45 research outputs found

    Oceanic drivers of sei whale distribution in the North Atlantic

    Get PDF
    NRM was supported by Colciencias (Departamento Administrativo de Ciencia, Tecnología e Innovación, Colombia), the University of St Andrews, and NAMMCO.This study investigated the oceanic drivers of sei whale (Balaenoptera borealis) distribution in the central and eastern North Atlantic, and explored how distribution may have changed over almost three decades. Cetacean sightings data were available from Icelandic, Faroese and Norwegian surveys conducted throughout the central and eastern North Atlantic during summer between 1987 and 2015. Effective strip half width was estimated from the data to take account of variation in detection probability. Spatially-referenced environmental variables used as predictors in generalised additive models of sei whale relative density included: relief-related variables seabed depth, slope and aspect; monthly-varying physical oceanographic variables sea surface temperature (SST), mixed layer depth, bottom temperature, salinity, and sea surface height anomaly (SSH); and monthly-varying biological oceanographic variables chlorophyll-a concentration and primary productivity. Preliminary analysis considered which month (March-August) in the dynamic oceanographic variables explained most variability in sei whale density. Models including all variables (“full models”) could only be run for 1998-2015 because data for several variables were missing in earlier years. “Simple models" including only relief-related variables and SST were therefore run for 1987-89, and also for 1998-2015 for comparison. The best-fitting full model for 1998-2015 retained the covariates depth, May SST, May bottom temperature, July salinity, July SSH and July primary productivity. Of these, depth, May SST and July SSH were the strongest predictors of sei whale density. In the simple models for both 1987-89 and 1998-2015, depth (especially), May SST and seabed slope were the strongest predictors of sei whale density. The highest densities of sei whales were predicted in the Irminger Sea and over the Charles-Gibbs Fracture Zone; a pattern driven by large negative SSH, deep water (>1500m) and polar-temperate SST (5-12oC). There was some inter-annual variability in predicted distribution and there appears to be a northward expansion in distribution consistent with prey species responding to ocean warming. The models could be used to predict future distribution of sei whales based on future environmental conditions predicted by climate models.Publisher PDFPeer reviewe

    Interspecific Introgression in Cetaceans: DNA Markers Reveal Post-F1 Status of a Pilot Whale

    Get PDF
    Visual species identification of cetacean strandings is difficult, especially when dead specimens are degraded and/or species are morphologically similar. The two recognised pilot whale species (Globicephala melas and Globicephala macrorhynchus) are sympatric in the North Atlantic Ocean. These species are very similar in external appearance and their morphometric characteristics partially overlap; thus visual identification is not always reliable. Genetic species identification ensures correct identification of specimens. Here we have employed one mitochondrial (D-Loop region) and eight nuclear loci (microsatellites) as genetic markers to identify six stranded pilot whales found in Galicia (Northwest Spain), one of them of ambiguous phenotype. DNA analyses yielded positive amplification of all loci and enabled species identification. Nuclear microsatellite DNA genotypes revealed mixed ancestry for one individual, identified as a post-F1 interspecific hybrid employing two different Bayesian methods. From the mitochondrial sequence the maternal species was Globicephala melas. This is the first hybrid documented between Globicephala melas and G. macrorhynchus, and the first post-F1 hybrid genetically identified between cetaceans, revealing interspecific genetic introgression in marine mammals. We propose to add nuclear loci to genetic databases for cetacean species identification in order to detect hybrid individuals.

    Major Histocompatibility Complex (MHC) Class II sequence polymorphism in long-finned pilot whale (Globicephala melas) from the North Atlantic

    Get PDF
    Funding Silvia S. Monteiro and Marisa Ferreira were supported by a Ph.D. grant from Fundação para a Ciência e Tecnologia (ref SFRH/BD/38735/2007 and SFRH/BD/30240/2006, respectively). Alfredo López was supported by a postdoctoral grant from Fundação para a Ciência e Tecnologia (ref SFRH/BPD/82407/2011). Catarina Eira is supported by CESAM (UID/AMB/50017), from FCT/MEC through national funds and FEDER (PT2020, Compete 2020). The work related with strandings and tissue collection in Portugal was partially supported by the SafeSea Project EEAGrants PT 0039 (supported by Iceland, Liechtenstein and Norway through the EEA Financial Mechanism), by the Project MarPro–Life09 NAT/PT/000038 (funded by the European Union–Program Life+) and by the project CetSenti FCT RECI/AAG-GLO/0470/2012; FCOMP-01-0124-FEDER-027472 (Funded by the Program COMPETE and Fundação para a Ciência e Tecnologia).Peer reviewedPostprin

    Long-finned pilot whale population diversity and structure in Atlantic waters assessed through biogeochemical and genetic markers

