytokines were
only found in marginal concentrations in the mononuclear cell secretome (G). Blocking pathways associated with apoptosis by neutralizing anti-
bodies had no effect on mononuclear cell secretome-induced histone release (H).



Mononuclear cell secretome in the treatment of myocarditis

683

Medium

Negcontrol MNC secretome

= ‘.' | 15.8% | 40.9%
=

/ - U

Annexin - FITC 2

% Annexin positive cells

n=8

Histone release

0.0
10° CD4+cells
MNC secretome +
Anti-CD40L + +
Anti-TNFa + +
Anti-TRAILL + +
Anti-TRAIL2 + +
Anti-FASL + +
Anti-VEGF + +

Anti-IL8 + +

Anti-ENA78 +
Anti-MMP9 +
Isotype control +

Figure 3 Continued.

Discussion

In this study, we showed for the first time that a systemic, high-
dose application of MNC secretome attenuates EAM. In vitro ana-
lysis revealed an apoptosis-inducing effect of MNC secretome on
CD4+ T cells. This observation was reversible by blocking the ex-
ternal apoptosis pathway.

Myocarditis is one of the leading causes for iDCM. The patho-
physiology underlying the disease is still not completely under-
stood. Nevertheless, autoimmunity is considered a key factor
promoting ongoing inflammation, fibrosis, and pathological
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remodelling. Accordingly, specific subgroups of affected patients
may take advantage of immunosuppressive treatment. However,
first clinical trials testing immunosuppression for acute myocarditis
failed. In a study by Parrillo et al?* no advantage of immunosup-
pressive treatment was found. The Myocarditis Treatment Trial,
comparing a placebo group to two immunosuppressive regimens
(prednisolone and azathioprine or prednisolone and cyclosporine)
came up with similar results a few years later.* Both trails suggest
that immunosuppression is not an option for the treatment of
acute, viral myocarditis and this view was followed in the guide-
lines.”>?® The question of immunosuppression for myocarditis
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Table |
secretome treatment (n = 4-5)

The CD4+ and CD8+ cell counts in whole-blood samples obtained 12 and 36 h after mononuclear cell

CD4/CD8 ratio CD4+/7-AAD pos

CD4+ (%) CD8+ (%)
12h
Medium 199+ 13 108 + 1.9
MNC secretome 133+ 1.0 93+20
36h
Medium 2394+ 1.6 . 11
MNC secretome 191+24 9.3+ 05

21 A1+

17 88+2
9+0. 54405

20401 10.6 + 1.1

The CD44-/CD8+ cell ratio was reduced in treated animals when compared with controls. Additionally, CD44-/7-AAD positive cells were found more frequently.

was readdressed when knowledge on pathophysiological aspects
of myocarditis increased. Whereas in earlier studies patients
were recruited without excluding cases of an acute viral myocardi-
tis, Wojnicz et al.*’ treated patients with chronic inflammatory
heart disease and increased HLA expression on heart biopsies,
with either prednisolone and azathioprine or placebo for 3
months. LVEF improved significantly in the immunosuppression
group, even 2 years after treatment. These encouraging results
were confirmed by Frustaci et al.>* on patients which fulfilled cri-
teria for inflammatory heart disease but had no evidence of viral
genome in biopsy samples. Future clinical trials testing immunomo-
dulatory or immunosuppressive drug regimens should carefully dis-
tinguish between patients with acute viral myocarditis and chronic
inflammatory heart disease where autoimmunity is the prevailing
cause for ongoing disease after clearance of the virus. Tests meas-
uring autoantibody load might help to better define forms of auto-
immune myocarditis and could be valuable to monitor disease
severity in the future.”’

The EAM model was first described by Neu et al.*® The experi-
mental basis of the EAM model is an immunization with a cardiac
specific peptide—MyHC-a. Susceptible mouse strains such as
Balb/c are immunized by a subcutaneously injection of an homolo-
gous a-myosin fragment together with a strong adjuvant."® The
EAM model is currently considered the best available model mim-
icking autoimmune mechanisms of inflammatory heart disease. It
offers the great advantage to study disease pathogenesis and treat-
ment effects in vivo in the absence of an infective agent.>’ However,
despite the advantage in testing new and promising therapeutic
targets, data from animal models should be estimated with
caution and must not uncritically be extrapolated to the human
system.

We have found that treating mice with MNC secretome inhib-
ited the development of an autoimmune myocarditis. This
finding, however, was restricted to an application of the compound
on Day 14, because treatment on Day 0 and Day 7 had no impact
on disease severity. The reason for this might be a time-limited
effect of MNC secretome on CD4+ cell suppression in vivo. In
the EAM model, the injected myosin fragment persists at the de-
position site and the injected MyHC-a/PBS/CFA suspension can
be still found at the time of scarification when opening the inguinal
region. On the other hand the half-life of the MNC secretome is

currently unknown, however, as the effective components are
most likely peptides/proteins a rapid decline in function can be
considered within 24 h. Another explanation for the time-
dependent efficacy of MNC secretome could be distinct immuno-
logical processes at different stages of EAM. During the sensitiza-
tion phase dendritic cell function is crucial. Dendritic cells take
up the injected myosin homologue, process it, and present it to
naive CD4+ T cells. Interestingly, MNC secretome had only a
marginal impact on DC function. Maturation to LPS stimulation
was only minimally impaired and endocytosis was unaltered in
the presence of MNC secretome.

