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Abstract

Background: Many long non-coding RNAs(lncRNAs) have been found to be a good marker for several tumors.
Using lncRNA-mining approach, we aimed to identify lncRNA expression signature that can predict breast cancer
patient survival.

Methods: We performed LncRNA expression profiling in 887 breast cancer patients from Gene Expression Omnibus
(GEO) datasets. The association between lncRNA signature and clinical survival was analyzed using the training
set(n = 327, from GSE 20685). The validation for the association was performed in another three independent
testing sets(252 from GSE21653, 204 from GSE12276, and 104 from GSE42568).

Results: A set of four lncRNA genes (U79277, AK024118, BC040204, AK000974) have been identified by the random
survival forest algorithm. Using a risk score based on the expression signature of these lncRNAs, we separated the
patients into low-risk and high-risk groups with significantly different survival times in the training set. This signature
was validated in the other three cohorts. Further study revealed that the four-lncRNA expression signature was
independent of age and subtype. Gene Set Enrichment Analysis (GSEA) suggested that gene sets were involved in
several cancer metastasis related pathways.

Conclusions: These findings indicate that lncRNAs may be implicated in breast cancer pathogenesis. The four-lncRNA
signature may have clinical implications in the selection of high-risk patients for adjuvant therapy.
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Background
More than 50% of transcripts have no protein coding
potential through the analysis of mammalian transcrip-
tomes, a subset of these noncoding transcripts are termed
long non-coding RNAs (lncRNAs) that range from 200
nucleotides to multiple kilobases in length [1]. These long,
polyadenylated RNAs do not code for proteins, but func-
tion directly as RNAs. Many lncRNAs have already been
associated with various disease processes, and cancer fea-
tures prominently among these. In addition to the classic
protein coding mRNAs, recent studies have revealed the
contribution of lncRNAs as protooncogenes, tumor sup-
pressor genes, and drivers of metastatic transformation
at the transcriptional, post-transcriptional, and epigenetic
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levels [2-5]. Accumulating evidence indicates that lncRNAs
are linked to a diverse range of functions in cellular devel-
opment and their misregulation has also been implicated
in various types of cancers [6-8]. In most cases, these tran-
scripts are aberrantly expressed in cancers, which may
indicate their potential as possible biomarkers and can
be predictive of clinical outcome.
Breast cancer is a heterogeneous disease composed of

multiple molecular alterations. Molecular differences
between histologically similar tumors make clinical
outcomes difficult to predict and treatment imperfectly
adapted [9]. Breast cancers of varying histological subtypes
and risk stratification are traditionally diagnosed based on
their histopathological features, including tumor size,
grade and lymph node status. Over the past decade, the
“intrinsic” molecular subtypes of breast cancer: luminal
A and B, basal, ERBB2 and normal-like, exhibit different
histo-clinical features and treatment sensitivity [10,11].
Given the heterogeneity of breast cancer and the multitude
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Figure 1 Diagram of the study. The order of analyses to develop
the risk score model and validate the efficiency of the gene
signature to predict prognostic outcomes.
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of variables influencing clinical evolution, the multi-gene
signatures provide further prognostic and predictive in-
formation. One of the examples is a 21-gene classifer
(Oncotype DX) ,which classifies breast tumors into low-
,intermediate- and high-risk groups as to the advisability
of adjuvant chemotherapy for patients in high-risk
group [12,13]. The utility of such gene signature might
have clinical potential to predict patient outcome and
aid in treatment choice [14].
In breast cancer, several lncRNA transcripts were in-

