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2D Magnetic Actuation and Localization of a Surface
Milli-Roller in Low Reynolds Numbers

Mina M. Micheal , Alaa Adel, Chang-Sei Kim , Senior Member, IEEE, Jong-Oh Park, Member, IEEE,
Sarthak Misra , Senior Member, IEEE, and Islam S. M. Khalil

Abstract—Magnetic actuation of minimally invasive medical
tetherless devices holds great promise in several biomedical ap-
plications. However, there are still several challenges in nonin-
vasive localization, both in terms of sensing detectable signals of
these devices and estimating their states. In this work, a magnetic
milli-roller is actuated in a viscous fluid under the influence of a
rotating magnetic field. A Lyapunov-based nonlinear state observer
is designed and implemented to estimate the position of the roller
using a 2D array of Hall-effect sensors. We show that the local
stability of the state observer yields convergence to one of the local
equilibria, for pre-defined levels of sensor noise, initial conditions,
and modeling errors. Performance is quantified using redundant
measurements of the fields and we investigate the influence of the
number of magnetic field measurements on the observability of the
system. Open-loop actuation and state estimation are demonstrated
and experimental results show that the localization of a 5 mm
diameter roller along sinusoidal, circular and square trajectories
achieve a steady-state mean absolute position error of 2.3mm,
1.67mm and 1.73mm, respectively.

Index Terms—Localization, medical robots and systems,
micro/nano robots, motion control.

I. INTRODUCTION

MANIPULATION of tetherless devices using external
magnetic fields is a promising approach in minimally-

invasive surgery and biomedicine [1]. In order to develop an
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efficient magnetic-based manipulation system, two main com-
ponents must be designed to simultaneously work in a specific
environment. First, a magnetic actuation system generates the
magnetic forces and torques needed to achieve locomotion
of the tetherless devices, such as pulling [2], rolling or tum-
bling [3]–[5], swimming by the drag-based thrust of helical
propellers [6] or using passively propagated bending waves
along a flexible filament [7]. Second, a localization system
provides real-time position feedback of the magnetic agent.
Therefore, several non-invasive techniques have been presented
to localize magnetic agents in a three-dimensional (3D) envi-
ronment such as optical-based methods, computed tomography
(CT), magnetic resonance (MR), ultrasound images, photoa-
coustic imaging (PAI), and magnetic field-based techniques [8].
Optical methods are important in preliminary characterization
experiments to help understand the influence of the physical
surroundings [9]. CT-based imaging methods are not suitable
for real-time localization with relatively high spatial resolution,
MR-based methods make use of relatively large magnetic fields,
which imposes limitations to generate time-varying magnetic
fields using actuation systems. The combination of MR-based
navigation and MRI requires switching between two different
magnetic field signals to achieve both actuation and imaging.
However, this switching causes possible delays and navigation
instabilities [8].

Ultrasound-based localization methods can provide real-time
position of the magnetic agents in vivo. However, adequate
resolution can only be achieved at relatively high-frequency
sound waves, which is inversely proportional to its wavelength
and this relationship limits the resolution and the size of the
tracked magnetic agent [10]. PAI is a promising technique
that combines optical contrast with acoustic spatio-temporal
resolution to achieve noninvasive localization. However, there
is still a need to overcome the penetration depth limitations
imposed by light to enable detection of microrobots in human
tissues [8]. On the other hand, magnetic fields are transparent to
ultrasound wave reflectors and the availability of field sensors in
the microtesla and nanotesla range would allow relatively small
agents to be detected.

