209 research outputs found

    Batoid abundances, spatial distribution, and life history traits in the strait of sicily (Central mediterranean sea): Bridging a knowledge gap through three decades of survey

    Get PDF
    Batoid species play a key role in marine ecosystems but unfortunately they have globally declined over the last decades. Given the paucity of information, abundance data and the main life history traits for batoids, obtained through about three decades of bottom trawl surveys, are presented and discussed. The surveys were carried out in two areas of the Central Mediterranean (South of Sicily and Malta Island), in a timeframe ranging from 1990 to 2018. Excluding some batoids, the abundance trends were stable or increasing. Only R. clavata, R. miraletus, and D. oxyrinchus showed occurrence and abundance indexes notable enough to carry out more detailed analysis. In particular, spatial distribution analysis of these species highlighted the presence of two main hotspots in Sicilian waters whereas they seem more widespread in Malta. The lengths at first maturity (L50) were 695 and 860, 635 and 574, and 364 and 349 mm total length (TL), respectively, for females and males of D. oxyrinchus, R. clavata, and R. miraletus. The asymptotic lengths (L∞) and the curvature coefficients (K) were 1365 and 1240 (K = 0.11 and 0.26), 1260 and 1100 (K = 0.16 and 0.26), and 840 and 800 mm TL (K = 0.36 and 0.41), respectively, for females and males of D. oxyrinchus, R. clavata, and R. miraletus. The lack of detailed quantitative historical information on batoids of Sicily and Malta does not allow to analytically judge the current status of the stocks, although the higher abundance of some species within Malta raises some concern for the Sicilian counterpart. In conclusion, suitable actions to protect batoids in the investigated area are recommended

    Assessment of goods and services, vulnerability, and conservation status of European seabed biotopes: a stepping stone towards ecosystem-based marine spatial management

    Get PDF
    The goal of ecosystem-based marine spatial management is to maintain marine ecosystems in a healthy, productive and resilient condition; hence, they can sustainably provide the needed goods and services for human welfare. However, the increasing pressures upon the marine realm threaten marine ecosystems, especially seabed biotopes, and thus a well-planned approach of managing use of marine space is essential to achieve sustainability. The relative value of seabed biotopes, evaluated on the basis of goods and services, is an important starting point for the spatial management of marine areas. Herein, 56 types of European seabed biotopes and their related goods, services, sensitivity issues, and conservation status were compiled, the latter referring to management and protection tools which currently apply for these biotopes at European or international level. Fishing activities, especially by benthic trawls, and marine pollution are the main threats to European seabed biotopes. Increased seawater turbidity, dredged sediment disposal, coastal constructions, biological invasions, mining, extraction of raw materials, shipping-related activities, tourism, hydrocarbon exploration, and even some practices of scientific research, also exert substantial pressure. Although some first steps have been taken to protect the European sea beds through international agreements and European and national legislation, a finer scale of classification and assessment of marine biotopes is considered crucial in shaping sound priorities and management guidelines towards the effective conservation and sustainability of European marine resources

