71 research outputs found
A white humpback whale (Megaptera novaeangliae) in the Atlantic Ocean, Svalbard, Norway, August 2012
A white humpback whale (Megaptera novaeangliae) was observed on several occasions off Svalbard, Norway, during August 2012. The animal was completely white, except for a few small dark patches on the ventral side of its fluke. The baleen plates were light-coloured, but the animal's eyes had normal (dark) colouration. This latter characteristic indicates that the animal was not an albino; it was a leucistic individual. The animal was a full-sized adult and was engaged in “bubble-feeding”, together with 15–20 other humpback whales, each time it was seen. Subsequent to these sightings, polling of the marine mammal science community has resulted in the discovery of two other observations of white humpback whales in the Barents Sea area, one in 2004 and another in 2006; in both cases the observed individuals were adult animals. It is likely that all of these sightings are of the same individual, but there is no genetic or photographic evidence to confirm this suggestion. The rarity of observations of such white individuals suggests that they are born at very low frequencies or that the ontogenetic survival rates of the colour morph are low
An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics
For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types
The comparative responsiveness of Hospital Universitario Princesa Index and other composite indices for assessing rheumatoid arthritis activity
Objective
To evaluate the responsiveness in terms of correlation of the Hospital Universitario La Princesa Index (HUPI) comparatively to the traditional composite indices used to assess disease activity in rheumatoid arthritis (RA), and to compare the performance of HUPI-based response criteria with that of the EULAR response criteria.
Methods
Secondary data analysis from the following studies: ACT-RAY (clinical trial), PROAR (early RA cohort) and EMECAR (pre-biologic era long term RA cohort). Responsiveness was evaluated by: 1) comparing change from baseline (Delta) of HUPI with Delta in other scores by calculating correlation coefficients; 2) calculating standardised effect sizes. The accuracy of response by HUPI and by EULAR criteria was analyzed using linear regressions in which the dependent variable was change in global assessment by physician (Delta GDA-Phy).
Results
Delta HUPI correlation with change in all other indices ranged from 0.387 to 0.791); HUPI's standardized effect size was larger than those from the other indices in each database used. In ACT-RAY, depending on visit, between 65 and 80% of patients were equally classified by HUPI and EULAR response criteria. However, HUPI criteria were slightly more stringent, with higher percentage of patients classified as non-responder, especially at early visits. HUPI response criteria showed a slightly higher accuracy than EULAR response criteria when using Delta GDA-Phy as gold standard.
Conclusion
HUPI shows good responsiveness in terms of correlation in each studied scenario (clinical trial, early RA cohort, and established RA cohort). Response criteria by HUPI seem more stringent than EULAR''s
Driver Fusions and Their Implications in the Development and Treatment of Human Cancers.
Gene fusions represent an important class of somatic alterations in cancer. We systematically investigated fusions in 9,624 tumors across 33 cancer types using multiple fusion calling tools. We identified a total of 25,664 fusions, with a 63% validation rate. Integration of gene expression, copy number, and fusion annotation data revealed that fusions involving oncogenes tend to exhibit increased expression, whereas fusions involving tumor suppressors have the opposite effect. For fusions involving kinases, we found 1,275 with an intact kinase domain, the proportion of which varied significantly across cancer types. Our study suggests that fusions drive the development of 16.5% of cancer cases and function as the sole driver in more than 1% of them. Finally, we identified druggable fusions involving genes such as TMPRSS2, RET, FGFR3, ALK, and ESR1 in 6.0% of cases, and we predicted immunogenic peptides, suggesting that fusions may provide leads for targeted drug and immune therapy
The Cancer Genome Atlas Comprehensive Molecular Characterization of Renal Cell Carcinoma
Renal cell carcinoma(RCC) is not a single disease, but several histologically defined cancers with different genetic drivers, clinical courses, and therapeutic responses. The current study evaluated 843 RCC from the three major histologic subtypes, including 488 clear cell RCC, 274 papillary RCC, and 81 chromophobe RCC. Comprehensive genomic and phenotypic analysis of the RCC subtypes reveals distinctive features of each subtype that provide the foundation for the development of subtype-specific therapeutic and management strategies for patients affected with these cancers. Somatic alteration of BAP1, PBRM1, and PTEN and altered metabolic pathways correlated with subtype-specific decreased survival, while CDKN2A alteration, increased DNA hypermethylation, and increases in the immune-related Th2 gene expression signature correlated with decreased survival within all major histologic subtypes. CIMP-RCC demonstrated an increased immune signature, and a uniform and distinct metabolic expression pattern identified a subset of metabolically divergent (MD) ChRCC that associated with extremely poor survival
- …