291 research outputs found

    Plant vascular development: mechanisms and environmental regulation

    Full text link
    [EN] Plant vascular development is a complex process culminating in the generation of xylem and phloem, the plant transporting conduits. Xylem and phloem arise from specialized stem cells collectively termed (pro)cambium. Once developed, xylem transports mainly water and mineral nutrients and phloem transports photoassimilates and signaling molecules. In the past few years, major advances have been made to characterize the molecular, genetic and physiological aspects that govern vascular development. However, less is known about how the environment re-shapes the process, which molecular mechanisms link environmental inputs with developmental outputs, which gene regulatory networks facilitate the genetic adaptation of vascular development to environmental niches, or how the first vascular cells appeared as an evolutionary innovation. In this review, we (1) summarize the current knowledge of the mechanisms involved in vascular development, focusing on the model species Arabidopsis thaliana, (2) describe the anatomical effect of specific environmental factors on the process, (3) speculate about the main entry points through which the molecular mechanisms controlling of the process might be altered by specific environmental factors, and (4) discuss future research which could identify the genetic factors underlying phenotypic plasticity of vascular development.Work in the authors' laboratories is supported by funds from the Spanish Ministry of Science and Universities (BIO2016-79147-R to JA, and BFU2016-80621-P to MAB). JA holds a Ramon y Cajal contract (RYC-2014-15752). We are deeply grateful to Debra Westall (Universitat Politecnica de Valencia) for revising the manuscript. Due to space limitations, not all relevant publications could be included in this review.Agustí, J.; Blazquez Rodriguez, MA. (2020). Plant vascular development: mechanisms and environmental regulation. Cellular and Molecular Life Sciences. 77(19):1-18. https://doi.org/10.1007/s00018-020-03496-wS1187719Bowman JL, Kohchi T, Yamato KT, Jenkins J, Shu S, Ishizaki K et al (2017) Insights into land plant evolution garnered from the Marchantia polymorpha genome. Cell 171(2):287–304. https://doi.org/10.1016/j.cell.2017.09.030(Epub 2017/10/07. PubMed PMID: 28985561)Lucas WJ, Groover A, Lichtenberger R, Furuta K, Yadav SR, Helariutta Y et al (2013) The plant vascular system: evolution, development and functions. J Integr Plant Biol 55(4):294–388. https://doi.org/10.1111/jipb.12041(Epub 2013/03/07. PubMed PMID: 23462277)Nelson T, Dengler N (1997) Leaf vascular pattern formation. Plant Cell 9(7):1121–1135. https://doi.org/10.1105/tpc.9.7.1121(Epub 1997/07/01. PubMed PMID: 12237378; PubMed Central PMCID: PMCPMC156985)Agusti J, Greb T (2013) Going with the wind-adaptive dynamics of plant secondary meristems. Mech Dev 130(1):34–44. https://doi.org/10.1016/j.mod.2012.05.011(Epub 2012/06/14. PubMed PMID: 22691403; PubMed Central PMCID: PMCPMC3560032)Esau K (1961) Anatomy of seed plants. Wiley, New YorkSpicer R, Groover A (2010) Evolution of development of vascular cambia and secondary growth. New Phytol 186(3):577–592. https://doi.org/10.1111/j.1469-8137.2010.03236.xRuonala R, Ko D, Helariutta Y (2017) Genetic networks in plant vascular development. Annu Rev Genet 51:335–359. https://doi.org/10.1146/annurev-genet-120116-024525(Epub 2017/09/12. PubMed PMID: 28892639)Cano-Delgado A, Lee JY, Demura T (2010) Regulatory mechanisms for specification and patterning of plant vascular tissues. Annu Rev Cell Dev Biol 26:605–637. https://doi.org/10.1146/annurev-cellbio-100109-104107(Epub 2010/07/02. PubMed PMID: 20590454)Berleth T, Jurgens G (1993) The role of the monopteros gene in organising the basal body region of the Arabidopsis embryo. Development 118(2):575–587Hartke CS, Berleth T (1998) The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J 17:1405–1411Busse JS, Evert RF (1999) Pattern of differentiation of the first vascular elements in the embryo and seedling of Arabidopsis thaliana. Int J Plant Sci 160:1–13Mayer U, Ruiz RAT, Berleth T, Miséra S, Jürgens G (1991) Mutations affecting body organization in the Arabidopsis embryo. Nature 353(6343):402–407. https://doi.org/10.1038/353402a0Wenzel CL, Schuetz M, Yu Q, Mattsson J (2007) Dynamics of MONOPTEROS and PIN-FORMED1 expression during leaf vein pattern formation in Arabidopsis thaliana. Plant J 49(3):387–398. https://doi.org/10.1111/j.1365-313X.2006.02977.x(Epub 2007/01/16. PubMed PMID: 17217464)Weijers D, Schlereth A, Ehrismann JS, Schwank G, Kientz M, Jurgens G (2006) Auxin triggers transient local signaling for cell specification in Arabidopsis embryogenesis. Dev Cell 10(2):265–270. https://doi.org/10.1016/j.devcel.2005.12.001(Epub 2006/02/07. PubMed PMID: 16459305)Hamann T, Benkova E, Baurle I, Kientz M, Jurgens G (2002) The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning. Genes Dev 16(13):1610–1615. https://doi.org/10.1101/gad.229402(Epub 2002/07/09. PubMed PMID: 12101120; PubMed Central PMCID: PMCPMC186366)Hamann T, Mayer U, Jurgens G (1999) The auxin-insensitive bodenlos mutation affects primary root formation and apical-basal patterning in the Arabidopsis embryo. Development 126(7):1387–1395 (Epub 1999/03/09. PubMed PMID: 10068632)Kepinski S, Leyser O (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435(7041):446–451. https://doi.org/10.1038/nature03542(Epub 2005/05/27. PubMed PMID: 15917798)Schlereth A, Moller B, Liu W, Kientz M, Flipse J, Rademacher EH et al (2010) MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor. Nature 464(7290):913–916. https://doi.org/10.1038/nature08836(Epub 2010/03/12. PubMed PMID: 20220754)Rashotte AM, Mason MG, Hutchison CE, Ferreira FJ, Schaller GE, Kieber JJ (2006) A subset of Arabidopsis AP2 transcription factors mediates cytokinin responses in concert with a two-component pathway. Proc Natl Acad Sci USA 103(29):11081–11085. https://doi.org/10.1073/pnas.0602038103(Epub 2006/07/13. PubMed PMID: 16832061; PubMed Central PMCID: PMCPMC1544176)Rybel De B, Moller B, Yoshida S, Grabowicz I, Barbier de Reuille P, Boeren S et al (2013) A bHLH complex controls embryonic vascular tissue establishment and indeterminate growth in Arabidopsis. Dev Cell 24(4):426–437. https://doi.org/10.1016/j.devcel.2012.12.013(Epub 2013/02/19. PubMed PMID: 23415953)Vera-Sirera F, Rybel De B, Urbez C, Kouklas E, Pesquera M, Alvarez-Mahecha JC et al (2015) A bHLH-based feedback loop restricts vascular cell proliferation in plants. Dev Cell 35(4):432–443. https://doi.org/10.1016/j.devcel.2015.10.022(Epub 2015/11/27. PubMed PMID: 26609958)Miyashima S, Roszak P, Sevilem I, Toyokura K, Blob B, Heo JO et al (2019) Mobile PEAR transcription factors integrate positional cues to prime cambial growth. Nature 565(7740):490–494. https://doi.org/10.1038/s41586-018-0839-y(Epub 2019/01/11. PubMed PMID: 30626969)Mahonen AP, Bonke M, Kauppinen L, Riikonen M, Bengey PN, Helariutta Y (2000) A novel two-component hybrid molecule regulates vascular morphogenesis of the Arabidopsis root. Genes Dev 14:2938–2943Baum SF, Dubrovsky JG, Rost TL (2002) Apical organization and maturation of the cortex and vascular cylonder in Arabidopsis thaliana (Brassicaceae) roots. Am J Bot 89(6):908–920Campbell L, Turner S (2017) Regulation of vascular cell division. J Exp Bot 68(1):27–43. https://doi.org/10.1093/jxb/erw448(Epub 2016/12/15. PubMed PMID: 27965363)Dolan L, Janmaat K, Willemsen V, Linstead P, Poethig S, Roberts K, Scheres B (1993) Cellular organisation of the Arabidopsis thaliana root. Development 119(1):71–84Mellor N, Adibi M, El-Showk S, Rybel De B, King J, Mahonen AP et al (2017) Theoretical approaches to understanding root vascular patterning: a consensus between recent models. J Exp Bot 68(1):5–16. https://doi.org/10.1093/jxb/erw410(Epub 2016/11/12. PubMed PMID: 27837006)Carlsbecker A, Lee JY, Roberts CJ, Dettmer J, Lehesranta S, Zhou J et al (2010) Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. Nature 465(7296):316–321. https://doi.org/10.1038/nature08977(Epub 2010/04/23. PubMed PMID: 20410882; PubMed Central PMCID: PMCPMC2967782)Ramachandran P, Wang G, Augstein F, Vries de J, Carlsbecker A (2018) Continuous root xylem formation and vascular acclimation to water deficit involves endodermal ABA signalling via miR165. Development. https://doi.org/10.1242/dev.159202(Epub 2018/01/24. PubMed PMID: 29361572)Mahonen AP, Bishopp A, Higuchi M, Nieminen KM, Kinoshita K, Tormakangas K, Ikeda Y, Oka A, Kakimoto T, Helariutta Y (2006) Cytokinin signaling and its inhibitor AHP6 regulate cell fate during vascular development. Science 311:94–98Mahonen AP, Higuchi M, Tormakangas K, Miyawaki K, Pischke MS, Sussman MR et al (2006) Cytokinins regulate a bidirectional phosphorelay network in Arabidopsis. Curr Biol 16(11):1116–1122. https://doi.org/10.1016/j.cub.2006.04.030(Epub 2006/06/07. PubMed PMID: 16753566)Ohashi-Ito K, Saegusa M, Iwamoto K, Oda Y, Katayama H, Kojima M et al (2014) A bHLH complex activates vascular cell division via cytokinin action in root apical meristem. Curr Biol 24(17):2053–2058. https://doi.org/10.1016/j.cub.2014.07.050(Epub 2014/08/19. PubMed PMID: 25131670)Bishopp A, Lehesranta S, Vaten A, Help H, El-Showk S, Scheres B et al (2011) Phloem-transported cytokinin regulates polar auxin transport and maintains vascular pattern in the root meristem. Curr Biol 21(11):927–932. https://doi.org/10.1016/j.cub.2011.04.049(Epub 2011/05/31. PubMed PMID: 21620705)Bishopp A, Help H, El-Showk S, Weijers D, Scheres B, Friml J et al (2011) A mutually inhibitory interaction between auxin and cytokinin specifies vascular pattern in roots. Curr Biol 21(11):917–926. https://doi.org/10.1016/j.cub.2011.04.017(Epub 2011/05/31. PubMed PMID: 21620702)Rybel De B, Adibi M, Breda AS, Wendrich JR, Smit ME, Novak O et al (2014) Integration of growth and patterning during vascular tissue formation in Arabidopsis. Science 345(6197):1255215. https://doi.org/10.1126/science.1255215(Epub 2014/08/12. PubMed PMID: 25104393)Knott JM (2009) Biosynthesis of long-chain polyamines by crenarchaeal polyamine synthases from Hyperthermus butylicus and Pyrobaculum aerophilum. FEBS Lett 583(21):3519–3524. https://doi.org/10.1016/j.febslet.2009.10.014(Epub 2009/10/14. PubMed PMID: 19822146)Knott JM, Romer P, Sumper M (2007) Putative spermine synthases from Thalassiosira pseudonana and Arabidopsis thaliana synthesize thermospermine rather than spermine. FEBS Lett 581(16):3081–3086. https://doi.org/10.1016/j.febslet.2007.05.074(Epub 2007/06/15. PubMed PMID: 17560575)Baima S, Forte V, Possenti M, Penalosa A, Leoni G, Salvi S et al (2014) Negative feedback regulation of auxin signaling by ATHB8/ACL5-BUD2 