65 research outputs found

    Bare Necessity: Simplifying the Standard for Admitting Showup Identifications

    Get PDF
    In 1967, the Supreme Court held that admitting the results of an unnecessarily suggestive police identification procedure could violate a defendant’s right to due process. Over the next decade, several rulings narrowed and clarified the standard into the Brathwaite test, which remains in use today. This test allows the admission of identifications obtained through unnecessarily suggestive procedures if a court finds the identification to nonetheless be reliable. Applying the test requires courts to rule on a procedure’s necessity, its suggestiveness, and the resulting identification’s reliability. Making these determinations forces courts to grapple with intertwined questions of law and fact—questions whose answers have changed with advances in the scientific understanding of memory. The most commonly used type of suggestive procedure, known as a showup, involves a witness viewing a single suspect for identification. Although showup procedures can be useful when a lineup or photo array is not feasible, showups significantly increase misidentifications because the procedure implicitly tells a witness who the police believe is guilty, rendering the technique inherently suggestive. Further, because showups do not test a witness’s memory, they cannot safeguard against a mistaken witness, like a lineup can. To help courts avoid the difficult task of analyzing showup identifications for reliability, this Note proposes a simplified test for admitting them, arguing that courts may look to a showup’s necessity as the sole determining factor of admissibility. By considering the interplay of increased scientific understanding with existing law, this Note demonstrates that the proposed simplification is not only sound policy but is also permissible and advisable under current Supreme Court doctrine

    Probing Polarization and Dielectric Function of Molecules with Higher Order Harmonics in Scattering-near-field Scanning Optical Microscopy

    Get PDF
    The idealized system of an atomically flat metallic surface [highly oriented pyrolytic graphite (HOPG)] and an organic monolayer (porphyrin) was used to determine whether the dielectric function and associated properties of thin films can be accessed with scanning–near-field scanning optical microscopy (s-NSOM). Here, we demonstrate the use of harmonics up to fourth order and the polarization dependence of incident light to probe dielectric properties on idealized samples of monolayers of organic molecules on atomically smooth substrates. An analytical treatment of light/ sample interaction using the s-NSOM tip was developed in order to quantify the dielectric properties. The theoretical analysis and numerical modeling, as well as experimental data, demonstrate that higher order harmonic scattering can be used to extract the dielectric properties of materials with tens of nanometer spatial resolution. To date, the third harmonic provides the best lateral resolution(~50 nm) and dielectric constant contrast for a porphyrin film on HOPG

    Formale wissenschaftliche Kommunikation

    Get PDF
    Taubert NC. Formale wissenschaftliche Kommunikation. In: Bonfadelli H, FĂ€hnrich B, LĂŒthje C, Milde J, Rhombert M, SchĂ€fer M, eds. Forschungsfeld Wissenschaftskommunikation. Wiesbaden: VS Verlag; 2017: 1

    Molecularly defined diffuse leptomeningeal glioneuronal tumor (DLGNT) comprises two subgroups with distinct clinical and genetic features

    Get PDF
    Diffuse leptomeningeal glioneuronal tumors (DLGNT) represent rare CNS neoplasms which have been included in the 2016 update of the WHO classification. The wide spectrum of histopathological and radiological features can make this enigmatic tumor entity difficult to diagnose. In recent years, large-scale genomic and epigenomic analyses have afforded insight into key genetic alterations occurring in multiple types of brain tumors and provide unbiased, complementary tools to improve diagnostic accuracy. Through genome-wide DNA methylation screening of > 25,000 tumors, we discovered a molecularly distinct class comprising 30 tumors, mostly diagnosed histologically as DLGNTs. Copy-number profiles derived from the methylation arrays revealed unifying characteristics, including loss of chromosomal arm 1p in all cases. Furthermore, this molecular DLGNT class can be subdivided into two subgroups [DLGNT methylation class (MC)-1 and DLGNT methylation class (MC)-2], with all DLGNT-MC-2 additionally displaying a gain of chromosomal arm 1q. Co-deletion of 1p/19q, commonly seen in IDH-mutant oligodendroglioma, was frequently observed in DLGNT, especially in DLGNT-MC-1 cases. Both subgroups also had recurrent genetic alterations leading to an aberrant MAPK/ERK pathway, with KIAA1549:BRAF fusion being the most frequent event. Other alterations included fusions of NTRK1/2/3 and TRIM33:RAF1, adding up to an MAPK/ERK pathway activation identified in 80% of cases. In the DLGNT-MC-1 group, age at diagnosis was significantly lower (median 5 vs 14 years, p < 0.01) and clinical course less aggressive (5-year OS 100, vs 43% in DLGNT-MC-2). Our study proposes an additional molecular layer to the current histopathological classification of DLGNT, of particular use for cases without typical morphological or radiological characteristics, such as diffuse growth and radiologic leptomeningeal dissemination. Recurrent 1p deletion and MAPK/ERK pathway activation represent diagnostic biomarkers and therapeutic targets, respectively—laying the foundation for future clinical trials with, e.g., MEK inhibitors that may improve the clinical outcome of patients with DLGNT