Several researchers have developed magnetic localization
methods using two approaches [11]. The first is based on
embedding a small magnet inside the agent and using exter-
nal magnetic field sensor to estimate its pose. In the second
approach, magnetic field measurements at the position of the
agent are transmitted using field sensors and wireless circuits
integrated with the agent. The first approach is more suitable for
the localization of relatively small magnetic agents in the sub-
millimeter scale. Popek et al. have demonstrated simultaneous
localization and propulsion of a magnetic capsule with size of
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108 mm3 using a rotating dipole field and an extended Kalman
filter and reported a position error of 8.5mm [12]. Guitron
et al. have presented localization and closed-loop control of an
origami robot using an array of Hall-effect sensors and achieved
a position error of 0.99mm [22]. They have implemented a
decoupled two-phase actuation and localization operation to pre-
vent strong coil field from interfering with field measurements of
the robot. Khalil et al. have presented a localization and control
strategy for a helical robot using an array of magnetic field
sensors and a magnetic actuation system. They have achieved
mean absolute error (MAE) of 2.3mm in position estimation
using a nonlinear inverse optimization technique [14]. Son et al.
have also developed a 5 degrees-of-freedom (DOFs) localization
system for a 524 mm3 magnetic capsule [13]. A 2D array of
Hall-effect sensors and a nonlinear optimization algorithm have
been implemented to calculate the pose of the capsule with a
position error of2.1mm. However, the robustness of the position
estimation and the computational power are the main limitations
of using nonlinear optimization [15]. In addition, localization
techniques which make use of inverse optimization methods
do not guarantee the stability nor do they enable convergence
of the estimated states, and they are highly dependent on the
initial conditions. Therefore, the design and implementation of
a model-based nonlinear state observer is important to overcome
the limitations of the numerical methods.

Several researchers have proposed observer design methods,
such as output injection method [16], extended Luenberger
observer [17], and high-gain observer [18]. Outputs in these
designs are typically assumed linear. However, there are several
magnetic manipulation systems in which the measurements lead
to nonlinear behaviors [19]. Here, we implement actuation and
localization of a magnetic milli-roller in low Reynolds numbers
(Re) using a spherical electromagnetic actuator and a 2D array
of Hall-effect sensors, our contributions include:
� Design of an electromagnetic actuator to generate rotating

magnetic fields capable of actuating the magnetic roller.
� Design and implementation of a nonlinear state observer

to achieve local-stability and convergence of the estimated
position. The stability of the estimated states and its ro-
bustness to measurement noise and modeling errors are
evaluated numerically and experimentally.

� Analysis of the influence of the number of field measure-
ments on the observability of the roller.

The remainder of this paper is organized as follows: In Sec-
tion II, we present the dynamics of a magnetically-driven roller
in low-Re and a nonlinear state observer is designed. Numerical
results of the observer and its sensitivity to measurements noise
and modeling errors are discussed in Section III. Section IV
provides the experimental results. Finally, Section V concludes
and provides directions for future work.

II. MAGNETIC LOCALIZATION SYSTEM

Reconstruction of the states of a tetherless roller in a fluid
characterized by low-Re, involves modeling of its motion and
design of a state-observer based on measurable outputs.

A. Equation of Motion in low-Re

Consider a tetherless spherical magnetic roller of diameter
2R and magnetic dipole m, moving with angular velocity ω
and translating with velocity ṗ on a flat surface. The body is

Fig. 1. Tetherless magnetic rollers are actuated using pure rotation of an ac-
tuator permanent magnet. We use a material frame for the actuator magnet with
the orthonormal vectors ex and ey such that ex is parallel to the dipole moment
of the actuator magnet, ma. The orthonormal vectors e1 and e2 are fixed to the
tetherless roller such that e1 is parallel to the magnetic dipole m.

immersed in a viscous fluid characterized by low-Re and its
motion is influenced by an external magnetic fieldB at its center
of mass. This field is produced using a spherical actuator perma-
nent magnet of diameter 2Ra and magnetic dipole moment ma,
which undergoes purely controllable rotational motion about
the axis Ω̂ (Fig. 1). The position of the magnetic roller p is
represented with respect to the material frame of the actuator
magnet and its magnetic field is approximated by

B(p,ma) =
μ0

4π

(
3ppT

‖p‖5 − I

‖p‖3
)
ma, (1)

where μ0 is the permeability of free space, I is a 3× 3 identity
matrix. The forces on the magnetic roller are balanced as

Fm + Fd + Fc = 0. (2)

In (2), Fm is the magnetic force acting on the agent due the field
of the actuator magnet and Fd is the drag force. Further, Fc is
the contact force due to the friction between the roller and the
surface. The magnetic force is given by

