11 research outputs found

    Heterogeneous Catalysis through Microcontact Printing

    Get PDF
    Here, we investigate four different chemical pathways (Scheme 1a–d) relevant to the Cu-catalyzed azide–alkyne cycloaddition (CuAAC) reaction.[13] Three of those pathways lead to surfaces functionalized with organic molecules.[5, 11, 14] At the outset, our practical goal was to identify surface-functionalization protocols that are capable of attaining 1) spatial selectivity, 2) high surface coverage, and 3) rapid reaction kinetics. Our ultimate goal is to achieve a fundamental understanding of how different reaction pathways influence the chemical outcome as it applies to the organic functionalization of surfaces

    Orthogonal transformations on solid substrates: Efficient avenues to surface modification

    No full text
    The performance of solid substrates is not only governed by their molecular constitution, but is also critically influenced by their surface constitution at the solid/gas or solid/liquid interface. In here, we critically review the use of orthogonal chemical transformations (so-called click chemistry) to achieve efficient surface modifications of materials ranging from gold and silica nanoparticles, polymeric films, and microspheres to fullerenes as well as carbon nanotubes. In addition, the functionalization of surfaces via click chemistry with biomolecules is explored. Although a large host of reactions fulfilling the clicfc-criteria exist, pericyclic reactions are most frequently employed for efficient surface modifications. The advent of the click chemistry concept has led-as evident from the current literature-to a paradigm shift in current approaches for materials modification: Away from unspecific and nonselective reactions to highly specific true surface engineering. © 2009 WILEY-VCH Verlag GmbH & Co. KCaA

    Tandem "click" reactions at acetylene-terminated Si(100) monolayers

    No full text
    We demonstrate a simple method for coupling alkynes to alkynes. The method involves tandem azide-alkyne cycloaddition reactions ("click" chemistry) for the immobilization of 1-alkyne species onto an alkyne modified surface in a one-pot procedure. In the case presented, these reactions take place on a nonoxidized Si(100) surface although the approach is general for linking alkynes to alkynes. The applicability of the method in the preparation of electrically well-behaved functionalized surfaces is demonstrated by coupling an alkyne-tagged ferrocene species onto alkyne-terminated Si(100) surfaces. The utility of the approach in biotechnology is shown by constructing a DNA sensing interface by derivatization of the acetylenyl surface with commercially available alkyne-tagged oligonucleotides. Cyclic voltametry, electrochemical impedance spectroscopy, X-ray photoelectron spectroscopy, and X-ray reflectometry are used to characterize the coupling reactions and performance of the final modified surfaces. These data show that this synthetic protocol gives chemically well-defined, electronically well-behaved, and robust (bio)functionalized monolayers on silicon semiconducting surfaces. © 2011 American Chemical Society

    Immigration Restrictions as Active Labor Market Policy: Evidence from the Mexican Bracero Exclusion

    No full text
    corecore