128 research outputs found

    Transmission of scrapie prions to primate after an extended silent incubation period

    Get PDF
    Citation: Comoy, E. E., Mikol, J., Luccantoni-Freire, S., Correia, E., Lescoutra-Etchegaray, N., Durand, V., . . . Deslys, J. P. (2015). Transmission of scrapie prions to primate after an extended silent incubation period. Scientific Reports, 5. doi:10.1038/srep11573Classical bovine spongiform encephalopathy (c-BSE) is the only animal prion disease reputed to be zoonotic, causing variant Creutzfeldt-Jakob disease (vCJD) in humans and having guided protective measures for animal and human health against animal prion diseases. Recently, partial transmissions to humanized mice showed that the zoonotic potential of scrapie might be similar to c-BSE. We here report the direct transmission of a natural classical scrapie isolate to cynomolgus macaque, a highly relevant model for human prion diseases, after a 10-year silent incubation period, with features similar to those reported for human cases of sporadic CJD. Scrapie is thus actually transmissible to primates with incubation periods compatible with their life expectancy, although fourfold longer than BSE. Long-term experimental transmission studies are necessary to better assess the zoonotic potential of other prion diseases with high prevalence, notably Chronic Wasting Disease of deer and elk and atypical/Nor98 scrapie

    The Crystal Structure of PPIL1 Bound to Cyclosporine A Suggests a Binding Mode for a Linear Epitope of the SKIP Protein

    Get PDF
    BACKGROUND: The removal of introns from pre-mRNA is carried out by a large macromolecular machine called the spliceosome. The peptidyl-prolyl cis/trans isomerase PPIL1 is a component of the human spliceosome and binds to the spliceosomal SKIP protein via a binding site distinct from its active site. PRINCIPAL FINDINGS: Here, we have studied the PPIL1 protein and its interaction with SKIP biochemically and by X-ray crystallography. A minimal linear binding epitope derived from the SKIP protein could be determined using a peptide array. A 36-residue region of SKIP centred on an eight-residue epitope suffices to bind PPIL1 in pull-down experiments. The crystal structure of PPIL1 in complex with the inhibitor cyclosporine A (CsA) was obtained at a resolution of 1.15 A and exhibited two bound Cd(2+) ions that enabled SAD phasing. PPIL1 residues that have previously been implicated in binding of SKIP are involved in the coordination of Cd(2+) ions in the present crystal structure. Employing the present crystal structure, the determined minimal binding epitope and previously published NMR data, a molecular docking study was performed. In the docked model of the PPIL1.SKIP interaction, a proline residue of SKIP is buried in a hydrophobic pocket of PPIL1. This hydrophobic contact is encircled by several hydrogen bonds between the SKIP peptide and PPIL1. CONCLUSION: We characterized a short, linear epitope of SKIP that is sufficient to bind the PPIL1 protein. Our data indicate that this SKIP peptide could function in recruiting PPIL1 into the core of the spliceosome. We present a molecular model for the binding mode of SKIP to PPIL1 which emphasizes the versatility of cyclophilin-type PPIases to engage in additional interactions with other proteins apart from active site contacts despite their limited surface area

    Monocyte NOTCH2 expression predicts interferon-beta immunogenicity in multiple sclerosis patients

    Get PDF
    Multiple sclerosis (MS) is an autoimmune disease characterized by CNS inflammation leading to demyelination and axonal damage. IFN-β is an established treatment for MS; however, up to 30% of IFN-β–treated MS patients develop neutralizing antidrug antibodies (nADA), leading to reduced drug bioactivity and efficacy. Mechanisms driving antidrug immunogenicity remain uncertain, and reliable biomarkers to predict immunogenicity development are lacking. Using high-throughput flow cytometry, NOTCH2 expression on CD14+ monocytes and increased frequency of proinflammatory monocyte subsets were identified as baseline predictors of nADA development in MS patients treated with IFN-β. The association of this monocyte profile with nADA development was validated in 2 independent cross-sectional MS patient cohorts and a prospective cohort followed before and after IFN-β administration. Reduced monocyte NOTCH2 expression in nADA+ MS patients was associated with NOTCH2 activation measured by increased expression of Notch-responsive genes, polarization of monocytes toward a nonclassical phenotype, and increased proinflammatory IL-6 production. NOTCH2 activation was T cell dependent and was only triggered in the presence of serum from nADA+ patients. Thus, nADA development was driven by a proinflammatory environment that triggered activation of the NOTCH2 signaling pathway prior to first IFN-β administration

