64 research outputs found

    Hyperacute Directional Hearing and Phonotactic Steering in the Cricket (Gryllus bimaculatus deGeer)

    Get PDF
    Background: Auditory mate or prey localisation is central to the lifestyle of many animals and requires precise directional hearing. However, when the incident angle of sound approaches 0u azimuth, interaural time and intensity differences gradually vanish. This poses a demanding challenge to animals especially when interaural distances are small. To cope with these limitations imposed by the laws of acoustics, crickets employ a frequency tuned peripheral hearing system. Although this enhances auditory directionality the actual precision of directional hearing and phonotactic steering has never been studied in the behaviourally important frontal range. Principal Findings: Here we analysed the directionality of phonotaxis in female crickets (Gryllus bimaculatus) walking on an open-loop trackball system by measuring their steering accuracy towards male calling song presented at frontal angles of incidence. Within the range of 630u, females reliably discriminated the side of acoustic stimulation, even when the sound source deviated by only 1u from the animal’s length axis. Moreover, for angles of sound incidence between 1u and 6u the females precisely walked towards the sound source. Measuring the tympanic membrane oscillations of the front leg ears with a laser vibrometer revealed between 0u and 30u a linear increasing function of interaural amplitude differences with a slope of 0.4 dB/u. Auditory nerve recordings closely reflected these bilateral differences in afferent response latency and intensity that provide the physiological basis for precise auditory steering

    Matched Filters, Mate Choice and the Evolution of Sexually Selected Traits

    Get PDF
    Background Fundamental for understanding the evolution of communication systems is both the variation in a signal and how this affects the behavior of receivers, as well as variation in preference functions of receivers, and how this affects the variability of the signal. However, individual differences in female preference functions and their proximate causation have rarely been studied. Methodology/Principal Findings Calling songs of male field crickets represent secondary sexual characters and are subject to sexual selection by female choice. Following predictions from the “matched filter hypothesis” we studied the tuning of an identified interneuron in a field cricket, known for its function in phonotaxis, and correlated this with the preference of the same females in two-choice trials. Females vary in their neuronal frequency tuning, which strongly predicts the preference in a choice situation between two songs differing in carrier frequency. A second “matched filter” exists in directional hearing, where reliable cues for sound localization occur only in a narrow frequency range. There is a strong correlation between the directional tuning and the behavioural preference in no-choice tests. This second “matched filter” also varies widely in females, and surprisingly, differs on average by 400 Hz from the neuronal frequency tuning. Conclusions/Significance Our findings on the mismatch of the two “matched filters” would suggest that the difference in these two filters appears to be caused by their evolutionary history, and the different trade-offs which exist between sound emission, transmission and detection, as well as directional hearing under specific ecological settings. The mismatched filter situation may ultimately explain the maintenance of considerable variation in the carrier frequency of the male signal despite stabilizing selection

    Encoding of amplitude modulations by auditory neurons of the locust: influence of modulation frequency, rise time, and modulation depth

    Get PDF
    Using modulation transfer functions (MTF), we investigated how sound patterns are processed within the auditory pathway of grasshoppers. Spike rates of auditory receptors and primary-like local neurons did not depend on modulation frequencies while other local and ascending neurons had lowpass, bandpass or bandstop properties. Local neurons exhibited broader dynamic ranges of their rate MTF that extended to higher modulation frequencies than those of most ascending neurons. We found no indication that a filter bank for modulation frequencies may exist in grasshoppers as has been proposed for the auditory system of mammals. The filter properties of half of the neurons changed to an allpass type with a 50% reduction of modulation depths. Contrasting to reports for mammals, the sensitivity to small modulation depths was not enhanced at higher processing stages. In ascending neurons, a focus on the range of low modulation frequencies was visible in the temporal MTFs, which describe the temporal locking of spikes to the signal envelope. To investigate the influence of stimulus rise time, we used rectangularly modulated stimuli instead of sinusoidally modulated ones. Unexpectedly, steep stimulus onsets had only small influence on the shape of MTF curves of 70% of neurons in our sample

    Fatty Acid Binding Protein 4 Is Associated with Carotid Atherosclerosis and Outcome in Patients with Acute Ischemic Stroke

