12 research outputs found

    Magnetic localization and control of helical robots for clearing superficial blood clots

    Get PDF
    This work presents an approach for the localization and control of helical robots during removal of superficial blood clots inside in vitro and ex vivo models. The position of the helical robot is estimated using an array of Hall-effect sensors and precalculated magnetic field map of two synchronized rotating dipole fields. The estimated position is used to implement closed-loop motion control of the helical robot using the rotating dipole fields. We validate the localization accuracy by visual feedback and feature tracking inside the in vitro model. The experimental results show that the magnetic localization of a helical robot with diameter of 1 mm can achieve a mean absolute position error of 2.35 ± 0.4 mm (n = 20). The simultaneous localization and motion control of the helical robot enables propulsion toward a blood clot and clearing at an average removal rate of 0.67 ± 0.47 mm3/min. This method is used to localize the helical robot inside a rabbit aorta (ex vivo model), and the localization accuracy is validated using ultrasound feedback with a mean absolute position error of 2.6 mm

    Performance and application of an open source automated magnetic optical density meter for analyzing magnetotactic bacteria

    Get PDF
    We present a spectrophotometer (optical density meter) combined with electromagnets dedicated to the analysis of magnetotactic bacteria. We have ensured that our system, called MagOD, can be easily reproduced by providing the source of the 3D prints for the housing, electronic designs, circuit board layouts, and microcontroller software. We compare the performance of this novel system to existing adapted commercial spectrophotometers. In addition, we demonstrate its use by analyzing the absorbance of magnetotactic bacteria as a function of their orientation with respect to the light path and their speed of reorientation after the field has been rotated by 90o. We continuously monitored the development of a culture of magnetotactic bacteria over a period of five days, and measured the development of their velocity distribution over a period of one hour. Even though this dedicated spectrophotometer is relatively simple to construct and cost-effective, a range of magnetic field-dependent parameters can be extracted from suspensions of magnetotactic bacteria. Therefore, this instrument will help the magnetotactic research community to understand and apply this intriguing micro-organism

    An open-source automated magnetic optical density meter for analysis of suspensions of magnetic cells and particles

    Get PDF
    We present a spectrophotometer (optical density meter) combined with electromagnets dedicated to the analysis of suspensions of magnetotactic bacteria. The instrument can also be applied to suspensions of other magnetic cells and magnetic particles. We have ensured that our system, called MagOD, can be easily reproduced by providing the source of the 3D prints for the housing, electronic designs, circuit board layouts, and microcontroller software. We compare the performance of our system to existing adapted commercial spectrophotometers. In addition, we demonstrate its use by analyzing the absorbance of magnetotactic bacteria as a function of their orientation with respect to the light path and their speed of reorientation after the field has been rotated by 90°. We continuously monitored the development of a culture of magnetotactic bacteria over a period of 5 days and measured the development of their velocity distribution over a period of one hour. Even though this dedicated spectrophotometer is relatively simple to construct and cost-effective, a range of magnetic field-dependent parameters can be extracted from suspensions of magnetotactic bacteria. Therefore, this instrument will help the magnetotactic research community to understand and apply this intriguing micro-organism

    Magnetic Localization for an Electromagnetic-Based Haptic Interface

    Get PDF
    In this letter, we develop a magnetic localization system for an electromagnetic-based haptic interface (EHI). Haptic interaction is achieved using a controlled magnetic force applied via an EHI on a magnetic dipole attached to a wearable finger splint. The position of the magnetic dipole is estimated using two identical arrays of three-dimensional magnetic field sensors in order to eliminate the magnetic field generated by the EHI. The measurements of these arrays are used to estimate the position of the magnetic dipole by an artificial neural network. This network maps the field readings to the position of the magnetic dipole. The proposed system is experimentally validated under four cases of the magnetic field generated by the EHI. These cases are likely to be encountered during the haptic rendering of virtual shapes. In the absence of the magnetic field, the mean absolute position error (MAE) is 0.80 +/- 0.30 mm (n = 125). Static and sinusoidal magnetic fields are applied, and the MAEs are 1.26 +/- 0.43 mm (n = 125) and 0.91 +/- 0.33 mm (n = 125), respectively. A random time-varying magnetic field is applied, and the MAE is 0.86 +/- 0.33 mm (n = 125). Our statistical analysis shows that the repeatability of the magnetic localization is acceptable regardless of the field generated by the EHI, at alpha = 0.05 and 95% confidence level