    Get PDF
    Acknowledgements. Cetacean samples were collected under the auspices of stranding monitoring programs run by the Sociedade Portuguesa de Vida Selvagem, the Coordinadora para o Estudio dos Mamíferos Mariños (supported by the regional government Xunta de Galicia), the UK Cetacean Strandings Investigation Programme and the Scottish Agriculture College Veterinary Science Division (jointly funded by Defra and the Devolved Governments of Scotland and Wales), the Marine Mammals Research Group of the Institute of Marine Research (Norway), the Museum of Natural History of the Faroe Islands and the International Fund for Animal Welfare Marine Mammal Rescue and Research Program (USA). The authors thank all the members of these institutions and organizations for their assistance with data and sample collection. S.S.M., P.M.F. and M.F. were supported by PhD grants from the Fundação para a Ciência e Tecnologia (POPH/FSE ref SFRH/BD/ 38735/ 2007, SFRH/BD/36766/2007 and SFRH/BD/30240/ 2006, respectively). A.L. was supported by a postdoctoral grant from the Fundação para a Ciência e Tecnologia (ref SFRH/BPD/82407/2011). The work related to strandings and tissue collection in Portugal was partially supported by the SafeSea project EEAGrants PT 0039 (supported by Iceland, Liechtenstein and Norway through the EEA Financial Mechanism), the MarPro project Life09 NAT/PT/000038 (funded by the European Union program LIFE+) and the project CetSenti FCT RECI/AAG-GLO/0470/2012 (FCOMP- 01-0124-FEDER-027472) (funded by the program COMPETE and the Fundação para a Ciência e Tecnologia). G.J.P. thanks the University of Aveiro and Caixa Geral de Depósitos (Portugal) for financial support. The authors acknowledge the assistance of the chemical analysts at Marine Scotland Science with the fatty acid analysis.Peer reviewedPostprintPublisher PD

    Abundance of baleen whales in the European Atlantic

    Get PDF
    The abundance of fin whales (Balaenoptera physalus), sei whales (B. borealis) and minke whales (B. acutorostrata) was estimated from data collected during shipboard sightings surveys conducted as part of CODA and TNASS (Faroese block) in July 2007 in offshore waters of the European Atlantic west of the UK, Ireland, France and Spain, combined with data collected from shipboard and aerial surveys of European Atlantic continental shelf waters conducted as part of SCANS-II in July 2005. Double platform methods employing the trial-configuration method (BT-method) were used in all shipboard surveys. Analysis used Mark-Recapture Distance Sampling to account for animals missed on the transect line. Density surface modelling was undertaken to generate model-based abundance estimates and maps of predicted density. Estimates are presented for the SCANS-II and CODA survey areas. Estimates for the Faroese block of TNASS have been presented elsewhere. The abundance of fin whales in the CODA and SCANS-II areas was estimated as 19,354 (CV 0.24) for identified sightings and 29,512 (CV 0.26) when adjusted to include a proportion of unidentified large whale abundance (which included large baleen and sperm whales), prorated by number of sightings, because there were a large number of such sightings in one of the CODA survey blocks. The model-based estimate of identified fin whales was 19,751 (CV 0.17), more precise than the design-based estimate. Fin whales were mainly found in the southern part of the CODA survey area. Estimates based on identified sightings were comparable to those from the Spanish survey conducted as part of 1989 NASS but were larger if adjusted for a proportion of unidentified large whales. Sei whales were rare except in the southwest of the survey area; the estimate of abundance was 619 (CV 0.34) for identified sightings and 765 (CV 0.43) adjusted for a proportion of unidentified large whales. Minke whale abundance was estimated for shelf and offshore European Atlantic waters as 30,410 (CV 0.34). The model-based estimate was less precise and considerably larger

    ”New” POPs in marine mammals in Nordic Arctic and NE Atlantic areas during three decades

    Get PDF
    The report describes the findings of a Nordic study aiming to depict possible trends in “new” contaminants in marine mammals in Nordic Arctic waters over three decennia. The “new” contaminants in focus are the brominated flame retardants, BFRs, methoxylated PBDEs, perfluorinated compounds including the PFOS family, and polychlorinated naphthalenes, PCNs. In addition, brominated dioxins and dibenzofurans were analysed in a subset of the samples. The study aims at giving a wide scope of the presence of a selection of these “new” contaminants in marine mammals in recent time and so far back as is possible with extracting samples from specimen banks. The marine mammal species analysed were fin whale, minke whale, pilot whale, white-sided dolphins, harbour porpoise, ringed seal and hooded seal. The study is the result of collaboration between Norway, Denmark/Greenland, Faroe Island, Iceland and Sweden. The funding for large parts of the project has been made available by the Nordic Council of Ministers via the working group on Akvatiska Ekosystemer

    Report of the NAMMCO-ICES Workshop on Seal Modelling (WKSEALS 2020)