    Get PDF
    BACKGROUND AND PURPOSE: Fatty acid binding protein 4 (FABP4) has been shown to play an important role in macrophage cholesterol trafficking and associated inflammation. To further elucidate the role of FABP4 in atherogenesis in humans, we examined the regulation of FABP4 in carotid atherosclerosis and ischemic stroke. METHODS: We examined plasma FABP4 levels in asymptomatic (n = 28) and symptomatic (n = 31) patients with carotid atherosclerosis, as well as in 202 subjects with acute ischemic stroke. In a subgroup of patients we also analysed the expression of FABP4 within the atherosclerotic lesion. In addition, we investigated the ability of different stimuli with relevance to atherosclerosis to regulate FABP4 expression in monocytes/macrophages. RESULTS: FABP4 levels were higher in patients with carotid atherosclerosis, both systemically and within the atherosclerotic lesion, with particular high mRNA levels in carotid plaques from patients with the most recent symptoms. Immunostaining of carotid plaques localized FABP4 to macrophages, while activated platelets and oxidized LDL were potent stimuli for FABP4 expression in monocytes/macrophages in vitro. When measured at the time of acute ischemic stroke, high plasma levels of FABP4 were significantly associated with total and cardiovascular mortality during follow-up, although we did not find that addition of FABP4 to the fully adjusted multivariate model had an effect on the prognostic discrimination for all-cause mortality as assessed by c-statistics. CONCLUSIONS: FABP4 is linked to atherogenesis, plaque instability and adverse outcome in patients with carotid atherosclerosis and acute ischemic stroke

    Cholesterol Crystals Activate the NLRP3 Inflammasome in Human Macrophages: A Novel Link between Cholesterol Metabolism and Inflammation

    Get PDF
    Chronic inflammation of the arterial wall is a key element in the pathogenesis of atherosclerosis, yet the factors that trigger and sustain the inflammation remain elusive. Inflammasomes are cytoplasmic caspase-1-activating protein complexes that promote maturation and secretion of the proinflammatory cytokines interleukin(IL)-1beta and IL-18. The most intensively studied inflammasome, NLRP3 inflammasome, is activated by diverse substances, including crystalline and particulate materials. As cholesterol crystals are abundant in atherosclerotic lesions, and IL-1beta has been linked to atherogenesis, we explored the possibility that cholesterol crystals promote inflammation by activating the inflammasome pathway.Here we show that human macrophages avidly phagocytose cholesterol crystals and store the ingested cholesterol as cholesteryl esters. Importantly, cholesterol crystals induced dose-dependent secretion of mature IL-1beta from human monocytes and macrophages. The cholesterol crystal-induced secretion of IL-1beta was caspase-1-dependent, suggesting the involvement of an inflammasome-mediated pathway. Silencing of the NLRP3 receptor, the crucial component in NLRP3 inflammasome, completely abolished crystal-induced IL-1beta secretion, thus identifying NLRP3 inflammasome as the cholesterol crystal-responsive element in macrophages. The crystals were shown to induce leakage of the lysosomal protease cathepsin B into the cytoplasm and inhibition of this enzyme reduced cholesterol crystal-induced IL-1beta secretion, suggesting that NLRP3 inflammasome activation occurred via lysosomal destabilization.The cholesterol crystal-induced inflammasome activation in macrophages may represent an important link between cholesterol metabolism and inflammation in atherosclerotic lesions

    Cell Size and the Initiation of DNA Replication in Bacteria

    Get PDF
    In eukaryotes, DNA replication is coupled to the cell cycle through the actions of cyclin-dependent kinases and associated factors. In bacteria, the prevailing view, based primarily from work in Escherichia coli, is that growth-dependent accumulation of the highly conserved initiator, DnaA, triggers initiation. However, the timing of initiation is unchanged in Bacillus subtilis mutants that are ∼30% smaller than wild-type cells, indicating that achievement of a particular cell size is not obligatory for initiation. Prompted by this finding, we re-examined the link between cell size and initiation in both E. coli and B. subtilis. Although changes in DNA replication have been shown to alter both E. coli and B. subtilis cell size, the converse (the effect of cell size on DNA replication) has not been explored. Here, we report that the mechanisms responsible for coordinating DNA replication with cell size vary between these two model organisms. In contrast to B. subtilis, small E. coli mutants delayed replication initiation until they achieved the size at which wild-type cells initiate. Modest increases in DnaA alleviated the delay, supporting the view that growth-dependent accumulation of DnaA is the trigger for replication initiation in E. coli. Significantly, although small E. coli and B. subtilis cells both maintained wild-type concentration of DnaA, only the E. coli mutants failed to initiate on time. Thus, rather than the concentration, the total amount of DnaA appears to be more important for initiation timing in E. coli. The difference in behavior of the two bacteria appears to lie in the mechanisms that control the activity of DnaA

    Rifapentine access in Europe: growing concerns over key tuberculosis treatment component

    Get PDF
    [No abstract available]Support statement: C. Lange is supported by the German Center of Infection Research (DZIF). All other authors have no funding to declare for this study. Funding information for this article has been deposited with the Crossref Funder Registry

    The impact of viral mutations on recognition by SARS-CoV-2 specific T cells.