    Vacuolar myopathy in a dog resembling human sporadic inclusion body myositis

    Get PDF
    Sporadic inclusion body myositis (sIBM) is the most common myopathy in people over the age of 50 years. While immune-mediated inflammatory myopathies are well documented in dogs, sIBM has not been described. An 11-year-old dog with chronic and progressive neuromuscular dysfunction was evaluated for evidence of sIBM using current pathologic, immunohistochemical and electron microscopic diagnostic criteria. Vacuoles and congophilic intracellular inclusions were identified in cryostat sections of multiple muscle biopsies and immunostained with antibodies against amyloid-β peptide, amyloid-β precursor protein, and proteosome 20S of the ubiquitin–proteosome system. Cellular infiltration and increased expression of MHC Class I antigen were observed. Cytoplasmic filamentous inclusions, membranous structures, and myeloid bodies were identified ultrastructurally. These observations constitute the first evidence that both the inflammatory and degenerative features of human sIBM can occur in a non-human species

    The effect of tightly-bound water molecules on scaffold diversity in computer-aided de novo ligand design of CDK2 inhibitors

    Get PDF
    We have determined the effects that tightly bound water molecules have on the de novo design of cyclin-dependent kinase-2 (CDK2) ligands. In particular, we have analyzed the impact of a specific structural water molecule on the chemical diversity and binding mode of ligands generated through a de novo structure-based ligand generation method in the binding site of CDK2. The tightly bound water molecule modifies the size and shape of the binding site and we have found that it also imposed constraints on the observed binding modes of the generated ligands. This in turn had the indirect effect of reducing the chemical diversity of the underlying molecular scaffolds that were able to bind to the enzyme satisfactorily

    Evaluation of the zoonotic potential of transmissible mink encephalopathy

    Get PDF
    Successful transmission of Transmissible Mink Encephalopathy (TME) to cattle supports the bovine hypothesis for the still controversial origin of TME outbreaks. Human and primate susceptibility to classical Bovine Spongiform Encephalopathy (c-BSE) and the transmissibility of L-type BSE to macaques indicate a low cattle-to-primate species barrier. We therefore evaluated the zoonotic potential of cattle-adapted TME. In less than two years, this strain induced in cynomolgus macaques a neurological disease similar to L-BSE but distinct from c-BSE. TME derived from another donor species (raccoon) induced a similar disease with even shorter incubation periods. L-BSE and cattle-adapted TME were also transmissible to transgenic mice expressing human prion protein (PrP). Secondary transmissions to transgenic mice expressing bovine PrP maintained the features of the three tested bovine strains (cattle TME, c-BSE and L-BSE) regardless of intermediate host. Thus, TME is the third animal prion strain transmissible to both macaques and humanized transgenic mice, suggesting zoonotic potentials that should be considered in the risk analysis of animal prion diseases for human health. Moreover, the similarities between TME and L-BSE are highly suggestive of a link between these strains, and therefore the possible presence of L-BSE for many decades prior to its identification in USA and Europe. © 2013 by the authors; licensee MDPI, Basel, Switzerland

    Patient adherence to and tolerability of self-administered interferon β-1a using an electronic autoinjection device: a multicentre, open-label, phase IV study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Achieving good adherence to self-injected treatments for multiple sclerosis can be difficult. Injection devices may help to overcome some of the injection-related barriers to adherence that can be experienced by patients. We sought to assess short-term adherence to, and tolerability of, interferon (IFN) β-1a administered via electronic autoinjection device in patients with relapsing-remitting multiple sclerosis (RRMS).</p> <p>Methods</p> <p>BRIDGE (RebiSmart to self-inject Rebif serum-free formulation in a multidose cartridge) was a 12-week, multicentre, open-label, single-arm, observational, Phase IV study in which patients self-administered IFN β-1a (titrated to 44 μg), subcutaneously (sc), three times weekly, via electronic autoinjection device. Patients were assessed at baseline and 4-weekly intervals to Week 12 or early termination (ET) for: physical examinations; diary card completion (baseline, Weeks 4, 8 only); neurological examinations (baseline, Week 12/ET only); MS Treatment Concern Questionnaire (MSTCQ; Weeks 4, 8, 12 only); Convenience Questionnaire (Week 12 only); Hospital Anxiety and Depression Scale (HADS); and Paced Auditory Serial Addition Task (PASAT; baseline only). Adherence was defined as administration of ≥ 80% of scheduled injections, recorded by the autoinjection device.</p> <p>Results</p> <p>Overall, 88.2% (105/119; intent-to-treat population) of patients were adherent; 67.2% (80/119) administered all scheduled injections. Medical reasons accounted for 35.6% (31/87) of missed injections, forgetfulness for 20.6% (18/87). Adherence did not correlate with baseline Expanded Disability Status Scale (<it>P </it>= 0.821) or PASAT (<it>P </it>= 0.952) scores, or pre-study therapy (<it>P </it>= 0.303). No significant changes (baseline-Week 12) in mean HADS depression (<it>P </it>= 0.482) or anxiety (<it>P </it>= 0.156) scores were observed. 'Overall convenience' was the most important reported benefit of the autoinjection device. Device features associated with handling and ease of use were highly rated. Mean MSTCQ scores for 'flu-like' symptoms (<it>P </it>= 0.022) and global side effects (<it>P </it>= 0.002) significantly improved from Week 4-12. Mean MSTCQ scores for pain at injection site and injection pain increased from Week 4-12 (<it>P </it>< 0.001). Adverse events were mild/moderate. No new safety signals were identified.</p> <p>Conclusion</p> <p>Convenience and ease of use of the autoinjection device may improve adherence and, therefore, outcomes, in patients with RRMS receiving sc IFN β-1a.</p> <p>Trial registration</p> <p>EU Clinical Trials Register (EU-CTR; <url>http://www.clinicaltrialsregister.eu</url>): 2009-013333-24</p