volved in the biology of tumorigenesis. Furthermore,
certain lncRNAs exhibit distinct expression patterns
between primary tumors and metastases. A 2.2 kb lncRNA,
HOTAIR has been shown to be an independent predictor
of breast cancer survival. Elevated HOTAIR expression
levels correlate with breast cancer, and are linked to poor
prognosis and metastasis [3]. This lncRNA may induce
metastases by remodeling the epigenetic machinery to re-
press metastasis suppressor genes (e.g., HOXD10 ). An-
other lncRNA, MALAT-1 (metastasis associated lung
adenocarcinoma transcript 1) is overexpressed in many
different cancer types, including lung, breast, colon, pros-
tate, pancreatic, and hepatocellular carcinomas [15-17].
This highly conserved 8kb lncRNA is upregulated in inva-
sive breast carcinomas and correlates with tumor grade
[18]. GAS5 (growth arrest-specific 5) was found to be
downregulated in breast cancer tissues, and overexpres-
sion of this lncRNA in the MCF-7 breast cancer cell line
furthered growth arrest and apoptosis [19]. LSINCT5, the
stress-regulated lncRNA, is overexpressed in breast and
ovarian cancer cell lines and tumor tissues. In addition,
LSINCT5 has been proved to play a role in cellular prolif-
eration and also in the development of breast and ovarian
cancers [20]. Transcriptional profiling has revealed highly
aberrant lncRNA expression in human cancers [21]. How-
ever, the prognostic significance of lncRNAs in breast can-
cer has not been investigated.
Recently, the methodology of repurposing microarray

data for probing lncRNA expression is well-established
[22-24]. For instance, Du et al. used a large dataset of
microarrays to build a resource of clinically relevant
lncRNAs for the development of lncRNA biomarkers
and the identification of lncRNA therapeutic targets
[25]. Zhang et al. correlates lncRNA expression profiles
with malignancy grade and histological differentiation in
human gliomas by re-annotating Affymetrix HG-U133
Plus 2.0 array [26,27]. Furthermore, several studies do
have discovered new biomarkers to predict survival by
re-annotation of previous microarray data. A six-lncRNA
signature has been identified to predict survival of patients
with glioblastoma multiforme [27], while a three-lncRNA
signature has been shown to be associated with the prog-
nosis of patients with oesophageal squamous cell carcin-
oma [28].
In this study, we aimed at profiling the lncRNA ex-
pression signatures by analyzing a cohort of previously
published breast cancer gene expression profiles from
the Gene Expression Omnibus (GEO), as well as another
three independent data sets as testing sets. We identified
a four-lncRNA signature associated with survival, and
then established a risk score formula using the expres-
sions of these four lncRNAs. The prognostic value of the
signature was further confirmed in the testing cohorts.
Our findings suggest that lncRNA signatures can be
predictive of clinical outcome and they may be useful as
biomarkers.
Materials and methods
GEO breast cancer gene expression data
Breast cancer gene expression data and corresponding
clinical data used in this study were obtained from the
publicly available GEO databases. To analyze the correl-
ation of lncRNA expression signatures with survival end-
points for breast cancer as a whole (disease-free survival,
metastasis-free survival and overall survival), we selected
those data sets that included more than 100 patients
with their survival status information. We followed the
strategy of using the largest data set (GSE20685) as
training set. This training set from GSE20685 [29] was
first used to identify the gene expression signature. An-
other three independent data sets from GSE12276 [30],
GSE21653 [31,32], GSE42568 [33] were included in this
study as testing sets. After filtering out samples without
clinical survival information, there were a total of 887
samples, including 327 from GSE20685, 252 from GSE21653,
204 from GSE12276, and 104 from GSE42568, respect-
ively. Figure 1 depicts the diagram of the study.



Figure 2 Error rate for the data as a function of trees (left) and
out-of-bag importance values for predictors (right).
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Microarray data processing and LncRNA profile mining
The raw CEL files were downloaded from GEO database
and background adjusted using Robust Multichip Aver-
age. GATExplorer [22] was used to process microarrays
on a local computer for gene expressions of lncRNAs.
This GATExplorer provides a series of R packages, de-
signed to be used with BioConductor tools, that allow
to apply in a simple way the probe mapping data in-
cluded in GATExplorer. A type of files called ncRNA
Mapper were also obtained from GATExplorer, which
include the probes that do not map to any coding region
but that were mapped to a database for non-coding
RNA of human and mouse (derived from RNAdb [34]).
A customized R scripts was used to perform a microarray
expression calculation according to the re-mapping data
(file ncrnamapperhgu133plus2cdf_3.0). Each LncRNA
should include at least a minimum of 3 probes map-
ping in the corresponding ncRNAs entity. All of the
four lncRNAs were verified online in the ncRNA Expres-
sion Database (nred.matticklab.com) [35], which provides
gene expression information for thousands of long
ncRNAs in human and mouse (Additional file 1: Table S1).
We created a risk-score formula according to the expres-
sions of these four lncRNAs for survival prediction.
Patients having higher risk scores are expected to have
poorer survival outcomes. The risk scores are calculated as
follows: Risk score = (−0.35717× expression value of
AK024118) + (0.518242 × expression value of U79277) +
(−0.48664 × expression value of BC040204) + (−0.48122 ×
expression value of AK000974). In addition, the coding
potential analysis of the lncRNAs was carried out by
CNCI to classify protein-coding or noncoding tran-
scripts [36].