    Get PDF
    We identify amino acid variants within dominant SARS-CoV-2 T cell epitopes by interrogating global sequence data. Several variants within nucleocapsid and ORF3a epitopes have arisen independently in multiple lineages and result in loss of recognition by epitope-specific T cells assessed by IFN-γ and cytotoxic killing assays. Complete loss of T cell responsiveness was seen due to Q213K in the A∗01:01-restricted CD8+ ORF3a epitope FTSDYYQLY207-215; due to P13L, P13S, and P13T in the B∗27:05-restricted CD8+ nucleocapsid epitope QRNAPRITF9-17; and due to T362I and P365S in the A∗03:01/A∗11:01-restricted CD8+ nucleocapsid epitope KTFPPTEPK361-369. CD8+ T cell lines unable to recognize variant epitopes have diverse T cell receptor repertoires. These data demonstrate the potential for T cell evasion and highlight the need for ongoing surveillance for variants capable of escaping T cell as well as humoral immunity.This work is supported by the UK Medical Research Council (MRC); Chinese Academy of Medical Sciences(CAMS) Innovation Fund for Medical Sciences (CIFMS), China; National Institute for Health Research (NIHR)Oxford Biomedical Research Centre, and UK Researchand Innovation (UKRI)/NIHR through the UK Coro-navirus Immunology Consortium (UK-CIC). Sequencing of SARS-CoV-2 samples and collation of data wasundertaken by the COG-UK CONSORTIUM. COG-UK is supported by funding from the Medical ResearchCouncil (MRC) part of UK Research & Innovation (UKRI),the National Institute of Health Research (NIHR),and Genome Research Limited, operating as the Wellcome Sanger Institute. T.I.d.S. is supported by a Well-come Trust Intermediate Clinical Fellowship (110058/Z/15/Z). L.T. is supported by the Wellcome Trust(grant number 205228/Z/16/Z) and by theUniversity of Liverpool Centre for Excellence in Infectious DiseaseResearch (CEIDR). S.D. is funded by an NIHR GlobalResearch Professorship (NIHR300791). L.T. and S.C.M.are also supported by the U.S. Food and Drug Administration Medical Countermeasures Initiative contract75F40120C00085 and the National Institute for Health Research Health Protection Research Unit (HPRU) inEmerging and Zoonotic Infections (NIHR200907) at University of Liverpool inpartnership with Public HealthEngland (PHE), in collaboration with Liverpool School of Tropical Medicine and the University of Oxford.L.T. is based at the University of Liverpool. M.D.P. is funded by the NIHR Sheffield Biomedical ResearchCentre (BRC – IS-BRC-1215-20017). ISARIC4C is supported by the MRC (grant no MC_PC_19059). J.C.K.is a Wellcome Investigator (WT204969/Z/16/Z) and supported by NIHR Oxford Biomedical Research Centreand CIFMS. The views expressed are those of the authors and not necessarily those of the NIHR or MRC

    An integrated national scale SARS-CoV-2 genomic surveillance network

    Get PDF

    Practical guidelines for rigor and reproducibility in preclinical and clinical studies on cardioprotection

    Get PDF
    The potential for ischemic preconditioning to reduce infarct size was first recognized more than 30 years ago. Despite extension of the concept to ischemic postconditioning and remote ischemic conditioning and literally thousands of experimental studies in various species and models which identified a multitude of signaling steps, so far there is only a single and very recent study, which has unequivocally translated cardioprotection to improved clinical outcome as the primary endpoint in patients. Many potential reasons for this disappointing lack of clinical translation of cardioprotection have been proposed, including lack of rigor and reproducibility in preclinical studies, and poor design and conduct of clinical trials. There is, however, universal agreement that robust preclinical data are a mandatory prerequisite to initiate a meaningful clinical trial. In this context, it is disconcerting that the CAESAR consortium (Consortium for preclinicAl assESsment of cARdioprotective therapies) in a highly standardized multi-center approach of preclinical studies identified only ischemic preconditioning, but not nitrite or sildenafil, when given as adjunct to reperfusion, to reduce infarct size. However, ischemic preconditioning—due to its very nature—can only be used in elective interventions, and not in acute myocardial infarction. Therefore, better strategies to identify robust and reproducible strategies of cardioprotection, which can subsequently be tested in clinical trials must be developed. We refer to the recent guidelines for experimental models of myocardial ischemia and infarction, and aim to provide now practical guidelines to ensure rigor and reproducibility in preclinical and clinical studies on cardioprotection. In line with the above guideline, we define rigor as standardized state-of-the-art design, conduct and reporting of a study, which is then a prerequisite for reproducibility, i.e. replication of results by another laboratory when performing exactly the same experiment
    corecore