Fm = (m · ∇)B(p,ma). (3)

The viscous drag force on the spherical agent is calculated as

Fd = 6πηR (ftṗ+ frRω) , (4)

where η is the viscosity of the fluid, ft and fr are the normal-
ized scalar near-wall fluid forces of the translation and rotation
motion, respectively, and are given by [20]

ft =
8

15
ln

(
δ

R

)
− 0.9588, fr =

−2

15
ln

(
δ

R

)
− 0.2526,

(5)
where δ is the height of the liquid film between the roller and
the flat surface. The contact force due to non-hydrodynamic
interactions between the surface and the roller is given by

Fc = −μf (Fg − Fb) Ṗ = −μf

(
Mg − 4

3
πρmgR

3

)
Ṗ , (6)
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where Fg and Fb are the gravitational and buoyancy forces,
respectively, Ṗ is the velocity vector of unit length, M is the
mass of the roller,g is the gravitational acceleration, andρm is the
density of the fluid. Furthermore, μf is the dynamic coefficient
of friction. The magnetic torque, Tm, exerted by the external
magnetic field must balance the drag torque on the roller, Td,
such that

Tm +Td + (RN × Fc) = 0. (7)

where N is a unit vector normal to the 2D plane of motion. The
magnetic torque on the roller is assumed to be in the direction
of the rotation axis of the roller (ω̂), and we have

Tm = k‖m‖‖B(p,ma)‖ω̂, (8)

where ω̂ = ̂H−1Ω̂, H−1 = (H − I)/2 [12]. H = 3PPT − I
is a position-dependent matrix, P is the position vector of
unit length, and the parameter k (0 < k ≤ 1) is dependent on
the roller position, the fluid viscosity, and actuator frequency.
Setting k = 1 corresponds to maximum torque which results in
actuating the roller at its step-out frequency. The drag torque
acting on the roller is given by

Td = 8πηR2 (Ttṗ+ TrRω) . (9)

Note that Tt and Tr are the normalized scalar torques of the
transnational and rotational motion, respectively, such that

Tt =
−1

10
ln

(
δ

R

)
− 0.189, Tr =

2

5
ln

(
δ

R

)
− 0.3817.

(10)
The orientation of the actuator magnet to the translating velocity
of the tetherless body is related as follows:[

ṗx
ṗy

]
=

1

C
[−4RTr 0 0 0 3fr 0

0 −4RTr 0 3fr 0 0

] [
F
T

]
, (11)

where C = 24πηR2(frTt − ftTr), F = Fm + Fc, and T =
Tm + (RN × Fc). Equation (11) indicates that any change in
the direction of the actuator magnet directly affects the translat-
ing velocity due to the over-damped nature of low-Re flow, and
used to construct the state-observer.

B. State-Observer Design

The equation of motion shows that the translating speed of the
roller is nonlinear with respect to its position from the magnet.
To design a state observer (11) is written in the form

ṗ = f(p,u), p(0) = p0

y = h(p,u), (12)

where p ∈ Rn is the state vector and u ∈ Rr is a vector of the
inputs. The inputs are the components of the actuator dipole.
In (12), we assume the availability of measurable output vector
(y ∈ Rm) as a function of the position of the roller through the
output function h(·). We consider a full-order state-observer of
the following form [21]:

˙̂p = f(p̂, ū) +L (p̄, ū) [y − ŷ] ,
ŷ = h(p̂, ū),

(13)

where p̂ is a vector of the estimated states, p̄ is a vector of
the desired reference states and (ū = U(p̄)) is a feed-forward
control law. Further, L(·) is the observer nonlinear gain matrix.