    Management of breakthrough disease in patients with multiple sclerosis: when an increasing of Interferon beta dose should be effective?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In daily clinical setting, some patients affected by relapsing-remitting Multiple Sclerosis (RRMS) are switched from the low-dose to the high-dose Interferon beta (IFNB) in order to achieve a better control of the disease.</p> <p>Purpose</p> <p>In this observational, post-marketing study we reported the 2-year clinical outcomes of patients switched to the high-dose IFNB; we also evaluated whether different criteria adopted to switch patients had an influence on the clinical outcomes.</p> <p>Methods</p> <p>Patients affected by RRMS and switched from the low-dose to the high-dose IFNB due to the occurrence of relapses, or contrast-enhancing lesions (CELs) as detected by yearly scheduled MRI scans, were followed for two years. Expanded Disability Status Scale (EDSS) scores, as well as clinical relapses, were evaluated during the follow-up period.</p> <p>Results</p> <p>We identified 121 patients switched to the high-dose IFNB. One hundred patients increased the IFNB dose because of the occurrence of one or more relapses, and 21 because of the presence of one or more CELs, even in absence of clinical relapses. At the end of the 2-year follow-up, 72 (59.5%) patients had a relapse, and 51 (42.1%) reached a sustained progression on EDSS score. Overall, 85 (70.3%) patients showed some clinical disease activity (i.e. relapses or disability progression) after the switch.</p> <p>Relapse risk after increasing the IFNB dose was greater in patients who switched because of relapses than those switched only for MRI activity (HR: 5.55, p = 0.001). A high EDSS score (HR: 1.77, p < 0.001) and the combination of clinical and MRI activity at switch raised the risk of sustained disability progression after increasing the IFNB dose (HR: 2.14, p = 0.01).</p> <p>Conclusion</p> <p>In the majority of MS patients, switching from the low-dose to the high-dose IFNB did not reduce the risk of further relapses or increased disability in the 2-year follow period.</p> <p>Although we observed that patients who switched only on the basis on MRI activity (even in absence of clinical attacks) had a lower risk of further relapses, larger studies are warranted before to recommend a switch algorithm based on MRI findings.</p

    Monitoring and Scoring Counter-Diffusion Protein Crystallization Experiments in Capillaries by in situ Dynamic Light Scattering

    Get PDF
    In this paper, we demonstrate the feasibility of using in situ Dynamic Light Scattering (DLS) to monitor counter-diffusion crystallization experiments in capillaries. Firstly, we have validated the quality of the DLS signal in thin capillaries, which is comparable to that obtained in standard quartz cuvettes. Then, we have carried out DLS measurements of a counter-diffusion crystallization experiment of glucose isomerase in capillaries of different diameters (0.1, 0.2 and 0.3 mm) in order to follow the temporal evolution of protein supersaturation. Finally, we have compared DLS data with optical recordings of the progression of the crystallization front and with a simulation model of counter-diffusion in 1D

    Immunological mechanism of action and clinical profile of disease-modifying treatments in multiple sclerosis.

    Get PDF
    Multiple sclerosis (MS) is a life-long, potentially debilitating disease of the central nervous system (CNS). MS is considered to be an immune-mediated disease, and the presence of autoreactive peripheral lymphocytes in CNS compartments is believed to be critical in the process of demyelination and tissue damage in MS. Although MS is not currently a curable disease, several disease-modifying therapies (DMTs) are now available, or are in development. These DMTs are all thought to primarily suppress autoimmune activity within the CNS. Each therapy has its own mechanism of action (MoA) and, as a consequence, each has a different efficacy and safety profile. Neurologists can now select therapies on a more individual, patient-tailored basis, with the aim of maximizing potential for long-term efficacy without interruptions in treatment. The MoA and clinical profile of MS therapies are important considerations when making that choice or when switching therapies due to suboptimal disease response. This article therefore reviews the known and putative immunological MoAs alongside a summary of the clinical profile of therapies approved for relapsing forms of MS, and those in late-stage development, based on published data from pivotal randomized, controlled trials
    corecore