Gene set enrichment analysis (GSEA)
GSEA was performed by the JAVA program (http://www.
broadinstitute.org/gsea) using MSigDB C2 CP: Canonical
pathways gene set collection(1320 gene sets available).
Gene sets with a false discovery rate(FDR) value <0.05
after performing 1,000 permutations were considered to
be significantly enriched [37]. Cytoscape and Enrichment
Map were used for visualization of the GSEA results.

Statistical analysis
The association between the lncRNA gene expression
and patient’s survival was assessed by univariable Cox
regression analysis along with a permutation test using
Biometric Research Branch-Array tools package [38] in
the training set. With a parametric test(p ≤ 0.001), we
identified a set of 30 lncRNA expressions strongly corre-
lated with survival. Considering that a smaller number
of genes in the model would make the model more prac-
tical, we then performed the random survival forests-
variable hunting (RSFVH) algorithm [39]. We followed
Kawaguchi [39,40] for the parameters in the algorithm.
In brief, the number of Monte Carlo iterations (nrep)
was set as nrep = 100 and value controlling the step size
used in the forward process (nstep) was set as nstep = 5.
A set of 4 lncRNAs genes have been identified in which
expressions were strongly and consistently related to pa-
tient survival (Figure 2).
Using these four genes selected fitted in a multivariable

Cox regression model, we constructed a formula that
would predict survival in the training set. Each patient
was then assigned a risk score that is a linear combination
of the expression levels of the significant lncRNAs
weighted by their respective Cox regression coefficients
[41,42]. According to this risk score, patients in the train-
ing set were divided into low-risk and high-risk groups
using the median risk score as the cut-off. The Kaplan-
Meier method was used to estimate survival time for the
other three testing groups. Differences in survival times
between the low-risk and high-risk groups in each set
were then compared using the two-sided log rank test.
Furthermore, we also used Cox multivariate analysis to
test whether the risk score was independent of patient age
and subtype with the available data. Oncotype DX score
was implemented in an R package called genefu, available
from the Comprehensive R Archive Network. We used
receiver operating characteristic (ROC) curves to com-
pare the sensitivity and specificity of the survival pre-
diction of the lncRNA risk score. Area under the curve
(AUC) values were calculated from the ROC curves
[43]. All the data were analyzed by R program (www.r-
project.org). The significance was defined as p values
being less than 0.05.

http://nred.matticklab.com
http://www.broadinstitute.org/gsea
http://www.broadinstitute.org/gsea
http://www.r-project.org
http://www.r-project.org
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Results
Identification of lncRNA genes from the training set
As summarized in the workflow (Figure 1), all analyses
were performed in the training data set (GSE20685) first
and then validated in the test data set (GSE21653,
GSE12276, GSE42568). The training set(n = 327) was
analyzed for the detection of prognostic lncRNA genes.
By subjecting the lncRNA expression data derived from
the training set to univariable Cox proportional hazards
regression analysis using the BRB-Array Tools, we iden-
tified a set of 30 lncRNAs that were strongly correlated
with patients’ overall survival (P ≤ 0.001). On the basis
of the random survival forests model (see Materials and
methods), four genes were selected as the predictors.
Table 1 shows a list of these four genes with their obtained
variable importance values. As depicted in Figure 2, from
the plot we can see that AK024118 has dramatically larger
importance value than other predictors. Of these, a posi-
tive coefficient of U79277 indicated that its higher level of
expression was associated with shorter survival. The nega-
tive coefficients of the other genes (AK024118, BC040204,
AK000974) indicated that their higher levels of expression
were associated with longer survival. All of the four
lncRNAs have been verified in the ncRNA Expression
Database (nred.matticklab.com) and these four tran-
scripts were classified as ncRNAs in this website [35].
As coding potential analysis is commonly used to clas-
sify whether a transcript is of coding potential or not
[25], we also used another tool, CNCI, developed by
Sun et.al to test those four transcripts [36]. This tool
also suggests that all the four transcripts are non-coding
transcripts with no coding potential.