    Phase I/II intra-patient dose escalation study of vorinostat in children with relapsed solid tumor, lymphoma, or leukemia

    Get PDF
    Background: Until today, adult and pediatric clinical trials investigating single-agent or combinatorial HDAC inhibitors including vorinostat in solid tumors have largely failed to demonstrate efficacy. These results may in part be explained by data from preclinical models showing significant activity only at higher concentrations compared to those achieved with current dosing regimens. In the current pediatric trial, we applied an intra-patient dose escalation design. The purpose of this trial was to determine a safe dose recommendation (SDR) of single-agent vorinostat for intra-patient dose escalation, pharmacokinetic analyses (PK), and activity evaluation in children (3-18 years) with relapsed or therapy-refractory malignancies. Results: A phase I intra-patient dose (de)escalation was performed until individual maximum tolerated dose (MTD). The starting dose was 180 mg/m(2)/day with weekly dose escalations of 50 mg/m(2) until DLT/maximum dose. After MTD determination, patients seamlessly continued in phase II with disease assessments every 3 months. PK and plasma cytokine profiles were determined. Fifty of 52 patients received treatment. n = 27/50 (54%) completed the intra-patient (de)escalation and entered phase II. An SDR of 130 mg/m(2)/day was determined (maximum, 580 mg/m(2)/day). n = 46/50 (92%) patients experienced treatment-related AEs which were mostly reversible and included thrombocytopenia, fatigue, nausea, diarrhea, anemia, and vomiting. n = 6/50 (12%) had treatment-related SAEs. No treatment-related deaths occurred. Higher dose levels resulted in higher C-max. Five patients achieved prolonged disease control (> 12 months) and showed a higher C-max (> 270 ng/mL) and MTDs. Best overall response (combining PR and SD, no CR observed) rate in phase II was 6/27 (22%) with a median PFS and OS of 5.3 and 22.4 months. Low levels of baseline cytokine expression were significantly correlated with favorable outcome. Conclusion: An SDR of 130 mg/m(2)/day for individual dose escalation was determined. Higher drug exposure was associated with responses and long-term disease stabilization with manageable toxicity. Patients with low expression of plasma cytokine levels at baseline were able to tolerate higher doses of vorinostat and benefited from treatment. Baseline cytokine profile is a promising potential predictive biomarker

    Infants and newborns with Atypical Teratoid Rhabdoid Tumors (ATRT) and Extracranial Malignant Rhabdoid Tumors (eMRT) in the EU-RHAB registry: a unique and challenging population

    Get PDF
    SIMPLE SUMMARY: Malignant rhabdoid tumors (MRT) are deadly tumors that predominantly affect infants and young children. Even when considering the generally young age of these patients, the treatment of infants below the age of six months represents a particular challenge due to the vulnerability of this patient population. The aim of our retrospective study was to assess the available information on prognostic factors, genetics, toxicity of treatment and long-term outcomes of MRT. We confirmed that, in a cohort of homogenously treated infants with MRT, significant predictors of outcome were female sex, localized stage, absence of a GLM and maintenance therapy, and these significantly favorably influence prognosis. Stratification-based biomarker-driven tailored trials may be a key option to improve survival rates. ABSTRACT: Introduction: Malignant rhabdoid tumors (MRT) predominantly affect infants and young children. Patients below six months of age represent a particularly therapeutically challenging group. Toxicity to developing organ sites limits intensity of treatment. Information on prognostic factors, genetics, toxicity of treatment and long-term outcomes is sparse. Methods: Clinical, genetic, and treatment data of 100 patients (aged below 6 months at diagnosis) from 13 European countries were analyzed (2005–2020). Tumors and matching blood samples were examined for SMARCB1 mutations using FISH, MLPA and Sanger sequencing. DNA methylation subgroups (ATRT-TYR, ATRT-SHH, and ATRT-MYC) were determined using 450 k / 850 k-profiling. Results: A total of 45 patients presented with ATRT, 29 with extracranial, extrarenal (eMRT) and 9 with renal rhabdoid tumors (RTK). Seventeen patients demonstrated synchronous tumors (SYN). Metastases (M+) were present in 27% (26/97) at diagnosis. A germline mutation (GLM) was detected in 55% (47/86). DNA methylation subgrouping was available in 50% (31 / 62) with ATRT or SYN; for eMRT, methylation-based subgrouping was not performed. The 5-year overall (OS) and event free survival (EFS) rates were 23.5 ± 4.6% and 19 ± 4.1%, respectively. Male sex (11 ± 5% vs. 35.8 ± 7.4%), M+ stage (6.1 ± 5.4% vs. 36.2 ± 7.4%), presence of SYN (7.1 ± 6.9% vs. 26.6 ± 5.3%) and GLM (7.7 ± 4.2% vs. 45.7 ± 8.6%) were significant prognostic factors for 5-year OS. Molecular subgrouping and survival analyses confirm a previously described survival advantage for ATRT-TYR. In an adjusted multivariate model, clinical factors that favorably influence the prognosis were female sex, localized stage, absence of a GLM and maintenance therapy. Conclusions: In this cohort of homogenously treated infants with MRT, significant predictors of outcome were sex, M-stage, GLM and maintenance therapy. We confirm the need to stratify which patient groups benefit from multimodal treatment, and which need novel therapeutic strategies. Biomarker-driven tailored trials may be a key option