transcription module. Mol Plant 7(6):1006–1025. https://doi.org/10.1093/mp/ssu051(Epub 2014/04/30. PubMed PMID: 24777988)Imai A, Hanzawa Y, Komura M, Yamamoto KT, Komeda Y, Takahashi T (2006) The dwarf phenotype of the Arabidopsis acl5 mutant is suppressed by a mutation in an upstream ORF of a bHLH gene. Development 133(18):3575–3585. https://doi.org/10.1242/dev.02535(Epub 2006/08/29. PubMed PMID: 16936072)Katayama H, Iwamoto K, Kariya Y, Asakawa T, Kan T, Fukuda H et al (2015) A negative feedback loop controlling bHLH complexes is involved in vascular cell division and differentiation in the root apical meristem. Curr Biol 25(23):3144–3150. https://doi.org/10.1016/j.cub.2015.10.051(Epub 2015/12/01. PubMed PMID: 26616019)Muniz L, Minguet EG, Singh SK, Pesquet E, Vera-Sirera F, Moreau-Courtois CL et al (2008) ACAULIS5 controls Arabidopsis xylem specification through the prevention of premature cell death. Development 135(15):2573–2582. https://doi.org/10.1242/dev.019349(Epub 2008/07/05. PubMed PMID: 18599510)Milhinhos A, Prestele J, Bollhöner B, Matos A, Vera-Sirera F, Rambla JL et al (2013) Thermospermine levels are controlled by an auxin-dependent feedback loop mechanism in Populus xylem. Plant J 75(4):685–698Sole-Gil A, Hernandez-Garcia J, Lopez-Gresa MP, Blazquez MA, Agusti J (2019) Conservation of thermospermine synthase activity in vascular and non-vascular plants. Front Plant Sci 10:663. https://doi.org/10.3389/fpls.2019.00663(Epub 2019/06/28. PubMed PMID: 31244864; PubMed Central PMCID: PMCPMC6579911)Bonke M, Thitamadee S, Mahonen AP, Hauser MT, Helariutta Y (2003) APL regulates vascular tissue identity in Arabidopsis. Nature 426(6963):181–186. https://doi.org/10.1038/nature02100(Epub 2003/11/14. PubMed PMID: 14614507)Truernit E, Bauby H, Dubreucq B, Grandjean O, Runions J, Barthelemy J et al (2008) High-resolution whole-mount imaging of three-dimensional tissue organization and gene expression enables the study of phloem development and structure in Arabidopsis. Plant Cell 20(6):1494–1503. https://doi.org/10.1105/tpc.107.056069(Epub 2008/06/05. PubMed PMID: 18523061; PubMed Central PMCID: PMCPMC2483377)Furuta KM, Yadav SR, Lehesranta S, Belevich I, Miyashima S, Heo JO et al (2014) Plant development. Arabidopsis NAC45/86 direct sieve element morphogenesis culminating in enucleation. Science 345(6199):933–937. https://doi.org/10.1126/science.1253736(Epub 2014/08/02. PubMed PMID: 25081480)Kondo Y, Nurani AM, Saito C, Ichihashi Y, Saito M, Yamazaki K, Mitsuda N, Ohme-Takagi M, Fukuda H (2016) Vascular cell induction culture system using Arabidopsis leaves (VISUAL) reveals the sequential differentiation of sieve element-like cells. Plant Cell 28(6):1250–1262. https://doi.org/10.1105/tpc.16.00027Truernit E, Bauby H, Belcram K, Barthelemy J, Palauqui JC (2012) OCTOPUS, a polarly localised membrane-associated protein, regulates phloem differentiation entry in Arabidopsis thaliana. Development 139(137):1306–1315. https://doi.org/10.1242/dev.072629(Epub 2012/03/08. PubMed PMID: 22395740)Mouchel CF, Briggs GC, Hardtke CS (2004) Natural genetic variation in Arabidopsis identifies BREVIS RADIX, a novel regulator of cell proliferation and elongation in the root. Genes Dev 18(6):700–714. https://doi.org/10.1101/gad.1187704(Epub 2004/03/20. PubMed PMID: 15031265; PubMed Central PMCID: PMCPMC387244)Rodriguez-Villalon A, Gujas B, Kang YH, Breda AS, Cattaneo P, Depuydt S et al (2014) Molecular genetic framework for protophloem formation. Proc Natl Acad Sci USA 111(31):11551–11556. https://doi.org/10.1073/pnas.1407337111(Epub 2014/07/23. PubMed PMID: 25049386; PubMed Central PMCID: PMCPMC4128119)Marhava P, Bassukas AEL, Zourelidou M, Kolb M, Moret B, Fastner A et al (2018) A molecular rheostat adjusts auxin flux to promote root protophloem differentiation. Nature 558(7709):297–300. https://doi.org/10.1038/s41586-018-0186-z(Epub 2018/06/08. PubMed PMID: 29875411)Depuydt S, Rodriguez-Villalon A, Santuari L, Wyser-Rmili C, Ragni L, Hardtke CS (2013) Suppression of Arabidopsis protophloem differentiation and root meristem growth by CLE45 requires the receptor-like kinase BAM3. Proc Natl Acad Sci USA 110(17):7074–7079. https://doi.org/10.1073/pnas.1222314110(Epub 2013/04/10. PubMed PMID: 23569225; PubMed Central PMCID: PMCPMC3637694)Kang YH, Hardtke CS (2016) Arabidopsis MAKR5 is a positive effector of BAM3-dependent CLE45 signaling. EMBO Rep 17(8):1145–1154. https://doi.org/10.15252/embr.201642450(Epub 2016/06/30. PubMed PMID: 27354416; PubMed Central PMCID: PMCPMC4967951)Breda AS, Hazak O, Schultz P, Anne P, Graeff M, Simon R et al (2019) Cellular insulator against CLE45 peptide signaling. Curr Biol 29(15):2501–2508. https://doi.org/10.1016/j.cub.2019.06.037(Epub 2019/07/23. PubMed PMID: 31327718)Rodriguez-Villalon A, Gujas B, Wijk van R, Munnik T, Hardtke CS (2015) Primary root protophloem differentiation requires balanced phosphatidylinositol-4,5-biphosphate levels and systemically affects root branching. Development 142(8):1437–1446. https://doi.org/10.1242/dev.118364(Epub 2015/03/31. PubMed PMID: 25813544)Gujas B, Cruz TMD, Kastanaki E, Vermeer JEM, Munnik T, Rodriguez-Villalon A (2017) Perturbing phosphoinositide homeostasis oppositely affects vascular differentiation in Arabidopsis thaliana roots. Development 144(19):3578–3589. https://doi.org/10.1242/dev.155788(Epub 2017/08/31. PubMed PMID: 28851711; PubMed Central