    Climatic change and the Mediterranean

    Get PDF
    The temperature and precipitation scenarios for the Malta region developed by the Climate Research Unit of the University of East Anglia suggest that annual temperature will increase by 0.8 to 0.9°C per degree Celsius of global change and that there will be little if any change in the annual rainfall amounts around Malta. A statistical analysis of past meteorological data for Malta indicates an existing trend towards increasing extremes of temperature; namely an increase in the maximum and a decrease in the minimum temperatures. The mean annual temperature is also apparently increasing. These data also suggest a trend towards lower total annual rainfall; an increase in the atmospheric pressure; an increase in the number of days with thunderstorms; and decreases in cloud cover and the number of hours of bright sunshine. These trends suggest that a process of desertification is already occurring in Malta, and that there is an increase in the suspended particle concentration including pollutants, in the atmosphere over the island. The hydrological cycle will be significantly affected by global warming. In Malta, natural sources of freshwater account for about 37% of all potable water in the public supply and for 84% of all irrigation water. Global warming will affect the freshwater supply through changes to relative sea level, and through changes in rainfall and evapotranspiration. A eustatic rise in sea level of around 65 ± 35 cm by the year 2100 would adversely affect the existing extraction rates from Malta's principal aquifer and make it more vulnerable to sea water intrusion. In contrast, the direct climatic effect will be less pronounced, since only a small change in local precipitation is predicted to accompany global warming. Climate is a fundamental factor influencing the nature of the soils of Malta. Since an increase in temperature with little change in the total rainfall is anticipated, evapotranspiration will increase, leading to an increase in aridity, and to soil degradation mainly due to salinization and alkalinization. The anticipated increase in temperature; a shift in precipitation patterns; a decrease in soil water availability; and a rise in sea level, will have negative impacts on agriculture, natural vegetation and associated fauna, favouring an increase in xerophilic, thermophilic and halophilic species. Such species are likely to be introduced ones, thriving at the expense of native species. It is predicted that the character of the vegetation will change from that typical of Mediterranean coastal lowlands, to associations more typical of deserts. This shift in vegetation pattern would be enhanced by soil erosion and increased soil salinity. Remedial action at a local level could include measures to prevent soil erosion by gradually changing to crops and trees that stabilize soils and which tolerate the new climatic conditions. A change in temperature could possibly lead to an increase in agricultural pests, whilst sea level rise may cause inundation of low-lying agricultural land such as that at Pwales and of groves such as those at Salina Bay. The impacts on fisheries may be less dramatic but changes in migration patterns of important fish such as lampuki might happen; and the potentially adverse effects which competitive thermophilic seaweeds may have on the important Posidonia meadows may be of concern in the future. The effects on aquaculture are difficult to assess but may include an increase in pathogens. The control of pollutants and protection of the Posidonia meadows are recommended, together with development of more sustainable use of fisheries resources. The present coastal, near-shore and freshwater ecosystems are threatened by a number of anthropogenic, non-climatic changes. Any additional impacts on these ecosystems resulting from climatic changes will have to be assessed in the light of such nonclimatic effects, if the overall projections of future changes are to be accurate. Increased eutrophic conditions and increased water stratification are likely to occur under conditions of global change in certain localities already influenced by other non-climatic human activities. Non-linear biological responses to climatic changes are discussed and may prove to be quite significant but difficult to predict with the present state of knowledge. Coastal sandy beaches, sand dunes and saline marsh habitats are considered to be sensitive to predicted climate change impacts, through increased erosion, enhanced shoreline recession and increased environmental fluctuations. The extent of impacts on such habitats, under less severe climatic change scenarios, will depend largely on present and future land-use management practices. Given the coastal topography, present drainage patterns and negligible tectonic movements in Malta, the predicted rise in sea level will have coast and especially those in the main drainage basins will become more susceptible to periodic rainfall-induced flooding and anticipatory action will be needed to address the consequential economic and social disruption. Impacts on coastal settlements are expected as a result of tidal and storm surges rather than from permanent inundation. A rise in sea level may cause sewage systems to flood, and new systems may have to be developed to reduce public health risks from such a hazard, including the increased risk of epidemics of enteric disorders such as typhoid fever. Salt water intrusion into aquifers will reduce the quantity and quality of potable water resources. Temperature rise and an increased frequency of extreme high temperatures, especially when combined with high humidity, will put some population groups such as the elderly and infants at risk from heat stress. Diseases presently confined to the tropics may spread to higher latitudes, and tropical and sub-tropical vector borne diseases may become more widespread, partly because vector survival will increase and partly because the parasites may be able to complete their life cycle more easily. Malaria may reappear in Europe, whilst Leishmaniasis, which has been under control in the recent past, already seems to be on the increase, possibly as a result of recent increases in temperature and humidity. Increased exposure to the sun when combined with possible ozone layer depletion may result in a further rise in the incidence of both melanomas and non-melanotic skin cancers. Exposure to increased ultraviolet (UV) radiation is expected to cause damage to the cornea and lens and an increased incidence of cataracts. The effect of UVB radiation on the human immune system is far less well understood, but it is a well accepted fact however, that UV, possibly acting through DNA damage, is an important precipitating factor of the auto-immune condition, systemic lupus erythematosus. The tourist industry has, for many years, been one of the Islands' most important economic activities, employing 5.8% of the total working population. If the climate conditions of the Maltese Islands change, the tourist industry could suffer, causing disruption to the Maltese economy and hardship to the population. Sea level rise will certainly have an impact on this site-dependent and coastal industry, which would be adversely affected by the loss of sandy beaches and the reduction in potable water supply. The tourist industry, is by its very nature, fragile and susceptible to political, economic and social changes. Climate change will add another element of uncertainty to this sector. Transport in Malta depends entirely on roads, whilst a ferry service connects the islands of Malta, Gozo and Comino and is also used around the Grand Harbour area. Road traffic would suffer in the event of flooding of the main traffic arteries as a result of severe rain storms, which will probably increase along with the anticipated increase in autumn precipitation. Changes in climate are expected to have an effect on the patterns of energy demand to heat and cool buildings. Electricity generation, which accounts for almost two thirds of primary energy consumption, has grown on average by about 8.5% per year in recent years. The predicted average temperature increases would, theoretically, reduce the need to provide heating, thereby saving energy. Given the low thermal performance of Maltese buildings, an increase in ambient temperature may merely result in a more thermally comfortable interior, rather than a saving of energy. · In the commercial and industrial sectors, the interhal heat generated by the use of machinery is high and an increase in ambient temperature, may result in a need for cooling through increased ventilation and possibly an extension of the air conditioning season. The introduction of thermal insulation to the building envelope, would reduce both the heating demand in winter as well as the cooling demand in summer. The displacement of fossil fuels by renewable energy sources particularly biomass and hydro power would reduce carbon dioxide emissions. In Malta there is good potential for development of solar energy, although land availability is a major obstacle. There is less possibility of harnessing wind energy on a large scale although wind energy is already widely used for water pumping in agriculture.peer-reviewe

