46 research outputs found

    The Dopamine Transporter Gene, a Spectrum of Most Common Risky Behaviors, and the Legal Status of the Behaviors

    Get PDF
    This study tests the specific hypothesis that the 9R/9R genotype in the VNTR of the dopamine transporter gene (DAT1) exerts a general protective effect against a spectrum of risky behaviors in comparison to the 10R/9R and 10R/10R genotypes, drawing on three-time repeated measures of risky behaviors in adolescence and young adulthood on about 822 non-Hispanic white males from the Add Health study. Our data have established two empirical findings. The first is a protective main effect in the DAT1 gene against risky behaviors. The second finding is that the protective effect varies over age, with the effect prominent at ages when a behavior is illegal and the effect largely vanished at ages when the behavior becomes legal or more socially tolerated. Both the protective main effect and the gene-lifecourse interaction effect are replicated across a spectrum of most common risky behaviors: delinquency, variety of sexual partners, binge drinking, drinking quantity, smoking quantity, smoking frequency, marijuana use, cocaine use, other illegal drug use, and seatbelt non-wearing. We also compared individuals with the protective genotype and individuals without it in terms of age, physical maturity, verbal IQ, GPA, received popularity, sent popularity, church attendance, two biological parents, and parental education. These comparisons indicate that the protective effect of DAT1*9R/9R cannot be explained away by these background characteristics. Our work demonstrates how legal/social contexts can enhance or reduce a genetic effect on risky behaviors

    Long Noncoding RNA-Directed Epigenetic Regulation of Gene Expression Is Associated With Anxiety-like Behavior in Mice

    Get PDF
    Background RNA-directed regulation of epigenetic processes has recently emerged as an important feature of mammalian differentiation and development. Perturbation of this regulatory system in the brain may contribute to the development of neuropsychiatric disorders. Methods RNA sequencing was used to identify changes in the experience-dependent expression of long noncoding RNAs (lncRNAs) within the medial prefrontal cortex of adult mice. Transcripts were validated by real-time quantitative polymerase chain reaction and a candidate lncRNA, Gomafu, was selected for further investigation. The functional role of this schizophrenia-related lncRNA was explored in vivo by antisense oligonucleotide-mediated gene knockdown in the medial prefrontal cortex, followed by behavioral training and assessment of fear-related anxiety. Long noncoding RNA-directed epigenetic regulation of gene expression was investigated by chromatin and RNA immunoprecipitation assays. Results RNA sequencing analysis revealed changes in the expression of a significant number of genes related to neural plasticity and stress, as well as the dynamic regulation of lncRNAs. In particular, we detected a significant downregulation of Gomafu lncRNA. Our results revealed that Gomafu plays a role in mediating anxiety-like behavior and suggest that this may occur through an interaction with a key member of the polycomb repressive complex 1, BMI1, which regulates the expression of the schizophrenia-related gene beta crystallin (Crybb1). We also demonstrated a novel role for Crybb1 in mediating fear-induced anxiety-like behavior. Conclusions Experience-dependent expression of lncRNAs plays an important role in the epigenetic regulation of adaptive behavior, and the perturbation of Gomafu may be related to anxiety and the development of neuropsychiatric disorders

    Using the canary genome to decipher the evolution of hormone-sensitive gene regulation in seasonal singing birds

    Get PDF

    Decreased expression of the transcription factor NURR1 in dopamine neurons of cocaine abusers

    No full text
    Chronic exposure to cocaine induces long-term adaptations that are likely to involve changes in transcription factor expression. This possibility has not been examined in the cocaine-exposed human brain. The transcription factor nurr1 is highly expressed in rodent midbrain dopamine neurons and is essential for their proper phenotypic development. Here we show that human NURR1 gene expression is robust within control subjects and reduced markedly within the dopamine neurons of human cocaine abusers. NURR1 is known to regulate transcription of the gene encoding the cocaine-sensitive dopamine transporter (DAT). We show here that DAT gene expression also is reduced markedly in the dopamine neurons of NURR1-deficient cocaine abusers, suggesting that NURR1 plays a critical role in vivo in controlling human DAT gene expression and adaptation to repeated exposure to cocaine
    corecore