The error dynamics, i.e., dynamics describing the difference
between the estimated states and actual states based on the
estimation error e = p− p̂, is calculated using (12) and (13).
The corresponding observer-error dynamics is governed by

ė = f(p,u)− f(p− e,u)−L [h(p,u)− h(p− e,u)] .
(14)

Since (e = 0) is the only equilibrium state of the observer-error
dynamics (14) that is independent of the system states and
inputs, then ifL(·) is chosen such that (ė) achieves local asymp-
totic stability, the estimation error would converge to zero and
‖p̂− p‖ → 0 as t → ∞. Lyapunov’s linearization method is
used to acheive local asymptotic stability of the equilibrium state
(e = 0). It suffices to choose the eigenvalues of the linearized
observer-error dynamics Jacobian matrix at the equilibrium
point e = 0 to be negative, such that

Re {λi ((∂f/∂p)−L(∂h/∂p))} < 0, ∀λi (15)

where λi is the ith eigenvalue of the Jacobian matrix. The
problem of selecting the gain matrix is similar to that of a linear
observer, but relatively more complicated due to the presence
of nonlinearities in the Jacobian matrix of the inequality (15).
We assume that the gain matrix is diagonal L(·) = diag(l1, l2),
where the gains l1 and l2 are obtained by solving the inequalities
(15). The number of these inequalities is dependent on the order
of system and although (11) describes 2D locomotion of a single
roller, the observer design remains valid for estimation during
3D.

C. Nonlinear Measurement Function

Consider an array of sensors fixed between the actuator
magnet and the roller (Fig. 1). The ith sensor in the array is
subject to Bi

s = Br +Ba, where Bi
s is the total field at the ith

sensor,Br andBa are the field of the roller and actuator magnet,
respectively. Since the position vector pi

s to the ith sensor is
fixed, the roller’s position with respect to the ith sensor pi

r is
calculated as pi

r = p− pi
s. Assuming that the magnetic dipole

of the roller aligns with the field of the actuator (i.e. m ‖ B).
Thus the magnetic field of the roller is used as the observation
function h(·) and can be written as

h =
μ0‖m‖
4π‖B‖

(
3(p− pi

s)(p− pi
s)

T

‖p− pi
s‖5

− I
)
B(p,ma), (16)

where I = I/‖p− pi
s‖3. In the presence of m available field

measurements, the output vector (16) is used to evaluate the
degree of observability of the roller throughout the workspace.

D. Observability Analysis

The performance of the observer can be evaluated by investi-
gating the observability of a given system with various available
measurements. Consider the system in (12), assuming that the
sensitivity and range of the sensors are sufficient to localize the
roller in the predefined workspace, the nonlinear observability
matrix can be evaluated using

O(p) =
∂

∂p

[
h(p)T . . .

(
Ln−1
f h(p)

)T
]T

= UΣVT, (17)

whereLi
fh(p,u) is the ith order Lie derivative ofh(p,u) along

the vector field f(p,u). The necessary and sufficient condition
for achieving local weak observability of the nonlinear system
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Fig. 2. Local observability of the roller is calculated using m field measure-
ments of the sensors (black square). The smaller the condition number (Nc) the
better the system observability. (a) m = 3. (b) m = 6. (c) m = 9. (d) m = 12.
(e) Condition number of the roller decreases as more measurements are used.
The black line represents a curve fitting the mean condition number.

(12) at a point (p0) is that the observability matrix in (17) is full
column rank (i.e., rank{O(p0)} = n). Applying singular value
decomposition, Σ = diag(σ1, σ2 . . . , σn) is a diagonal matrix
of non-negative singular values, U and V are the left and right
unitary matrices. To relate the degree of observability to the
state estimation error, we consider the measurement residual
ỹ = y − ŷ which includes new information of the state from
the measurements. The larger the observability degree of the
system, the more efficiently the state estimation error can be
corrected by the measurement residual. In order to find the
recursion relationship between the state estimation error e and
the measurement residual ỹ, the nonlinear outputs in (12) is
linearized at p̂ as y ≈ h(p̂, ū) + (∂h(p,u)/∂p)e. Now sup-
pose that Z = [(ỹ)T . . . .(ỹn−1)

T ]T is a matrix combining all
the measurement residuals, then we have

Z =
∂

∂p

[
(h(p))T . . .