    Association of CAPN10 SNPs and Haplotypes with Polycystic Ovary Syndrome among South Indian Women

    Get PDF
    Polycystic Ovary Syndrome (PCOS) is known to be characterized by metabolic disorder in which hyperinsulinemia and peripheral insulin resistance are central features. Given the physiological overlap between PCOS and type-2 diabetes (T2DM), and calpain 10 gene (CAPN10) being a strong candidate for T2DM, a number of studies have analyzed CAPN10 SNPs among PCOS women yielding contradictory results. Our study is first of its kind to investigate the association pattern of CAPN10 polymorphisms (UCSNP-44, 43, 56, 19 and 63) with PCOS among Indian women. 250 PCOS cases and 299 controls from Southern India were recruited for this study. Allele and genotype frequencies of the SNPs were determined and compared between the cases and controls. Results show significant association of UCSNP-44 genotype CC with PCOS (p = 0.007) with highly significant odds ratio when compared to TC (OR = 2.51, p = 0.003, 95% CI = 1.37–4.61) as well as TT (OR = 1.94, p = 0.016, 95% CI = 1.13–3.34). While the haplotype carrying the SNP-44 and SNP-19 variants (21121) exhibited a 2 fold increase in the risk for PCOS (OR = 2.37, p = 0.03), the haplotype containing SNP-56 and SNP-19 variants (11221) seems to have a protective role against PCOS (OR = 0.20, p = 0.004). Our results support the earlier evidence for a possible role of UCSNP-44 of the CAPN10 gene in the manifestation of PCOS

    Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals

    Get PDF
    Genetic studies of blood pressure (BP) to date have mainly analyzed common variants (minor allele frequency > 0.05). In a meta-analysis of up to ~1.3 million participants, we discovered 106 new BP-associated genomic regions and 87 rare (minor allele frequency ≤ 0.01) variant BP associations (P < 5 × 10−8), of which 32 were in new BP-associated loci and 55 were independent BP-associated single-nucleotide variants within known BP-associated regions. Average effects of rare variants (44% coding) were ~8 times larger than common variant effects and indicate potential candidate causal genes at new and known loci (for example, GATA5 and PLCB3). BP-associated variants (including rare and common) were enriched in regions of active chromatin in fetal tissues, potentially linking fetal development with BP regulation in later life. Multivariable Mendelian randomization suggested possible inverse effects of elevated systolic and diastolic BP on large artery stroke. Our study demonstrates the utility of rare-variant analyses for identifying candidate genes and the results highlight potential therapeutic targets. © 2020, The Author(s), under exclusive licence to Springer Nature America, Inc. There are 286 authors of this articles not all are listed in this record

    Probing the imprints of generalized interacting dark energy on the growth of perturbations

    Get PDF
    We extensively study the evolution and distinct signatures of cosmological models, in which dark energy interacts directly with dark matter. We first focus on the imprints of these coupled models on the cosmic microwave background temperature power spectrum, in which we discuss the multipole peak separation together with the integrated Sachs-Wolfe effect. We also address the growth of matter perturbations, and disentangle the interacting dark energy models using the expansion history together with the growth history. We find that a disformal coupling between dark matter and dark energy induces intermediate-scales and time-dependent damped oscillatory features in the matter growth rate function, a unique characteristic of this coupling. Apart from the disformal coupling, we also consider conformally coupled models, together with models which simultaneously make use of both couplings

    TCR cross-reactivity and allorecognition: new insights into the immunogenetics of allorecognition

    Get PDF
    Alloreactive T cells are core mediators of graft rejection and are a potent barrier to transplantation tolerance. It was previously unclear how T cells educated in the recipient thymus could recognize allogeneic HLA molecules. Recently it was shown that both naïve and memory CD4+ and CD8+ T cells are frequently cross-reactive against allogeneic HLA molecules and that this allorecognition exhibits exquisite peptide and HLA specificity and is dependent on both public and private specificities of the T cell receptor. In this review we highlight new insights gained into the immunogenetics of allorecognition, with particular emphasis on how viral infection and vaccination may specifically activate allo-HLA reactive T cells. We also briefly discuss the potential for virus-specific T cell infusions to produce GvHD. The progress made in understanding the molecular basis of allograft rejection will hopefully be translated into improved allograft function and/or survival, and eventually tolerance induction

    BMJ Open

    Get PDF
    INTRODUCTION: Worldwide, 2 million patients aged 18-50 years suffer a stroke each year, and this number is increasing. Knowledge about global distribution of risk factors and aetiologies, and information about prognosis and optimal secondary prevention in young stroke patients are limited. This limits evidence-based treatment and hampers the provision of appropriate information regarding the causes of stroke, risk factors and prognosis of young stroke patients. METHODS AND ANALYSIS: The Global Outcome Assessment Life-long after stroke in young adults (GOAL) initiative aims to perform a global individual patient data meta-analysis with existing data from young stroke cohorts worldwide. All patients aged 18-50 years with ischaemic stroke or intracerebral haemorrhage will be included. Outcomes will be the distribution of stroke aetiology and (vascular) risk factors, functional outcome after stroke, risk of recurrent vascular events and death and finally the use of secondary prevention. Subgroup analyses will be made based on age, gender, aetiology, ethnicity and climate of residence. ETHICS AND DISSEMINATION: Ethical approval for the GOAL study has already been obtained from the Medical Review Ethics Committee region Arnhem-Nijmegen. Additionally and when necessary, approval will also be obtained from national or local institutional review boards in the participating centres. When needed, a standardised data transfer agreement will be provided for participating centres. We plan dissemination of our results in peer-reviewed international scientific journals and through conference presentations. We expect that the results of this unique study will lead to better understanding of worldwide differences in risk factors, causes and outcome of young stroke patients
    corecore