17 research outputs found

    Inverse estimates of anthropogenic CO2 uptake, transport, and storage by the ocean

    Get PDF
    Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 20 (2006): GB2002, doi:10.1029/2005GB002530.Regional air-sea fluxes of anthropogenic CO2 are estimated using a Green's function inversion method that combines data-based estimates of anthropogenic CO2 in the ocean with information about ocean transport and mixing from a suite of Ocean General Circulation Models (OGCMs). In order to quantify the uncertainty associated with the estimated fluxes owing to modeled transport and errors in the data, we employ 10 OGCMs and three scenarios representing biases in the data-based anthropogenic CO2 estimates. On the basis of the prescribed anthropogenic CO2 storage, we find a global uptake of 2.2 ± 0.25 Pg C yr−1, scaled to 1995. This error estimate represents the standard deviation of the models weighted by a CFC-based model skill score, which reduces the error range and emphasizes those models that have been shown to reproduce observed tracer concentrations most accurately. The greatest anthropogenic CO2 uptake occurs in the Southern Ocean and in the tropics. The flux estimates imply vigorous northward transport in the Southern Hemisphere, northward cross-equatorial transport, and equatorward transport at high northern latitudes. Compared with forward simulations, we find substantially more uptake in the Southern Ocean, less uptake in the Pacific Ocean, and less global uptake. The large-scale spatial pattern of the estimated flux is generally insensitive to possible biases in the data and the models employed. However, the global uptake scales approximately linearly with changes in the global anthropogenic CO2 inventory. Considerable uncertainties remain in some regions, particularly the Southern Ocean.This research was financially supported by the National Aeronautics and Space Administration under grant NAG5- 12528. N. G. also acknowledges support by the National Science Foundation (OCE-0137274). Climate and Environmental Physics, Bern acknowledges support by the European Union through the Integrated Project CarboOcean and the Swiss National Science Foundation

    Oceanic sources, sinks, and transport of atmospheric CO2

    Get PDF
    Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 23 (2009): GB1005, doi:10.1029/2008GB003349.We synthesize estimates of the contemporary net air-sea CO2 flux on the basis of an inversion of interior ocean carbon observations using a suite of 10 ocean general circulation models (Mikaloff Fletcher et al., 2006, 2007) and compare them to estimates based on a new climatology of the air-sea difference of the partial pressure of CO2 (pCO2) (Takahashi et al., 2008). These two independent flux estimates reveal a consistent description of the regional distribution of annual mean sources and sinks of atmospheric CO2 for the decade of the 1990s and the early 2000s with differences at the regional level of generally less than 0.1 Pg C a−1. This distribution is characterized by outgassing in the tropics, uptake in midlatitudes, and comparatively small fluxes in thehigh latitudes. Both estimates point toward a small (∼ −0.3 Pg C a−1) contemporary CO2 sink in the Southern Ocean (south of 44°S), a result of the near cancellation between a substantial outgassing of natural CO2 and a strong uptake of anthropogenic CO2. A notable exception in the generally good agreement between the two estimates exists within the Southern Ocean: the ocean inversion suggests a relatively uniform uptake, while the pCO2-based estimate suggests strong uptake in the region between 58°S and 44°S, and a source in the region south of 58°S. Globally and for a nominal period between 1995 and 2000, the contemporary net air-sea flux of CO2 is estimated to be −1.7 ± 0.4 Pg C a−1 (inversion) and −1.4 ± 0.7 Pg C a−1 (pCO2-climatology), respectively, consisting of an outgassing flux of river-derived carbon of ∼+0.5 Pg C a−1, and an uptake flux of anthropogenic carbon of −2.2 ± 0.3 Pg C a−1 (inversion) and −1.9 ± 0.7 Pg C a−1 (pCO2-climatology). The two flux estimates also imply a consistent description of the contemporary meridional transport of carbon with southward ocean transport throughout most of the Atlantic basin, and strong equatorward convergence in the Indo-Pacific basins. Both transport estimates suggest a small hemispheric asymmetry with a southward transport of between −0.2 and −0.3 Pg C a−1 across the equator. While the convergence of these two independent estimates is encouraging and suggests that it is now possible to provide relatively tight constraints for the net air-sea CO2 fluxes at the regional basis, both studies are limited by their lack of consideration of long-term changes in the ocean carbon cycle, such as the recent possible stalling in the expected growth of the Southern Ocean carbon sink.Core financial support for this study came from the National Aeronautics and Space Administration under grant NAG5-12528 to NG and SMF, with additional support by the U.S. National Science Foundation. M. Gloor was supported by the EBI nd EEE institutes at the University of Leeds. M. Gerber, SM, FJ, and AM thank the European Commission for support through CarboOcean (511176-2) and the NOCES project (EVK2-CT-2001- 00134). TT has been supported by NOAA grant NAO30AR4320179P27

    In situ measurements of atmospheric O2 and CO2 reveal an unexpected O2 signal over the tropical Atlantic Ocean