(
Ln−1
f h(p)

)T
]T

e = O(p)e. (18)

Equation (18) show that if O(p) is full column rank, then there
exist a unique solution of e for Z and the value of p can be
determined. The ratio of the largest to the smallest singular
value is defined as the condition number (Nc = σmax/σmin),
which can be used as an overall observability index. Simulations
in Figs. 2(a)–(d) show the condition number of a predefined
workspace when using the three field components of 1 to 4
sensors, respectively. The local observability of the magnetic

roller increases with the number of measurements during posi-
tion estimation. Fig. 2(e) shows that the condition number and
the observability of the roller is almost constant when more than
nine magnetic field measurements are used.

E. Magnetic Actuation

An electromagnetic actuator is developed to generate a rotat-
ing field capable of actuating the roller. This actuator consists of
a spherical permanent magnet surrounded by three orthogonal
coils to control its orientation. An aerostatic bearing encompass
the magnet to achieve a frictionless rotation. The combination
of a permanent magnet and coils provides relatively high field
density compared to the size of the coils. The coils are designed
such that the on-axis field intensity of each coil at the center
is constant for the same input current. This constraint makes
the magnetic field, Bc, linearly related to the input currents
(Bc = BI), where B is a local mapping between the supplied
current and the field at the common center of the coils. The
orientation of the actuator magnet required to generate the
rotating field is m̂d = e(‖Ω‖t)S(Ω̂)m̂o, where Ω̂ = Ĥω̂ is the
actuator magnet rotation axis required to generate a rotating
field about the axis (ω̂) at the roller position [11]. S(Ω̂) is the
skew-symmetric matrix of the axis (Ω̂), the matrix exponential
of a skew-symmetric matrix creates a rotation matrix and m̂o

is any unit vector perpendicular to Ω̂ (i.e., m̂o ⊥ Ω̂). The input
current, I, is calculated by

I =

(
2MaRa

2‖Ω‖2
5B‖ma‖

)
e(‖Ω‖t)S(Ω̂)m̂o. (19)

whereMa andRa are the mass and radius of the actuator magnet,
respectively. Note that the observer (13) does not account for the
dynamics of the coils that control the magnetic dipole m̂a. This
assumption is valid when the 2D plane of the sensor array is
located at a relatively large distance from the electromagnetic
actuator. In this case, the unmodeled field produced by the coils
would fall off as the inverse cube of the distance to the plane of
the sensor array, enabling the measurement of Ba and Br only.
In practice, the unmodeled field will amplify the effect of the
background noise and estimation accuracy.

III. STATE ESTIMATION NUMERICAL RESULTS

The stability and performance of the observer is tested at
different levels of measurement noise and modeling errors.

A. Measurements Noise Sensitivity

A range of pre-defined Gaussian noise levels are added to the
field measurements. These additive noise levels are chosen to
model the internal noise range of the sensors used in the ex-
periments and the actuation field mapping error. The acquisition
frequency of the field is limited by the maximum frequency of the
sensors used in the experiments. Three initial conditions are de-
fined as I.C1 = (0, 0), I.C2 = (−5, 5) and I.C3 = (−9, 9) mm.
The initial states of the observer is set to the center (0,0) mm of
the actuator’s magnet (center of the workspace). The initial states
of the circular and square trajectories are set to I.C2 and I.C3, re-
ceptively. Fig. 3(a) shows the convergence of the estimated states
to actual states when measurement noise is superimposed with
the measured field with standard deviation of σ1 = 10μT. To
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Fig. 3. Numerical simulations illustrate the sensitivity of the observer to measurement noise evaluated at a range of (σ1 = 10 μT to σ2 = 80 μT) as the roller
moves along a circular (a,b) and a square (c,d) trajectory at two initial conditions (I.C1 and I.C2). (a) The performance of the observer when using noise of standard
deviation σ1 and initial conditions I.C1. (b) Additive noise of standard deviation σ2 and initial conditions I.C1 are used. (c) Noise of standard deviation σ1 is
added at initial conditions I.C2. (d) Noise of standard deviation σ2 and initial conditions I.C2 are used. (e) The MAE of the position of a roller along a circular
trajectory. The horizontal and vertical red lines are standard deviation of estimated position error in the x and y directions, respectively.

quantity the performance, the MAE in position estimation is cal-

culated using, MAE = (
∑n

i=1

√
(pix − p̂ix)

2 + (piy − p̂iy)
2)/n.