    2D Magnetic Actuation and Localization of a Surface Milli-Roller in Low Reynolds Numbers

    Get PDF
    Magnetic actuation of minimally invasive medical tetherless devices holds great promise in several biomedical applications. However, there are still several challenges in noninvasive localization, both in terms of sensing detectable signals of these devices and estimating their states. In this work, a magnetic milli-roller is actuated in a viscous fluid under the influence of a rotating magnetic field. A Lyapunov-based nonlinear state observer is designed and implemented to estimate the position of the roller using a 2D array of Hall-effect sensors. We show that the local stability of the state observer yields convergence to one of the local equilibria, for pre-defined levels of sensor noise, initial conditions, and modeling errors. Performance is quantified using redundant measurements of the fields and we investigate the influence of the number of magnetic field measurements on the observability of the system. Open-loop actuation and state estimation are demonstrated and experimental results show that the localization of a 5 mm diameter roller along sinusoidal, circular and square trajectories achieve a steady-state mean absolute position error of 2.3 mm, 1.67 mm and 1.73 mm, respectivel

    Association of p16 expression with prognosis varies across ovarian carcinoma histotypes:an Ovarian Tumor Tissue Analysis consortium study

    Get PDF

    The moral economy of home construction in late socialist Yugoslavia

    Get PDF
    Housing shortages in Yugoslav cities were a perennial concern for authorities and citizens alike. They disproportionately affected Yugoslav workers who as a consequence were the demographic most likely to independently construct a family home. This article explores how informal builders justified home construction in moral terms, legitimizing it on the basis of physical labour that was invested in home construction. This was couched in both the language register of Yugoslav socialism and patriarchal custom (according to which a male-headed household should enjoy the right to a family home). Construction was also conditioned by the opportunities and constraints of late socialist temporalities.publishe

    Association of p16 expression with prognosis varies across ovarian carcinoma histotypes: an Ovarian Tumor Tissue Analysis consortium study.

    Get PDF
    We aimed to validate the prognostic association of p16 expression in ovarian high-grade serous carcinomas (HGSC) and to explore it in other ovarian carcinoma histotypes. p16 protein expression was assessed by clinical-grade immunohistochemistry in 6525 ovarian carcinomas including 4334 HGSC using tissue microarrays from 24 studies participating in the Ovarian Tumor Tissue Analysis consortium. p16 expression patterns were interpreted as abnormal (either overexpression referred to as block expression or absence) or normal (heterogeneous). CDKN2A (which encodes p16) mRNA expression was also analyzed in a subset (n = 2280) mostly representing HGSC (n = 2010). Association of p16 expression with overall survival (OS) was determined within histotypes as was CDKN2A expression for HGSC only. p16 block expression was most frequent in HGSC (56%) but neither protein nor mRNA expression was associated with OS. However, relative to heterogeneous expression, block expression was associated with shorter OS in endometriosis-associated carcinomas, clear cell [hazard ratio (HR): 2.02, 95% confidence (CI) 1.47-2.77, p < 0.001] and endometrioid (HR: 1.88, 95% CI 1.30-2.75, p = 0.004), while absence was associated with shorter OS in low-grade serous carcinomas (HR: 2.95, 95% CI 1.61-5.38, p = 0.001). Absence was most frequent in mucinous carcinoma (50%), and was not associated with OS in this histotype. The prognostic value of p16 expression is histotype-specific and pattern dependent. We provide definitive evidence against an association of p16 expression with survival in ovarian HGSC as previously suggested. Block expression of p16 in clear cell and endometrioid carcinoma should be further validated as a prognostic marker, and absence in low-grade serous carcinoma justifies CDK4 inhibition
    corecore