PMCID: PMCPMC5665488)Wallner E-S, Lopez-Salmeron V, Belevich I, Poschet G, Jung I, Grunwald K, Sevilem I, Jokitalo E, Hell R, Helariutta Y, Agusti J, Lebovka I, Greb T (2017) Strigolactone- and karrikin-independent SMXL proteins are central regulators of phloem formation. Curr Biol 27:1241–1247Hickey LJ (1973) Classification of the architecture of dicotyledonous leaves. Am J Bot 60(1):17–33Sachs T (1981) The control of the patterned differentiation of vascular tissues. Adv Bot Res 9:151–162Sachs T (1989) The development of vascular networks during leaf development. Curr Top Plant Biochem Physiol 8:168–183Mattsson J, Ckurshumova W, Berleth T (2003) Auxin signaling in Arabidopsis leaf vascular development. Plant Physiol 131(3):1327–1339. https://doi.org/10.1104/pp.013623(Epub 2003/03/20. PubMed PMID: 12644682; PubMed Central PMCID: PMCPMC166892)Scarpella E, Marcos D, Friml J, Berleth T (2006) Control of leaf vascular patterning by polar auxin transport. Genes Dev 20(8):1015–1027. https://doi.org/10.1101/gad.1402406(Epub 2006/04/19. PubMed PMID: 16618807; PubMed Central PMCID: PMCPMC1472298)Donner TJ, Sherr I, Scarpella E (2009) Regulation of preprocambial cell state acquisition by auxin signaling in Arabidopsis leaves. Development 136(19):3235–3246. https://doi.org/10.1242/dev.037028(Epub 2009/08/28. PubMed PMID: 19710171)Emery JF, Floyd SK, Alvarez J, Eshed Y, Hawker NP, Izhaki A et al (2003) Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr Biol 13(20):1768–1774 (Epub 2003/10/17. PubMed PMID: 14561401)Fisher K, Turner S (2007) PXY, a receptor-like kinase essential for maintaining polarity during plant vascular-tissue development. Curr Biol 17(12):1061–1066. https://doi.org/10.1016/j.cub.2007.05.049Hirakawa Y, Shinohara H, Kondo Y, Inoue A, Nakanomyo I, Ogawa M et al (2008) Non-cell-autonomous control of vascular stem cell fate by a CLE peptide/receptor system. Proc Natl Acad Sci 105(39):15208–15213. https://doi.org/10.1073/pnas.0808444105Etchells JP, Provost CM, Mishra L, Turner SR (2013) WOX4 and WOX14 act downstream of the PXY receptor kinase to regulate plant vascular proliferation independently of any role in vascular organisation. Development 140(10):89. https://doi.org/10.1242/dev.091314Hirakawa Y, Kondo Y, Fukuda H (2010) TDIF peptide signaling regulates vascular stem cell proliferation via the WOX4 homeobox gene in arabidopsis. Plant Cell 22(8):2618–2629. https://doi.org/10.1105/tpc.110.076083Ito Y, Nakanomio I, Motose H, Iwamoto K, Sawa S, Dohmae N, Fukuda H (2006) Dodeca-CLE peptides as suppressors of plant stem cell differentiation. Science 313(5788):842–855. https://doi.org/10.1126/science.1128436Turner S, Sieburth LE (2003) Vascular patterning. Arabidopsis Book 2:e0073. https://doi.org/10.1199/tab.0073(Epub 2003/01/01. PubMed PMID: 22303224; PubMed Central PMCID: PMCPMC3243335)Courtois-Moreau CL, Pesquet E, Sjodin A, Muñiz L, Bollhoner B, Kaneda M, Samuels L, Jansson S, Tuominen H (2009) A unique program for cell death in xylem fibers of Populus stem. Plant J 58:260–274. https://doi.org/10.1111/j.1365-313X.2008.03777.xOhashi-Ito K, Oda Y, Fukuda H (2010) Arabidopsis VASCULAR-RELATED NAC-DOMAIN6 directly regulates the genes that govern programmed cell death and secondary wall formation during xylem differentiation. Plant Cell 22(10):3461–3473Ikematsu S, Tasaka M, Torii KU, Uchida N (2017) ERECTA-family receptor kinase genes redundantly prevent premature progression of secondary growth in the Arabidopsis hypocotyl. New Phytol 213:1697–1709Fischer U, Teichmann T (2017) The ERECTA and ERECTA-like genes control a developmental shift during xylem formation in Arabidopsis. New Phytol 213:1562–1563Felipo-Benavent A, Urbez C, Blanco-Tourinan N, Serrano-Mislata A, Baumberger N, Achard P et al (2018) Regulation of xylem fiber differentiation by gibberellins through DELLA-KNAT1 interaction. Development 145(23):89. https://doi.org/10.1242/dev.164962(Epub 2018/11/06. PubMed PMID: 30389856)Liebsch D, Sunaryo W, Holmlund M, Norberg M, Zhang J, Hall HC, Helizon H, Jin X, Helariutta Y, Nilsson O, Polle A, Fischer U (2014) Class I KNOX transcription factors promote differentiation of cambial derivatives into xylem fibers in the Arabidopsis hypocotyl. Development 141:4311–4319Milhinhos A, Vera-Sirera F, Blanco-Tourinan N, Mari-Carmona C, Carrio-Segui A, Forment J et al (2019) SOBIR1/EVR prevents precocious initiation of fiber differentiation during wood development through a mechanism involving BP and ERECTA. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1807863116(Epub 2019/08/25. PubMed PMID: 31444299)Mitsuda N, Iwase A, Yamamoto H, Yoshida M, Seki M, Shinozaki K, Ohme-Takagi M (2007) NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis. Plant Cell 19(1):270–280Zhong R, Demura T, Ye ZH (2006) SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis. Plant Cell 18(11):3158–3170Siebers T, Catarino B, Agusti J (2017) Identification and expression analyses of new potential regulators of xylem development and cambium activity in cassava (Manihot esculenta). Planta 245(3):539–548. https://doi.org/10.1007/s00425-016-2623-2Taylor-Teeples M, Lin L, Lucas de M, Turco G, Toal TW, Gaudinier A et al (2015) An Arabidopsis gene regulatory network for secondary cell wall synthesis. Nature 517(7536):7571–7575. https://doi.org/10.1038/nature14099(Epub 2014/12/24. PubMed PMID: 25533953; PubMed Central PMCID: P