A major limitation of this study is that mice were treated by a
single-dose protocol and the effect was only monitored on Day
21. Data on long-term effects of MNC secretome treatment are
still missing. In addition, myocarditis is a chronic disease in the clin-
ical scenario, therefore, repeated treatment for a longer time
period is necessary. We plan to address these two questions in
a future study.

Stem cells have been shown to possess—besides their regenera-
tive capacity—considerable immunomodulatory features, e.g. they
can effectively reduce lymphocyte proliferation in vitro.>* It has
been suggested that these anti-proliferative effects are mediated,
at least partly, via paracrine mechanisms.'®*® The idea of using
‘conditioned’” medium from stem cell cultures instead of stem
cells has recently developed mainly supported by research in the
field of regenerative medicine. Several groups have so far reported
encouraging results of using the secretome of mesenchymal or
bone marrow-derived stem cells in treating myocardial infarc-
tion.”#3*3> We have recently expanded the concept of regenera-
tory, stem cell-derived paracrine factors, by showing that the
secretome of PBMC also mediates myocyte protection following
myocardial ischaemia."’~"® Our findings were corroborated by
the work of Wollert and colleagues®® showing in a detailed analysis
that the secretome derived from stem cells only slightly differs
from the secretome from peripheral blood leucocytes. A major
advantage of using paracrine factors from PBMC instead of stem
cells is that they are easily accessible. Our protocol of dialysis
and lyophilization was developed for an off-the shelf scenario for
future clinical applications. For the dialysis step, a cut-off of
3.5 kD was used to avoid a loss of proteins. Neither dialysis nor
lyophilization had an impact on observed effects (unpublished
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data). In the clinical setting, MNC secretome could be produced in
analogy to other ‘biologicals’ (e.g. i.v. immunoglobulins) from blood
donations of healthy volunteers. However, strict regulatory prere-
quisites (e.g. virus inactivation, potency assays, and mandated GMP
facilities) have to be met in order to reach human clinical trials.

The main mechanistic finding of this work is the capacity of
MNC secretome to induce apoptosis of CD4+ T cells in vitro
and in vivo. We have thoroughly evaluated this observation in
primary CD4+4 T cell cultures, a human JURKAT, and a mouse
CD4+ T cell lymphoma cell line. Although the observed effect
might not be limited to T-helper cells, suppressing the CD4+
cell function is substantial in regard to treating myocarditis. Previ-
ous work has shown that treatment with anti-CD4 monoclonal
antibody significantly improved cardiac functional parameters in a
rat myocarditis model. In addition, lymphocytes obtained from
treated animals showed no proliferative response after in vitro
stimulation with a myosin fragment.m'zo In a tedious work by Vala-
perti et al,'® the importance of CD4+ cell function in the EAM
model was addressed by showing that treatment with CD11b+
monocytes, suppressed the CD4+ dependent, MyHC-a-specific
autoimmune response. These findings are supported by the clinical
observation that T cell depletion is a possible rescue therapy for
fulminant autoimmune m)/oca1rdi‘cis.37'38

Autoantibody formation is a well-described feature in the patho-
genesis of myocarditis. Antibodies against a wide range of recep-
tors, mitochondrial, and contractile proteins have been found
both in human and in animal models.>® Myosin-specific antibodies
are detectable in 46% of sera from patients suffering from dilated
cardiomyopathy in western blot analysis.4° In contrast to this clin-
ical observation, autoantibody formation is not directly involved in
the development of myocardial infiltrates in the EAM model, since
B-cell deficient mice still develop a myocarditis.22 However, levels
of anti-myosin antibodies can be considered a surrogate marker to
monitor disease severity in the EAM model. In our study,
decreased circulating anti-myosin IgG1 and IgM together with
reduced levels of IL-10, IL-6, and TGF-3 underline the therapeutic
effect of MNC secretome.

One limitation of this study is that the MNC secretome by def-
inition comprises of a myriad of proteins.>® Currently, although a
detailed mapping of the protein content of MNC secretome has
been performed, we have only limited knowledge regarding the
factors mediating observed effects. Unfortunately, this is an un-
solved problem for most of the work done in the field of secre-
tome research. In some studies, potential target proteins were
inactivated by blocking antibodies, however, effects were uniformly
at most partially reversible.'**>*" In this present study, we tried to
correlate the apoptosis-inducing capacity of MNC secretome to
known apoptosis-relevant factors. TNF-a, sCD40L, and sFAS
were only marginally present in MNC secretome, sFASL was not
detectable as determined by the ELISA technique. In addition,
blocking different pathways associated with programmed cell
death by neutralizing antibodies did not affect histone release in
CDA4+ cell cultures. Interestingly, non-protein mediated mechan-
isms of conditioned medium were put up for discussion recently.
Timmers and collegues* could show that exosomes consisting
of cholesterol, sphingomyelin, and phosphatidylcholine-mediated
cardioprotective effect.

To the best of our knowledge, this is the first study evaluating
immunosuppressive features of a high-dose application of MNC
secretome in the murine EAM model. Further studies are war-
ranted to perpetuate the concept of using MNC secretome for
the treatment of myocarditis.

Supplementary material

Supplementary material is available at European Heart Journal
online.
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