The association of four-lncRNA signature and patient’s
survival in the training set
With the risk score formula (see Materials and methods),
we calculated the four-lncRNA expression signature risk
score for each patient in the training set. The patients were
then ranked according to their risk scores. Using the
median risk score as cut-off in the training set, the pa-
tients were divided into low-risk(n = 164) and high-risk
(n = 163) groups. Patients in the high-risk group had
significantly shorter overall survival than those in the
low-risk group (log-rank test P < 0.0001) (Figure 3A).
Overall survival in the training set was 96.95% at 3
years, 91.89% at 6 years, 88.08% at 9 years and 84.86%
Table 1 Four LncRNAs significantly associated with the overa

Gene symbol Chromosomal position Parametric P value Haza

AK024118 chr18:59125236-59125296 7.00E-07 0

BC040204 chr6:72153349-72153409 1.93E-05 0

AK000974 chr10:97810995-97811055 2.85E-05 0

U79277 chr8:101998264-101998324 4.30E-06 2
at 12 years in the low risk group, versus 83.99%, 70.27%,
62.02% and 51.56% in the high risk group respectively.
The correlation of the four-lncRNA risk score with overall
survival was significant when it was analyzed as a continu-
ous variable in the univariable Cox regression model.

Validation of the four-lncRNA signature for survival
prediction in the testing sets
In order to confirm our findings, we calculated the risk
score for the testing sets including GSE21653(n = 252),
GSE12276 (n = 204) and GSE42568(n = 104). By using
the same cut-off value as the training set, the patients
from each testing set were separately classified into low-
risk and high-risk groups and subjected to survival com-
parison. As overall survival information was unavailable
in GSE21653 and GSE12276, disease-free survival(DFS)
and metastasis-free survival(MFS) was evaluated, respect-
ively. Similar to the findings obtained from the training
set, patients in the high-risk group had shorter survival
time than patients in the low-risk group (Figures 3B, 3C,
3D). In consistence with the results described above, pa-
tient survival in the low-risk group was better than that
in the high-risk group throughout the follow-up. In the
univariable Cox regression model, the similar correl-
ation of the risk score with overall survival was noted
with the high-risk group having a shorter overall sur-
vival than the low-risk group. The distribution of pa-
tient risk scores (Z-score transformed), survival status
and lncRNA values were analyzed independently for the
training set (Figure 4). We found that patients with
high-risk scores tended to have higher expression of
U79277 and lower expression of the remaining genes
(AK024118, BC040204, AK000974). Detail survival in-
formation of individual lncRNA in each data set and the
gene signature in the context of different tumor sub-
types was shown in Additional file 2: Figure S1 and
Additional file 3: Figure S2, respectively.

Multivariate regression analysis shows that the four-lncRNA
expression signature is independent of age and subtype
We carried out Cox multivariate analysis to ascertain
whether the four-lncRNA expression signature was an
independent predictor of breast cancer patient’s survival.
Four-lncRNA risk score, age (available in GSE20685,
GSE21653 and GSE42568) and subtype(only available in
GSE21653) were defined as covariates. The effect of risk
ll survival in the training-set patients (n = 327)