In this case, the MAE is (2.03,0.66) mm. When we increase the
noise to σ2 = 80μT for the same circular trajectory and initial
conditions, the MAE increases to (3.35,4.41) mm (Fig. 3(b)).
Similarly, the observer yields stable convergence to a square
trajectory with MAE of (0.35,0.33) mm for σ1 (Fig. 3(c)) and
MAE of (0.94, 0.88) mm for σ2 (Fig. 3(d)). Despite the super-
imposed noise with the measured field, the estimated position
along the circular trajectory converges in 2 s and 10 s in case
whereσ1 andσ2 are added, respectively. In the case of the square
trajectory, the estimated states converges in ∼ 1 s.

In the previous analysis, the estimation accuracy, in terms
of MAE, deteriorates as a result of the increased measurement
noise. The measurement noise is tuned numerically to predict the
MAE for various initial conditions and for noise range between
10 to 80μT (Fig. 3(e)). It shows that the estimation accuracy is
sensitive to variations in measurement noise and variations in
initial conditions. Associated with the increase in noise level by
10μT is an increase in the maximum MAE by 67%, 40%, and
34% for I.C1, I.C2, and I.C3, respectively. Therefore, estimation
error reduction can be achieved by decreasing the effect of the
background noise.

B. Sensitivity to Modeling Errors

It is unlikely that the observer can be effectively designed
using nominal parameters without errors. Therefore, four pre-
defined error levels are superimposed with the nominal pa-
rameters of the viscosity of the fluid, geometry of the roller,
magnetic moment of the roller and spherical actuator. The pre-
defined modeling error are entered into the observer such that
the difference between the nominal parameters of the model
and the observer are: Δ ∈ {Δ1,Δ2,Δ3,Δ4}. In the case of
negligible mismatch between the parameters of the observer
and the system, where Δ1 = 0%, the MAE in estimation is

(0.24± 0.8, 0.23± 0.9) mm for I.C1 (solid lines), as shown
in Fig. 4(a). A small deviation from I.C1 results in a similar
transient and steady-state response, as shown by the dashed lines
in Fig. 4(a). Increasing the error level to Δ2 = 10% results in an
increase in the MAE to (0.26± 0.84, 0.27± 0.87) mm for I.C1

(Fig. 4(b)). Similarly, additional modeling error introduced into
the observer will deteriorate the position estimation as shown
in Figs. 4(c) and (d) and the corresponding MAE is (0.28±
1.05, 0.38± 0.87) mm and (0.38± 0.83, 0.42± 0.86) mm for
Δ3 = 20% and Δ4 = 50%, respectively. Again, any small de-
viation from I.C1 does not yield a different response, as shown
by the dashed trajectories.

To quantify the transient and steady-state performance at the
same pre-defined error levels and greater deviations in the initial
condition, we repeat the previous numerical analysis for I.C2.
In this case the MAE corresponding to Δ1 = 0 is calculated as
(0.76± 1.03, 0.34± 1.91) mm (Fig. 4(e)). Similarly, increasing
the error level to Δ2 yields convergence with MAE of (0.78±
1.23, 0.35± 2.07) mm (Fig. 4(f)). The observer continues to
become increasingly less accurate by increasing the introduced
pre-defined error levels to Δ3 (Fig. 4(g)) and Δ4 (Fig. 4(h)),
and the corresponding MAE is (0.81± 1.28, 0.42± 2.31) mm
and (0.97± 1.4, 0.62± 2.57) mm, respectively. Note that the
dashed lines in Figs. 4(e)–(h) show the response of the observer
at the mentioned error levels and a small deviation from I.C2.
The state estimation numerical results (Fig. 3 and 4) indicate the
capability of the observer (13) to yield stable estimation under
all circumstances (i.e., measurement noise, modeling errors,
and initial conditions). These numerical results confirms the
fact that choosing the nonlinear gain matrix, L, such that the
observer inequality (15) is satisfied, the local stability of the
error dynamics is achieved.