    Get PDF
    We present the first meridional transects of atmospheric O2 and CO2 over the Atlantic Ocean. We combine these measurements into the tracer atmospheric potential oxygen (APO), which is a measure of the oceanic contribution to atmospheric O2 variations. Our new in situ measurement system, deployed on board a commercial container ship during 2015, performs as well as or better than existing similar measurement systems. The data show small short-term variability (hours to days), a step-change corresponding to the position of the Intertropical Convergence Zone (ITCZ), and seasonal cycles that vary with latitude. In contrast to data from the Pacific Ocean and to previous modeling studies, our Atlantic Ocean APO data show no significant bulge in the tropics. This difference cannot be accounted for by interannual variability in the position of the ITCZ or the Atlantic Meridional Mode Index and appears to be a persistent feature of the Atlantic Ocean system. Modeled APO using the TM3 atmospheric transport model does exhibit a significant bulge over the Atlantic and overestimates the interhemispheric gradient in APO over the Atlantic Ocean. These results indicate that either there are inaccuracies in the oceanic flux data products in the equatorial Atlantic Ocean region, or that there are atmospheric transport inaccuracies in the model, or a combination of both. Our shipboard O2 and CO2 measurements are ongoing and will reveal the long-term nature of equatorial APO outgassing over the Atlantic as more data become available

    Carbon isotope ratios suggest no additional methane from boreal wetlands during the rapid Greenland Interstadial 21.2

    No full text
    Samples from two Greenland ice cores (NEEM and NGRIP) have been measured for methane carbon isotope ratios (δ13C-CH4) to investigate the CH4 mixing ratio anomaly during Greenland Interstadial (GI) 21.2 (85,000 years before present). This extraordinarily rapid event occurred within 150 years, comprising a CH4 mixing ratio pulse of 150 ppb (∼25%). Our new measurements disclose a concomitant shift in δ13C-CH4 of 1‰. Keeling plot analyses reveal the δ13C of the additional CH4 source constituting the CH4 anomaly as -56.8 ± 2.8‰, which we confirm by means of a previously published box model. We propose tropical wetlands as the most probable additional CH4 source during GI-21.2 and present independent evidence that suggests that tropical wetlands in South America and Asia have played a key role. We find no evidence that boreal CH4 sources, such as permafrost degradation, contributed significantly to the atmospheric CH4 increase, despite the pronounced warming in the Northern Hemisphere during GI-21.2

    JOAN BONET i BALTÀ, L'Esgrésia catalana de la Illustració a la Renaixença, Montserrat (Barcelona), Publicacions de L'Abadia de Montserrat, 1984, 776 pp., 15,5 x 20,5. [RECENSIÓN]

    Get PDF
    he global ocean is a significant sink for anthropogenic carbon (Cant), absorbing roughly a third of human CO2 emitted over the industrial period. Robust estimates of the magnitude and variability of the storage and distribution of Cant in the ocean are therefore important for understanding the human impact on climate. In this synthesis we review observational and model-based estimates of the storage and transport of Cant in the ocean. We pay particular attention to the uncertainties and potential biases inherent in different inference schemes. On a global scale, three data-based estimates of the distribution and inventory of Cant are now available. While the inventories are found to agree within their uncertainty, there are considerable differences in the spatial distribution. We also present a review of the progress made in the application of inverse and data assimilation techniques which combine ocean interior estimates of Cant with numerical ocean circulation models. Such methods are especially useful for estimating the air–sea flux and interior transport of Cant, quantities that are otherwise difficult to observe directly. However, the results are found to be highly dependent on modeled circulation, with the spread due to different ocean models at least as large as that from the different observational methods used to estimate Cant. Our review also highlights the importance of repeat measurements of hydrographic and biogeochemical parameters to estimate the storage of Cant on decadal timescales in the presence of the variability in circulation that is neglected by other approaches. Data-based Cant estimates provide important constraints on forward ocean models, which exhibit both broad similarities and regional errors relative to the observational fields. A compilation of inventories of Cant gives us a "best" estimate of the global ocean inventory of anthropogenic carbon in 2010 of 155 ± 31 PgC (±20% uncertainty). This estimate includes a broad range of values, suggesting that a combination of approaches is necessary in order to achieve a robust quantification of the ocean sink of anthropogenic CO2.ISSN:1810-6277ISSN:1810-628

    La enfermedad histórica de la hermenéutica y su transformación dialéctica. El pensamiento débil entre Gadamer y Benjamin

    No full text
    <p>El presente trabajo tiene por fin mostrar cómo la hermenéutica nihilista de Gianni Vattimo mediante su crítica a la hermenéutica ontológica de Gadamer recupera la figura de Walter Benjamin y la asocia al proyecto de Heidegger. Esto lleva a que el presente trabajo, en primer lugar, describa cuáles son las críticas que Vattimo le realiza a Gadamer; y, en segundo lugar, muestre cómo es posible aunar la filosofía de Heidegger con el pensamiento crítico de Benjamin. Por último, se indica mediante la congruencia de estos autores cómo es posible la construcción de un sujeto post-metafísico</p
    corecore