rd ratio Coefficient Variable importance Relative importance

.579 −0.35717 0.0369 1.0000

.428 −0.48664 0.0198 0.5368

.416 −0.48122 0.0173 0.4683

.17 0.518242 0.0200 0.5411

http://nred.matticklab.com


Figure 3 Kaplan–Meier estimates of the survival of Gene Expression Omnibus (GEO) patients using the four-lncRNA signature. The
Kaplan–Meier plots were used to visualize the survival probabilities for the low-risk versus high-risk group of GEO patients determined on the basis
of the median risk score from the training set patients. (A) Kaplan–Meier curves for GSE20685 training-set patients (n = 327); (B) Kaplan–Meier curves
for GSE21653 testing-set patients (n = 252); (C) Kaplan–Meier curves for GSE12276 testing-set patients (n = 204); (D) Kaplan–Meier curves for GSE42568
testing-set patients (n = 104). The tick marks on the Kaplan–Meier curves represent the censored subjects. The differences between the two curves
were determined by the two-sided log-rank test. The number of patients at risk was listed below the survival curves.
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score, age and subtype on breast cancer patient survival
time was further evaluated by multivariate Cox propor-
tional hazard model. The results showed that risk score is
an independent predictor of patient survival when adjusted
by age or subtype in every cohort (Table 2).

Evaluation of the risk score performance by receiver
operating characteristic (ROC) curve analysis
As GSE21653 was the only data set with disease-free
survival information(DFS), we performed receiver oper-
ating characteristic (ROC) analysis to compare the sensi-
tivity and specificity of survival prediction between our
model and Oncotype DX [13]. The area under receiver
operating characteristic (AUROC) was determined and
compared between these two gene signatures. As seen in
Figure 5, ROC curves indicated that AUROC of four-
lncRNA gene signature and Oncotype DX was 0.603 and
0.675, respectively. No significant difference(p=0.0837)
was observed between the Oncotype group and the
four-lncRNA gene signature group in terms of disease-
free survival (DFS) (Figure 3).

Identification of four-lncRNA signature associated
biological pathways and processes
Gene Set Enrichment Analysis(GSEA) was carried out to
identify associated biological processes and signaling
pathway [37]. We compared the gene expression profile
of breast cancer patients with high-risk and low-risk
group classified by four-lncRNA gene signature in the
training set(GSE 20685). The gene sets with significantly
different expression (FDR < 0.01, p <0.005) were picked
up for Gene set enrichment analysis (GSEA). Several



Figure 4 LncRNA risk score analysis of GEO patients. The distribution of four-lncRNA risk score, patients’ survival status and lncRNA expression
signature were analyzed in the training set patients (n = 327). (A) LncRNA risk score distribution; (B) patients’ overall survival status and time;
(C) heatmap of the lncRNA expression profiles. Rows represent lncRNAs, and columns represent patients. The black dotted line represents the
median lncRNA risk score cutoff dividing patients into low-risk and high-risk groups.
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cancer related pathways such as epithelial mesenchymal
transition(EMT) [44], cell cycle signaling and DNA
replication [45] were enriched in the high risk group,
which implies that the signature might be involved in
the metastasis related pathways (Figure 6). The associ-
ated biological pathway with each lncRNA was shown
in Additional file 4: Figure S3.
Table 2 Univariable and multivariable Cox regression analyse

Variables Univariable model

HR 95% CI of HR

Training set (GSE 20685) (N = 327)

Four-lncRNA risk score 3.89 2.33-6.51

Age 0.99 0.97-1.01

Testing set (GSE 21653) (N = 252)

Four-lncRNA risk score 2.12 1.35-3.34

Age 1.00 0.98-1.02

Subtype 1.04 0.88-1.23

Testing set (GSE 12276) (N = 204)a

Four-lncRNA risk score 1.893 1.40-2.56

Testing set (GSE 42568) (N = 104)

Four-lncRNA risk score 2.36 1.30-4.27

Age 1.00 0.97-1.02
aIn GSE12276 set, there was no available age or subtype information.
Discussion
The discovery of multiple functional regulatory lncRNAs
has lead to genome-wide searches in multiple species as
well as for transcripts that are aberrantly expressed in
various types of cancers. Similar to protein-coding genes
and miRNAs, lncRNAs play key roles in tumorigenesis.
They are involved in a number of fundamental processes
s in each data set