    Get PDF
    To support sustainable management of apex predator populations, it is important to estimate population size and understand the drivers of population trends to anticipate the consequences of human decisions. Robust population models are needed, which must be based on realistic biological principles and validated with the best available data. A team of international experts reviewed age-structured models of North Atlantic pinniped populations, including Grey seal (Halichoerus grypus), Harp seal (Pagophilus groenlandicus), and Hooded seal (Cystophora cristata). Statistical methods used to fit such models to data were compared and contrasted. Differences in biological assumptions and model equations were driven by the data available from separate studies, including observation methodology and pre-processing. Counts of pups during the breeding season were used in all models, with additional counts of adults and juveniles available in some. The regularity and frequency of data collection, including survey counts and vital rate estimates, varied. Important differences between the models concerned the nature and causes of variation in vital rates (age-dependent survival and fecundity). Parameterisation of age at maturity was detailed and time-dependent in some models and simplified in others. Methods for estimation of model parameters were reviewed and compared. They included Bayesian and maximum likelihood (ML) approaches, implemented via bespoke coding in C, C++, TMB or JAGS. Comparative model runs suggested that as expected, ML-based implementations were rapid and computationally efficient, while Bayesian approaches, which used MCMC or sequential importance sampling, required longer for inference. For grey seal populations in the Netherlands, where preliminary ML-based TMB results were compared with the outputs of a Bayesian JAGS implementation, some differences in parameter estimates were apparent. For these seal populations, further investigations are recommended to explore differences that might result from the modelling framework and model-fitting methodology, and their importance for inference and management advice. The group recommended building on the success of this workshop via continued collaboration with ICES and NAMMCO assessment groups, as well as other experts in the marine mammal modelling community. Specifically, for Northeast Atlantic harp and hooded seal populations, the workshop represents the initial step towards a full ICES benchmark process aimed at revising and evaluating new assessment models.Publisher PDFPeer reviewe

    A white humpback whale (Megaptera novaeangliae) in the Atlantic Ocean, Svalbard, Norway, August 2012

    Get PDF
    A white humpback whale (Megaptera novaeangliae) was observed on several occasions off Svalbard, Norway, during August 2012. The animal was completely white, except for a few small dark patches on the ventral side of its fluke. The baleen plates were light-coloured, but the animal's eyes had normal (dark) colouration. This latter characteristic indicates that the animal was not an albino; it was a leucistic individual. The animal was a full-sized adult and was engaged in “bubble-feeding”, together with 15–20 other humpback whales, each time it was seen. Subsequent to these sightings, polling of the marine mammal science community has resulted in the discovery of two other observations of white humpback whales in the Barents Sea area, one in 2004 and another in 2006; in both cases the observed individuals were adult animals. It is likely that all of these sightings are of the same individual, but there is no genetic or photographic evidence to confirm this suggestion. The rarity of observations of such white individuals suggests that they are born at very low frequencies or that the ontogenetic survival rates of the colour morph are low

    Rare variants with large effects provide functional insights into the pathology of migraine subtypes, with and without aura

    Get PDF
    Publisher Copyright: © 2023, The Author(s).Migraine is a complex neurovascular disease with a range of severity and symptoms, yet mostly studied as one phenotype in genome-wide association studies (GWAS). Here we combine large GWAS datasets from six European populations to study the main migraine subtypes, migraine with aura (MA) and migraine without aura (MO). We identified four new MA-associated variants (in PRRT2, PALMD, ABO and LRRK2) and classified 13 MO-associated variants. Rare variants with large effects highlight three genes. A rare frameshift variant in brain-expressed PRRT2 confers large risk of MA and epilepsy, but not MO. A burden test of rare loss-of-function variants in SCN11A, encoding a neuron-expressed sodium channel with a key role in pain sensation, shows strong protection against migraine. Finally, a rare variant with cis-regulatory effects on KCNK5 confers large protection against migraine and brain aneurysms. Our findings offer new insights with therapeutic potential into the complex biology of migraine and its subtypes.Peer reviewe

    A note on the harbour seal (<i>Phoca vitulina</i>) in the Faroe Islands

    No full text
    The harbour seal was exterminated as a breeding species in the Faroe Islands in the mid-19th Century. Historical sources document that the harbour seal used to be a common inhabitant of the sheltered fjords where breeding occurred. It was reported to be more common than the grey seal, the other pinniped specie resident around the Faroes. But the number of harbour seals seemingly decreased as human settlements and other anthropogenic activities increased. Seal hunting was apparently already introduced by the Norse that arrived on the islands in the 7th century, a hunt that finally lead to the extermination of the harbour seal. For the last 40 years the harbour seal has only been positively identified twice in the Faroe Islands, in 2001 and 2005
    corecore