    Hacia enfoques intradisplinarios en el diseño de la Licenciatura en Administración

    Get PDF
    El objetivo del presente artículo es demostrar la necesidad de promover enfoques intradisciplinario que fortalezcan las interacciones entre las diferentes asignaturas que componen una misma carrera como es el caso del la licenciatura en administración. Para ello se realizó una investigación de tipo cualitativo basada en un estudio de caso en una institución universitaria analizando los objetivos explicitados en cada una de las asignaturas que conforman su plan de estudio. Teniendo en cuenta que en todo plan existen materias afines como son las asignaturas funcionales dentro de una organización (producción, marketing, finanzas, recursos humanos) se analizó en forma específica los objetivos de cada una de ellas para determinar el grado de relación e integración que existen entre ellas. Las conclusiones del estudio realizado demuestran justamente que los objetivos de las diferentes asignaturas funcionales carecen de un enfoque integrador y si bien no se puede extrapolar las conclusiones originadas de un caso especifico, pareciera que la situación planteada existe con bastante frecuencia en el ámbito educativo como consecuencia de una producción fragmentada en la construcción del conocimiento. Desde esta perspectiva se fortalece la necesidad de promover enfoques Intradisciplinario que generen avenidas, calles y senderos para facilitar la circulación dentro de cada profesión. Si ello ocurre, bienvenidos los esfuerzos desde el estado del arte, que promueven la construcción de puentes transdisciplinarios, en caso contario estos últimos no tendrán quien los transite y se convertirán en otra nueva especialidad que se suman a las más de 20.000 ya existentes.https://www.ciece.com.ar/actas-de-la-jornadaFil: Blazquez, Miguel. Universidad Nacional de Córdoba; ArgentinaNegocios y Administració

    Development of Corporate Social Responsibility Legislation in Argentina.

    Get PDF
    The purpose of this paper is, on the one hand, to disclose the legislative actions that Argentine Government its different jurisdictions has undertaken about Corporate Social Responsibility in; and, on the other hand, to set the authors\' point of view as regards its future development. Considering the fact that there is no a comprehensive national legislation about this subject, some local laws and initiatives are taken as example. One of them is Act No. 2594 by Legislatura de la Ciudad Autónoma de Buenos Aires, which demands companies to publish entrepreneurial social reports. Another source is national Act No. 25877 and its modification proposals, which deals with Working Regime Order in relation to Social Report publications. Besides, another regulatory project about the topic from Municipalidad de San Carlos de Bariloche is taken into account.Corporate Social Responsibility, Social Report, Stakeholders, Argentina

    Posicionamiento de FAI-NEXAPA en España

    Get PDF
    Tretzenes Jornades de Foment de la Investigació de la FCHS (Any 2007-2008

    ACAULIS5 Is Required for Cytokinin Accumulation and Function During Secondary Growth of Populus Trees