Multivariable model

p value HR 95% CI of HR p value

2.10E-8 3.88 2.32-6.48 2.30E-7

0.49 0.99 0.97-1.02 0.62

0.001 2.28 1.44-3.63 4.84E-4

0.95 1.00 0.98-1.02 0.88

0.64 1.12 0.95-1.33 0.19

2.33E-5

0.005 2.34 1.29-4.24 0.005

0.59 1.00 0.97-1.02 0.78



Figure 5 Receiver operating characteristic (ROC) analysis of
sensitivity and specificity by four-lncRNA risk score, oncotype
in predicting disease-free survival (DFS). In GSE21653, the score
performance was assessed by calculating the area under the ROC
(AUROC) of four-lncRNA risk score versus Oncotype, which was 0.603
and 0.675, respectively. (p = 0.0837).
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associated with cancer including cell cycle regulation,
apoptosis, the DNA damage response, and metastasis
[3,46]. The expression of highly conserved lncRNAs is
also altered in breast cancers [17]. Our recent study
achieved the lncRNA profiling by mining the existing
microarray gene expression data as reported [47,48]. Ex-
cept for several recent researches on the roles of lncRNAs
in breast cancer, the prognostic value of lncRNA signa-
tures have not been investigated. To our knowledge, this
is the first report of a lncRNA expression signature pre-
dicting breast cancer patient survival.
In this study, we have identified a four-lncRNA expres-

sion signature that is associated with survival of breast
Figure 6 Gene set enrichment analysis delineates biological pathway
(GSE 20685). GSEA validated enhanced activity of (A) epithelial mesenchy
replication pathway in high risk score group.
cancer patients. We further revealed that the four-lncRNA
signature is an independent predictor of breast cancer
patient survival.
As for the characteristics of the four genes, the over-

expression of U79277 was found to be correlated with
shorter survival while three of these four lncRNAs iden-
tified (AK024118, BC040204, AK000974) were down-
regulated in the high-risk group compared to low-risk
group. The functional study in cancer of these genes has
not been reported so far. Nevertheless, our present study
demonstrated the associations between the expressions
of these genes and survival time. Interestingly, the loca-
tions of those putative lncRNAs overlap with many tran-
scripts including some well-known oncogene and tumor
suppress genes. AK024118 is located within the intron
of BCL2 which is a known driver of lymphoma. U79277
is transcribed from the minus strand on human chromo-
some 8 and overlaps with YWHAZ 3’UTR. AK000974
which overlaps with many transcripts including CCNJ
mRNA. We found that it is very common for ncRNAs.
The lncRNAs were categorized as intergenic or genic.
The genic lncRNAs were further classified as being
exonic, intronic or overlapping and sense or antisense
according to their relation with neighboring protein cod-
ing genes [49,50]. Although some of lncRNAs may over-
lap with neighboring protein coding genes, most of
them have their own function. Some lncRNAs regulate
the transcription of nearby genes in cis, while others act
in trans [28]. A concrete example is HOTAIR, a well-
studied lncRNA, within the HOXC cluster was shown to
help silence HOXD cluster genes in trans [51]. It may be
worthwhile to further investigate these lncRNAs for the
purpose of better understanding of their roles in deter-
mining breast cancer prognosis.
The median risk score was used as a cutoff point for

two reasons. First, a previous lncRNA risk score formula
used the median as a cutoff point for classifying patients
into two groups [27]. Second, the most common ap-
proach for dichotomizing continuous variables was to
s and processes associated with risk score in the training set
mal transition pathway (B) cell cycle signaling pathway (C) DNA
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take the sample median due to the absence of a prior
cutpoint [52].
By performing multivariable Cox regression analysis

that included age and subtype(when available) as cov-
ariables, we analyzed whether the prognostic value of
the four-lncRNA signature was independent of age and
subtype. The age at diagnosis exercises a complex influ-
ence on breast cancer prognosis. Young age at diagnosis
influences negatively the prognosis [53-55], whereas
breast cancer in elderly women is associated with an in-
ferior prognosis when compared to that of middle-aged
women [54]. Observational data in breast cancer pa-
tients is suggestive of an increased risk of disease spe-
cific mortality with increasing age [56,57]. Several
observations suggest that the percentage of deaths
attributed to breast cancer decreased with age [58,59].
These inconsistency in findings could explain the re-
sults that age was not significant prognostic factor
when assessed in the univariable Cox regression ana-
lysis in our study. Nonetheless, we could conclude that
the risk score obtained by the four-lncRNA signature
was independent of age in the present study.
Breast cancer is clinically heteregeneous due to mo-