    Infants and Newborns with Atypical Teratoid Rhabdoid Tumors (ATRT) and Extracranial Malignant Rhabdoid Tumors (eMRT) in the EU-RHAB Registry: A Unique and Challenging Population

    Get PDF
    Malignant rhabdoid tumors (MRT) predominantly affect infants and young children. Patients below six months of age represent a particularly therapeutically challenging group. Toxicity to developing organ sites limits intensity of treatment. Information on prognostic factors, genetics, toxicity of treatment and long-term outcomes is sparse. Methods: Clinical, genetic, and treatment data of 100 patients (aged below 6 months at diagnosis) from 13 European countries were analyzed (2005–2020). Tumors and matching blood samples were examined for SMARCB1 mutations using FISH, MLPA and Sanger sequencing. DNA methylation subgroups (ATRT-TYR, ATRT-SHH, and ATRT-MYC) were determined using 450 k / 850 k-profiling. Results: A total of 45 patients presented with ATRT, 29 with extracranial, extrarenal (eMRT) and 9 with renal rhabdoid tumors (RTK). Seventeen patients demonstrated synchronous tumors (SYN). Metastases (M+) were present in 27% (26/97) at diagnosis. A germline mutation (GLM) was detected in 55% (47/86). DNA methylation subgrouping was available in 50% (31 / 62) with ATRT or SYN; for eMRT, methylation-based subgrouping was not performed. The 5-year overall (OS) and event free survival (EFS) rates were 23.5 ± 4.6% and 19 ± 4.1%, respectively. Male sex (11 ± 5% vs. 35.8 ± 7.4%), M+ stage (6.1 ± 5.4% vs. 36.2 ± 7.4%), presence of SYN (7.1 ± 6.9% vs. 26.6 ± 5.3%) and GLM (7.7 ± 4.2% vs. 45.7 ± 8.6%) were significant prognostic factors for 5-year OS. Molecular subgrouping and survival analyses confirm a previously described survival advantage for ATRT-TYR. In an adjusted multivariate model, clinical factors that favorably influence the prognosis were female sex, localized stage, absence of a GLM and maintenance therapy. Conclusions: In this cohort of homogenously treated infants with MRT, significant predictors of outcome were sex, M-stage, GLM and maintenance therapy. We confirm the need to stratify which patient groups benefit from multimodal treatment, and which need novel therapeutic strategies. Biomarker-driven tailored trials may be a key option

    Spectrum and prevalence of genetic predisposition in medulloblastoma: a retrospective genetic study and prospective validation in a clinical trial cohort.