IV. STATE ESTIMATION EXPERIMENTAL RESULTS

The Lyapunov-based state observer is verified using open-
loop actuation and estimation experiments. The experiments
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Fig. 4. Numerical simulations illustrate the sensitivity of the observer to different modeling errors. The roller position estimation error using (a) nominal model
parameters, (b) model parameters with deviation of 10%, (c) deviation of 20%, and (d) deviation of 50% from nominal values and the initial conditions are set to
(−3, 3) and (−5, 5). Simulations are repeated with the initial conditions set to (−7, 7) and (−9, 9) and using (e) nominal model parameters, (f) model parameters
with deviation of 10% from nominal values, (g) deviation of 20% from nominal values, and (h) deviation of 50% from nominal values.

Fig. 5. The spherical electromagnetic actuator consists of coils, actuator
magnet, sensor board, and a reservoir. (a) A5mm roller moves in a workspace of
5× 5 cm on a flat surface. (b) and (c) The field is generated using a permanent
magnet (1), and an air-bearing (2) reduces its friction. Coils (3), (4) and (5)
control the orientation of the permanent magnet.

enables motion control of the roller along arbitrarily shaped
trajectories using the spherical electromagnetic actuator.

A. Spherical Electromagnetic Actuator

A 5 mm diameter roller with dipole moment of 0.07A.m2

(N40 Neodymium, Neomagnete, Berlin, Germany) is immersed
in silicon oil of viscosity 1Pa.s (Re ∼ 10−3). It is controlled
to roll on a flat surface under the influence of a magnetic
torque generated using a spherical magnet (Fig. 5(a)) of di-
ameter 38 mm and a magnetic dipole of 28.6 A.m2 (N40

Neodymium, Amazing Magnets LLC, California, U.S.A). This
magnet generates an average field of 1.5 mT at distance of
15 cm from its center, at a frequency range of 0− 5 Hz.
The surrounding coils are independently controlled using an
XEL-230-40 amplifier (Copley Controls, Boston, MA, USA).
An aerostatics air-bearing is used to achieve air-levitation of the
permanent magnet (Figs. 5(b) and (c)). The position estimation
of the roller relies on field measurements using 16-Hall-effect
sensors (MLX90393 - Triaxis, Melexis N.V, Ypres, Belgium).
The sensors are arranged in a rectangular layout (4× 4 array),
such that their center-to-center distance are 7 mm and 14 mm
along the x- and y-axis, respectively. The sensitivity of the
sensors is 0.16μT within a range of ± 5 mT. These sensors
are calibrated by measuring the Earth’s field and subtracting
it from the field measurements during the experiments. The
sensor readings are acquired via Serial Peripheral Interface with
16-bit data resolution. The sampling rates of the actuation and
localization loops are 2 kHz and 0.94 kHz, respectively. The
sensors are placed at a distance of 12 cm above the actuator
magnet and 30 mm below the roller, and its motion is tracked
with a camera for validation. Note that the sensors board can
be placed above the roller if relatively larger actuation fields are
needed to prevent magnetic saturation.

B. State Estimation Experimental Results

The position of the roller is estimated from the measured mag-
netic field. In order to evaluate the stability and the robustness
of proposed nonlinear observer in the worst-case scenario, the
minimum number of field measurements required for the system
to be observable are used. The pre-calculated magnetic field
map of the actuator magnet at the positions of the sensors is
subtracted from the measured field using the sensors to calculate
the field of the roller. The observer is initialized at the center of
the workspace (0,0) mm (Fig. 6(a)). The maximum disturbance
in the field is measured as 0.25 mT, whereas the maximum
actuating field measured by the sensors is 2 mT during the move-
ment of the roller with respect to the sensors. In the trial shown
in Fig. 6(a), the roller is allowed to move along a sinusoidal
trajectory while its position is estimated. The modeled and the
measured disturbance in background field during the movement
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Fig. 6. The position of the roller is estimated as it moves along a sinusoidal
open-loop trajectory. (a) The estimated position (red dotted line) converges to the
measured position (blue solid line). (b) The dashed lines represent the modeled
field using (16) and the solid lines are the measured fields. (c) The estimated
position S.S.MAE is 2.3 mm. Please refer to the accompanying video.