lecular differences between histologically similar tumors.
Luminal, Her2 enriched, basal-like (Triple-negative) sub-
groups were identified and were shown to have different
long-term survivals [10,11,60,61]. There were few re-
ports about the correlation between lncRNAs and mo-
lecular subtype of breast cancer. A newly identified
lncRNA, LOC554202, has been found to express abun-
dantly in the non-invasive breast cancer cell lines like lu-
minal subtype, but the expression is lost in more
aggressive triple-negative breast cancer cell lines of basal
subtype [62]. It was therefore of interest to determine if
our four-lncRNA signature was associated with this
strong prognostic factor. As the data on molecular sub-
type was only available in GSE21653, we performed the
analysis of multivariable Cox regression including risk
score and subtype in this testing group. Because of the
small sample size in some subgroups, we did not observe
significant difference in either univariable or multivari-
able Cox regression analysis.
Further ROC analysis demonstrated that four-lncRNA

gene signature was comparable with Oncotype DX (p =
0.0837). Although Oncotype DX is the most accepted in
clinical practice for decision making as to the advisability
of adjuvant chemotherapy for breast cancer patients
[12], the test is not financially feasible for every patient
in developing countries. As shown in this study, a small
number of genes (4 genes) could be sufficient to predict
the prognostic, using simply reverse transcription poly-
merase chain reaction (RT-PCR). Clinically, risk score
may provide clues on biological behaviors as well as
prognostic characteristics of tumors. Patients belonging
to high-risk group may need more effective adjuvant
therapy in addition to the standard treatment protocol.
In addition to the current prognostic model, the four-
lncRNA signature may develop easy-to-use prognostic
model in order to facilitate further stratification of
patients.
Moreover, Gene set enrichment analysis (GSEA) was

performed aiming at analyzing coordinate expression
changes at a pathway level. The associated molecular
pathways, namely, epithelial mesenchymal transition
(EMT) [44], cell cycle signaling and DNA replication
revealed the four-lncRNA signature might be involved
with cancer metastasis. Hence, these findings are likely
to be implicated in the development of new targeted
anti-cancer therapies. In breast cancer, it has been
shown that knock-down of lncRNA HOTAIR with spe-
cific siRNAs may limit the metastatic potential of breast
cancer cells [3]. The therapeutic potential of targeting
regulatory lncRNAs in order to increase the expression
of specific genes has also recently emerged [1,63]. The
four prognostic lncRNAs may have therapeutic poten-
tial as novel molecular targets.
Several limitations to this study need to be acknowl-

edged. First, in our study, only a fraction of human
lncRNA (5635 out of 15000+) were included in the ana-
lysis. So, the prognostic lncRNA genes identified here
may not represent all the lncRNA candidates that are
potentially correlated with breast cancer overall survival.
Secondly, we lack information on the mechanisms behind
the prognostic values of these four lncRNAs in breast can-
cer, and experimental studies on these lncRNAs might
provide important information to further our under-
standing of their functional roles. Finally, although we
recapitulated our findings in three published datasets to
the extent possible based on data availability, the signa-
ture has not yet been tested prospectively in a clinical
trial. Despite these drawbacks, however, the significant
and consistent correlation of our four-lncRNA signature
with overall survival in several independent data sets indi-
cates that it is a potentially powerful prognostic marker
for breast cancer.
Conclusions
In summary, we have identified a set of four-lncRNA
signature, which predicts the overall survival in three in-
dependent cohorts. Further analysis revealed that the
prognostic value was independent of age and subtype.
Clinically, the identification of poor or good prognosis
cases may help select the appropriate treatment. The
identification of the prognostic lncRNAs indicates the
potential roles of lncRNAs in breast cancer pathogenesis.
The four-lncRNA signature may have clinical implications
as molecular diagnosis markers and therapeutic targets.
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