    Get PDF
    [EN] In the primary root and young hypocotyl of Arabidopsis, ACAULIS5 promotes translation of SUPPRESSOR OF ACAULIS51 (SAC51) and thereby inhibits cytokinin biosynthesis and vascular cell division. In this study, the relationships between ACAULIS5, SAC51 and cytokinin biosynthesis were investigated during secondary growth of Populus stems. Overexpression of ACAULIS5 from the constitutive 35S promoter in hybrid aspen (Populus tremula x Populus tremuloides) trees suppressed the expression level of ACAULIS5, which resulted in low levels of the physiologically active cytokinin bases as well as their direct riboside precursors in the transgenic lines. Low ACAULIS5 expression and low cytokinin levels of the transgenic trees coincided with low cambial activity of the stem. ACAULIS5 therefore, contrary to its function in young seedlings in Arabidopsis, stimulates cytokinin accumulation and cambial activity during secondary growth of the stem. This function is not derived from maturing secondary xylem tissues as transgenic suppression of ACAULIS5 levels in these tissues did not influence secondary growth. Interestingly, evidence was obtained for increased activity of the anticlinal division of the cambial initials under conditions of low ACAULIS5 expression and low cytokinin accumulation. We propose that ACAULIS5 integrates auxin and cytokinin signaling to promote extensive secondary growth of tree stems.This research was supported by the Swedish Research Council Formas (grant no. 232-2009-1698), the Swedish Research Council VR (grant no. 621-2013-4949), Vinnova (grant no. 201600504), Knut and Alice Wallenberg Foundation (grant no. 2016-0341), Fundacao para a Ciencia e Tecnologia (FCT), through CEEC/IND/00175/2017 contract to AM, FCT R&D Unit grants to GREEN-IT -Bioresources for Sustainability (grant no. UIDB/04551/2020), BioISI (grants nos. UIDB/04046/2020 and UIDP/04046/2020), the Spanish Ministry of Economy and Innovation (grant no. BFU2016-80621-P), and the Ministry of Education, Youth and Sports, Czech Republic through the European Regional Development Fund-Project "Plants as a Tool for Sustainable Global Development" (grant no. CZ.02.1.01/0.0/0.0/16_019/0000827).Milhinhos, A.; Bollhoner, B.; Blazquez Rodriguez, MA.; Novak, O.; Miguel, CM.; Tuominen, H. (2020). ACAULIS5 Is Required for Cytokinin Accumulation and Function During Secondary Growth of Populus Trees. Frontiers in Plant Science. 11:1-11. https://doi.org/10.3389/fpls.2020.601858S11111Agusti, J., Herold, S., Schwarz, M., Sanchez, P., Ljung, K., Dun, E. A., … Greb, T. (2011). Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants. Proceedings of the National Academy of Sciences, 108(50), 20242-20247. doi:10.1073/pnas.1111902108Antoniadi, I., Plačková, L., Simonovik, B., Doležal, K., Turnbull, C., Ljung, K., & Novák, O. (2015). Cell-Type-Specific Cytokinin Distribution within the Arabidopsis Primary Root Apex. The Plant Cell, 27(7), 1955-1967. doi:10.1105/tpc.15.00176Baima, S., Forte, V., Possenti, M., Peñalosa, A., Leoni, G., Salvi, S., … Morelli, G. (2014). Negative Feedback Regulation of Auxin Signaling by ATHB8/ACL5–BUD2 Transcription Module. Molecular Plant, 7(6), 1006-1025. doi:10.1093/mp/ssu051Bollhöner, B., Jokipii-Lukkari, S., Bygdell, J., Stael, S., Adriasola, M., Muñiz, L., … Tuominen, H. (2017). The function of two type II metacaspases in woody tissues of Populus trees. New Phytologist, 217(4), 1551-1565. doi:10.1111/nph.14945Chang, S., Puryear, J., & Cairney, J. (1993). A simple and efficient method for isolating RNA from pine trees. Plant Molecular Biology Reporter, 11(2), 113-116. doi:10.1007/bf02670468Clay, N. K., & Nelson, T. (2005). Arabidopsis thickvein Mutation Affects Vein Thickness and Organ Vascularization, and Resides in a Provascular Cell-Specific Spermine Synthase Involved in Vein Definition and in Polar Auxin Transport. Plant Physiology, 138(2), 767-777. doi:10.1104/pp.104.055756De Rybel, B., Adibi, M., Breda, A. S., Wendrich, J. R., Smit, M. E., Novák, O., … Weijers, D. (2014). Integration of growth and patterning during vascular tissue formation in Arabidopsis. Science, 345(6197). doi:10.1126/science.1255215Endo, S., Iwamoto, K., & Fukuda, H. (2017). Overexpression and cosuppression of xylem-related genes in an early xylem differentiation stage-specific manner by the AtTED4 promoter. Plant Biotechnology Journal, 16(2), 451-458. doi:10.1111/pbi.12784Etchells, J. P., Provost, C. M., & Turner, S. R. (2012). Plant Vascular Cell Division Is Maintained by an Interaction between PXY and Ethylene Signalling. PLoS Genetics, 8(11), e1002997. doi:10.1371/journal.pgen.1002997Fischer, U., Kucukoglu, M., Helariutta, Y., & Bhalerao, R. P. (2019). The Dynamics of Cambial Stem Cell Activity. Annual Review of Plant Biology, 70(1), 293-319. doi:10.1146/annurev-arplant-050718-100402Hanzawa, Y., Takahashi, T., & Komeda, Y. (1997). ACL5: an Arabidopsis gene required for internodal elongation after flowering. The Plant Journal, 12(4), 863-874. doi:10.1046/j.1365-313x.1997.12040863.xHanzawa, Y. (2000). ACAULIS5, an Arabidopsis gene required for stem elongation, encodes a spermine synthase. The EMBO Journal, 19(16), 4248-4256. doi:10.1093/emboj/19.16.4248Imai, A., Hanzawa, Y., Komura, M., Yamamoto, K. T., Komeda, Y., & Takahashi, T. (2006). The dwarf phenotype of the Arabidopsis acl5 mutant is suppressed by a mutation in an upstream ORF of a bHLH gene. Development, 133(18), 3575-3585. doi:10.1242/dev.02535Imai, A., Komura, M., Kawano, E., Kuwashiro, Y., & Takahashi, T. (2008). A semi-dominant mutation in the ribosomal protein L10 gene suppresses the dwarf phenotype of theacl5mutant inArabidopsis thaliana. The Plant Journal, 56(6), 881-890. doi:10.1111/j.1365-313x.2008.03647.xImmanen, J., Nieminen, K., Duchens Silva, H., Rodríguez Rojas, F., Meisel, L. A., Silva, H., … Helariutta, Y. (2013). Characterization of cytokinin signaling and homeostasis gene families in two hardwood tree species: Populus trichocarpa and Prunus persica. BMC Genomics, 14(1). doi:10.1186/1471-2164-14-885Immanen, J., Nieminen, K., Smolander, O.