of the magnetic roller are shown in Fig. 6(b). The estimated
position MAEs are 1.8 mm and 3.1 mm along the x- and
y-axes, respectively, and the position steady-state mean absolute
error (S.S.MAE) is 2.3mm, as shown in Fig. 6(c). Despite
the 3–4 body length difference between the initial conditions
of the observer and the initial roller’s position, the observer
achieves local stability and the estimated position converges
in ∼ 8 s (Fig. 6(c)). Note that the observer cannot maintain
a constant steady-state estimation error due to the condition
number anisotropy in the workspace (Fig. 3) with the exception
of m = 3 where the condition number is radially symmetric.
Therefore, the state estimation experiences position-dependent
observabaility, in terms of Nc, which makes the observer less
or more sensitive to mismatch between nominal and actual
parameters and measurement noise for a given number of sensors
and for different motion patterns within the workspace.

Figs. 7(a) and (b) show another state estimation experimental
result of the roller during the travel along an approximately
circular trajectory and the corresponding modeled and measured
disturbance in background field, respectively. The estimated
position of the agent converges to its actual position in ap-
proximately 8 s, despite the difference in initial conditions.

Fig. 7. The position of the roller is estimated as it moves along a circular
open-loop trajectory. (a) The estimated position (red dotted line) converges to the
measured position (blue solid line). (b) The dashed lines represent the modeled
field using (16) and the solid lines are the measured fields. (c) The estimated
position S.S.MAE is 1.67 mm. Please refer to the accompanying video.

Fig. 7(c) shows that the states of the roller experience undesirable
overshoot, that is followed by oscillation in the steady-state
about ex = ey = 0. The estimated position MAEs are 1.18 and
2.77 mm along the x- and y-axes, respectively, with a S.S.MAE
of 1.67mm (Fig. 7(c)). When the roller is controlled to move
along a square trajectory of side length of 28 mm (Fig. 8(a)),
similarly to the previous trials, the measured magnetic fields
(Fig. 8(b)) are used by the state observer through (16) and
asymptotic stability is achieved using the matrix inequality (15).
In this case, the estimated position of the roller converges to its
actual position in approximately 12 s, and the estimated position
MAEs are 2.23 mm and 1.69 mm along the x- and y-axes,
respectively, with a S.S.MAE of 1.73 mm, as shown in Fig. 8(c).
Please refer to the accompanying video.

V. CONCLUSION AND FUTURE WORK

On the basis of Lyapunov-based design, we show numerically
and experimentally the local stability of a nonlinear state ob-
server for magnetically actuated milli-roller. The position of the
roller is estimated during locomotion under the influence of a ro-
tating magnetic field. The observer is designed and implemented
based on the nonlinear outputs of the difference between the
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Fig. 8. The position of the roller is estimated as it moves along a square
open-loop trajectory. (a) The estimated position (red dotted line) converges to the
measured position (blue solid line). (b) The dashed lines represent the modeled
field using (16) and the solid lines are the measured fields. (c) The estimated
position S.S.MAE is 1.73 mm. Please refer to the accompanying video.

pre-calculated map of the actuating field and the field measured
using Hall-effect sensors. The numerical results illustrate local
convergence and stability of the observer for pre-defined levels
of magnetic field measurement noise, modeling error, and un-
known initial conditions. This sensitivity analysis demonstrates
that the MAE and steady-state error increase with the noise and
modeling error, respectively. Our state estimation experimental
results demonstrate the local stability of the observer and we
achieve position tracking S.S.MAE of 2.3, 1.67 and 1.73 mm,
for sinusoidal, circular, and square trajectories, respectively.

As part of our future studies, a globally convergent nonlinear
observer will be investigated to achieve global asymptotic sta-
bility of the pose estimation for systems with nonlinear and non-
monotonic outputs. Observer-based closed-loop control will be
implemented to achieve simultaneous magnetic actuation and
localization of a swarm of rollers in 3D space in a noninvasive
manner.
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