    Get PDF
    BACKGROUND: Medulloblastoma is associated with rare hereditary cancer predisposition syndromes; however, consensus medulloblastoma predisposition genes have not been defined and screening guidelines for genetic counselling and testing for paediatric patients are not available. We aimed to assess and define these genes to provide evidence for future screening guidelines. METHODS: In this international, multicentre study, we analysed patients with medulloblastoma from retrospective cohorts (International Cancer Genome Consortium [ICGC] PedBrain, Medulloblastoma Advanced Genomics International Consortium [MAGIC], and the CEFALO series) and from prospective cohorts from four clinical studies (SJMB03, SJMB12, SJYC07, and I-HIT-MED). Whole-genome sequences and exome sequences from blood and tumour samples were analysed for rare damaging germline mutations in cancer predisposition genes. DNA methylation profiling was done to determine consensus molecular subgroups: WNT (MBWNT), SHH (MBSHH), group 3 (MBGroup3), and group 4 (MBGroup4). Medulloblastoma predisposition genes were predicted on the basis of rare variant burden tests against controls without a cancer diagnosis from the Exome Aggregation Consortium (ExAC). Previously defined somatic mutational signatures were used to further classify medulloblastoma genomes into two groups, a clock-like group (signatures 1 and 5) and a homologous recombination repair deficiency-like group (signatures 3 and 8), and chromothripsis was investigated using previously established criteria. Progression-free survival and overall survival were modelled for patients with a genetic predisposition to medulloblastoma. FINDINGS: We included a total of 1022 patients with medulloblastoma from the retrospective cohorts (n=673) and the four prospective studies (n=349), from whom blood samples (n=1022) and tumour samples (n=800) were analysed for germline mutations in 110 cancer predisposition genes. In our rare variant burden analysis, we compared these against 53 105 sequenced controls from ExAC and identified APC, BRCA2, PALB2, PTCH1, SUFU, and TP53 as consensus medulloblastoma predisposition genes according to our rare variant burden analysis and estimated that germline mutations accounted for 6% of medulloblastoma diagnoses in the retrospective cohort. The prevalence of genetic predispositions differed between molecular subgroups in the retrospective cohort and was highest for patients in the MBSHH subgroup (20% in the retrospective cohort). These estimates were replicated in the prospective clinical cohort (germline mutations accounted for 5% of medulloblastoma diagnoses, with the highest prevalence [14%] in the MBSHH subgroup). Patients with germline APC mutations developed MBWNT and accounted for most (five [71%] of seven) cases of MBWNT that had no somatic CTNNB1 exon 3 mutations. Patients with germline mutations in SUFU and PTCH1 mostly developed infant MBSHH. Germline TP53 mutations presented only in childhood patients in the MBSHH subgroup and explained more than half (eight [57%] of 14) of all chromothripsis events in this subgroup. Germline mutations in PALB2 and BRCA2 were observed across the MBSHH, MBGroup3, and MBGroup4 molecular subgroups and were associated with mutational signatures typical of homologous recombination repair deficiency. In patients with a genetic predisposition to medulloblastoma, 5-year progression-free survival was 52% (95% CI 40-69) and 5-year overall survival was 65% (95% CI 52-81); these survival estimates differed significantly across patients with germline mutations in different medulloblastoma predisposition genes. INTERPRETATION: Genetic counselling and testing should be used as a standard-of-care procedure in patients with MBWNT and MBSHH because these patients have the highest prevalence of damaging germline mutations in known cancer predisposition genes. We propose criteria for routine genetic screening for patients with medulloblastoma based on clinical and molecular tumour characteristics. FUNDING: German Cancer Aid; German Federal Ministry of Education and Research; German Childhood Cancer Foundation (Deutsche Kinderkrebsstiftung); European Research Council; National Institutes of Health; Canadian Institutes for Health Research; German Cancer Research Center; St Jude Comprehensive Cancer Center; American Lebanese Syrian Associated Charities; Swiss National Science Foundation; European Molecular Biology Organization; Cancer Research UK; Hertie Foundation; Alexander and Margaret Stewart Trust; V Foundation for Cancer Research; Sontag Foundation; Musicians Against Childhood Cancer; BC Cancer Foundation; Swedish Council for Health, Working Life and Welfare; Swedish Research Council; Swedish Cancer Society; the Swedish Radiation Protection Authority; Danish Strategic Research Council; Swiss Federal Office of Public Health; Swiss Research Foundation on Mobile Communication; Masaryk University; Ministry of Health of the Czech Republic; Research Council of Norway; Genome Canada; Genome BC; Terry Fox Research Institute; Ontario Institute for Cancer Research; Pediatric Oncology Group of Ontario; The Family of Kathleen Lorette and the Clark H Smith Brain Tumour Centre; Montreal Children's Hospital Foundation; The Hospital for Sick Children: Sonia and Arthur Labatt Brain Tumour Research Centre, Chief of Research Fund, Cancer Genetics Program, Garron Family Cancer Centre, MDT's Garron Family Endowment; BC Childhood Cancer Parents Association; Cure Search Foundation; Pediatric Brain Tumor Foundation; Brainchild; and the Government of Ontario
    • 

    corecore