-P., Kojima, M., Alonso Serra, J., Koskinen, P., … Helariutta, Y. (2016). Cytokinin and Auxin Display Distinct but Interconnected Distribution and Signaling Profiles to Stimulate Cambial Activity. Current Biology, 26(15), 1990-1997. doi:10.1016/j.cub.2016.05.053Kakehi, J.-I., Kawano, E., Yoshimoto, K., Cai, Q., Imai, A., & Takahashi, T. (2015). Mutations in Ribosomal Proteins, RPL4 and RACK1, Suppress the Phenotype of a Thermospermine-Deficient Mutant of Arabidopsis thaliana. PLOS ONE, 10(1), e0117309. doi:10.1371/journal.pone.0117309Karimi, M., Inzé, D., & Depicker, A. (2002). GATEWAY™ vectors for Agrobacterium-mediated plant transformation. Trends in Plant Science, 7(5), 193-195. doi:10.1016/s1360-1385(02)02251-3Knott, J. M., Römer, P., & Sumper, M. (2007). Putative spermine synthases fromThalassiosira pseudonanaandArabidopsis thalianasynthesize thermospermine rather than spermine. FEBS Letters, 581(16), 3081-3086. doi:10.1016/j.febslet.2007.05.074Koncz, C., & Schell, J. (1986). The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Molecular and General Genetics MGG, 204(3), 383-396. doi:10.1007/bf00331014Larson, P. R. (1994). The Vascular Cambium. Springer Series in Wood Science. doi:10.1007/978-3-642-78466-8Livak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25(4), 402-408. doi:10.1006/meth.2001.1262Milhinhos, A., Prestele, J., Bollhöner, B., Matos, A., Vera-Sirera, F., Rambla, J. L., … Miguel, C. M. (2013). Thermospermine levels are controlled by an auxin-dependent feedback loop mechanism inPopulusxylem. The Plant Journal, 75(4), 685-698. doi:10.1111/tpj.12231Milhinhos, A., Vera-Sirera, F., Blanco-Touriñán, N., Mari-Carmona, C., Carrió-Seguí, À., Forment, J., … Agustí, J. (2019). SOBIR1/EVR prevents precocious initiation of fiber differentiation during wood development through a mechanism involving BP and ERECTA. Proceedings of the National Academy of Sciences, 116(37), 18710-18716. doi:10.1073/pnas.1807863116Muñiz, L., Minguet, E. G., Singh, S. K., Pesquet, E., Vera-Sirera, F., Moreau-Courtois, C. L., … Tuominen, H. (2008). ACAULIS5 controls Arabidopsis xylem specification through the prevention of premature cell death. Development, 135(15), 2573-2582. doi:10.1242/dev.019349Murashige, T., & Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15(3), 473-497. doi:10.1111/j.1399-3054.1962.tb08052.xNieminen, K., Immanen, J., Laxell, M., Kauppinen, L., Tarkowski, P., Dolezal, K., … Helariutta, Y. (2008). Cytokinin signaling regulates cambial development in poplar. Proceedings of the National Academy of Sciences, 105(50), 20032-20037. doi:10.1073/pnas.0805617106Nilsson, O., Aldén, T., Sitbon, F., Anthony Little, C. H., Chalupa, V., Sandberg, G., & Olsson, O. (1992). Spatial pattern of cauliflower mosaic virus 35S promoter-luciferase expression in transgenic hybrid aspen trees monitored by enzymatic assay and non-destructive imaging. Transgenic Research, 1(5), 209-220. doi:10.1007/bf02524751Ohashi-Ito, K., Saegusa, M., Iwamoto, K., Oda, Y., Katayama, H., Kojima, M., … Fukuda, H. (2014). A bHLH Complex Activates Vascular Cell Division via Cytokinin Action in Root Apical Meristem. Current Biology, 24(17), 2053-2058. doi:10.1016/j.cub.2014.07.050Ragni, L., Nieminen, K., Pacheco-Villalobos, D., Sibout, R., Schwechheimer, C., & Hardtke, C. S. (2011). Mobile Gibberellin Directly Stimulates Arabidopsis Hypocotyl Xylem Expansion  . The Plant Cell, 23(4), 1322-1336. doi:10.1105/tpc.111.084020Savidge, R. A. (1988). Auxin and ethylene regulation of diameter growth in trees. Tree Physiology, 4(4), 401-414. doi:10.1093/treephys/4.4.401Sibout, R., Plantegenet, S., & Hardtke, C. S. (2008). Flowering as a Condition for Xylem Expansion in Arabidopsis Hypocotyl and Root. Current Biology, 18(6), 458-463. doi:10.1016/j.cub.2008.02.070Smetana, O., Mäkilä, R., Lyu, M., Amiryousefi, A., Sánchez Rodríguez, F., Wu, M.-F., … Mähönen, A. P. (2019). High levels of auxin signalling define the stem-cell organizer of the vascular cambium. Nature, 565(7740), 485-489. doi:10.1038/s41586-018-0837-0Sundell, D., Street, N. R., Kumar, M., Mellerowicz, E. J., Kucukoglu, M., Johnsson, C., … Hvidsten, T. R. (2017). AspWood: High-Spatial-Resolution Transcriptome Profiles Reveal Uncharacterized Modularity of Wood Formation in Populus tremula. The Plant Cell, 29(7), 1585-1604. doi:10.1105/tpc.17.00153Svačinová, J., Novák, O., Plačková, L., Lenobel, R., Holík, J., Strnad, M., & Doležal, K. (2012). A new approach for cytokinin isolation from Arabidopsis tissues using miniaturized purification: pipette tip solid-phase extraction. Plant Methods, 8(1). doi:10.1186/1746-4811-8-17Tiimonen, H., Häggman, H., Tsai, C.-J., Chiang, V., & Aronen, T. (2007). The seasonal activity and the effect of mechanical bending and wounding on the PtCOMT promoter in Betula pendula Roth. Plant Cell Reports, 26(8), 1205-1214. doi:10.1007/s00299-007-0331-xTuominen, H., Puech, L., Fink, S., & Sundberg, B. (1997). A Radial Concentration Gradient of Indole-3-Acetic Acid Is Related to Secondary Xylem Development in Hybrid Aspen. Plant Physiology, 115(2), 577-585. doi:10.1104/pp.115.2.577Vera-Sirera, F., De Rybel, B., Úrbez, C., Kouklas, E., Pesquera, M., Álvarez-Mahecha, J. C., … Blázquez, M. A. (2015). A bHLH-Based Feedback Loop Restricts Vascular Cell Proliferation in Plants. Developmental Cell, 35(4), 432-443. doi:10.1016/j.devcel.2015.10.022Vera-Sirera, F., Minguet, E. G., Singh, S. K., Ljung, K., Tuominen, H., Blázquez, M. A., & Carbonell, J. (2010). Role of polyamines in plant vascular development. Plant Physiology and Biochemistry, 48(7), 534-539. doi:10.1016/j.plaphy.2010.01.011Xu, M., Zhang, B., Su, X., Zhang, S., & Huang, M. (2011). Reference gene selection for quantitative real-time polymerase chain reaction in Populus. Analytical Biochemistry, 408(2), 337-339. doi:10.1016/j.ab.2010.08.044Zürcher, E., Tavor-Deslex, D., Lituiev, D., Enkerli, K., Tarr, P. T., & Müller, B. (2013). A Robust and Sensitive Synthetic Sensor to Monitor the Transcriptional Output of the Cytokinin Signaling Network in Planta      . Plant Physiology, 161(3), 1066-1075. doi:10.1104/pp.112.21176

    Origin of gibberellin-dependent transcriptional regulation by molecular exploitation of a transactivation domain in DELLA proteins

    Full text link
    [EN] DELLA proteins are plant specific transcriptional regulators known to interact through their C-terminal GRAS domain with over 150 transcription factors in Arabidopsis thaliana. Besides, DELLAs from vascular plants can interact through the N-terminal domain with the gibberellin receptor encoded by GID1, through which gibberellins promote DELLA degradation. However, this regulation is absent in non-vascular land plants, which lack active gibberellins or a proper GID1 receptor. Current knowledge indicates that DELLAs are important pieces of the signalling machinery of vascular plants, especially angiosperms, but nothing is known about DELLA function during early land plant evolution or if they exist at all in charophytan algae. We have now elucidated the evolutionary origin of DELLA proteins, showing that algal GRAS proteins are monophyletic and evolved independently from those of land plants, which explains why there are no DELLAs outside land plants. DELLA genes have been maintained throughout land plant evolution with only two major duplication events kept among plants. Furthermore, we show that the features needed for DELLA interaction with the receptor were already present in the ancestor of all land plants, and propose that these DELLA N-terminal motifs have been tightly conserved in non-vascular land plants for their function in transcriptional co-activation, which allowed subsequent exaptation for the interaction with the GID1 receptor when vascular plants developed gibberellin synthesis and the corresponding perception module.We thank the members of the Hormone Signaling and Plasticity Lab at IBMCP (http://plasticity.ibmcp.csic.es/) for useful discussions and suggestions. Work in our laboratories was supported by grants BFU2016-80621-P of the Spanish Ministry of Economy, Industry and Competitiveness and H2020-MSCA-RISE-2014-644435 of the European Union. J.H.-G. and A.B.-M. hold Fellowships of the Spanish Ministry of Education, Culture and Sport FPU15/01756 and FPU14/01941, respectively.Hernández-García, J.; Briones-Moreno, A.; Dumas, R.; Blazquez Rodríguez, MA. (2019). Origin of gibberellin-dependent transcriptional regulation by molecular exploitation of a transactivation domain in DELLA proteins. Molecular Biology and Evolution. 36(5):908-918. https://doi.org/10.1093/molbev/msz009S90891836

    In search for the role of thermospermine synthase gene in poplar vascular development

    Get PDF
    This work is supported by the FCT project PTDC/AGR-GPL/098369/2008 and FCT PhD grant SFRH/BD/30074/2006 (A.M.).Peer Reviewe

    Combinando Linked Data con servicios geoespaciales

    Get PDF
    La Web de Linked Data supone un nuevo paradigma que pretende explotar la Web como un espacio global de información. La aplicación de los principios de esta nueva Web a la información geoespacial superará la integración de información tradicional, logrando una articulación semántica de los datos que haga desaparecer los silos de datos presentes en las actuales Infraestructuras de Datos Espaciales. Ante esta propuesta, en este artículo se describe el trabajo desarrollado en el marco de un caso de uso utilizando una parte de los datos del SIGNA. En este caso de uso se ha llevado a cabo un proceso de generación y publicación de los mencionados datos conforme a los principios de Linked Data y estos se combinan con diversos servicios de la IDEE y CartoCiudad para explotar el componente geoespacial
    corecore